
ON OPTIMIZATION OF POLES FOR ADAPTIVE FOURIER DECOMPOSITION-INSPIRED
NEURAL LAYERS

Zeyuan Song, Zheyu Jiang

School of Chemical Engineering
Oklahoma State University
Stillwater, Oklahoma USA

ABSTRACT
Spectral methods and their variants are important numerical ap-
proaches for solving PDE problems. However, the performance
of these methods deteriorates when solutions contain singularities
or sharp gradients. In this work, we integrate Adaptive Fourier
Decomposition (AFD) with Blaschke-type bases into a neural oper-
ator architecture for solving forward and inverse PDEs. A central
challenge in AFD-inspired neural operator is how to select AFD
poles, which lie on the unit disk (a Riemannian manifold), and
network hyperparameters, which lie in Euclidean space. We ad-
dress this in an optimization framework, which alternates between
Riemannian gradient steps for pole updates and Euclidean steps
for network parameters. We prove descent and linear convergence
to first-order critical points under standard strong-convexity and
cross-block coupling conditions. A greedy outer loop adaptively
increases the number of poles and is provably convergent, attaining
the global optimum when the target is exactly representable. Ex-
periments on Burgers’ (forward problem) and Darcy flow (inverse
problem) equations demonstrate improved accuracy and efficiency
over Euclidean-only variants and competitive baseline methods, il-
lustrating the need and benefits of manifold-aware pole optimization
in AFD-based neural operators.

Index Terms— Partial differential equation, adaptive Fourier
decomposition, pole selection, optimization, Riemann manifold

1. INTRODUCTION AND MOTIVATION

Accurate and efficient solution methods for partial differential equa-
tions (PDEs) benefit a wide range of science and engineering fields
[1, 2, 3]. The general form of PDEs can be expressed as

L[u(x, t)] = f(x), x ∈ Ω, (1)

where L denotes the differential operator, f(x) is the source term,
and Ω is the spatial domain [4]. Spectral methods are widely used to
solve PDEs as they can accurately represent smooth solutions. The
idea is to decompose the solution u(x, t) using basis functions ϕk(x)

u(x, t) =
∑
k∈N

ûkϕk(x), (2)

followed by projecting the differential operatorL onto this subspace,
which leads to a system of ordinary differential equations for the co-
efficients ûk(t). It has been shown that spectral methods achieve
exponential convergence for smooth solutions [5]. However, con-
ventional spectral methods fall short in approximating non-smooth
solutions having singularities or sharp gradients, since the basis
functions are fixed.

To address this issue, the idea is to turn the fixed basis func-
tions into adaptive ones. One technique, adaptive Fourier decom-
position (AFD), was proposed to adaptively decompose signals in
Hardy space [6, 7], which can be further relaxed to reproducing ker-
nel Hilbert space (RKHS) [8]. Assuming the basis functions Bk are
Blaschkle-type functions

Bk(z) =

√
1− |ak|2
1− akz

k−1∏
j=1

z − aj

1− ajz
, ak ∈ D, (3)

where ak is called the pole, and D = {z ∈ C : |z| < 1} is the unit
disk. With this, the solution u(x, t) can be obtained by:

u(x, t) =
∑
k∈N

⟨u(x, t),Bk⟩Bk(exp ix), (4)

where ⟨·, ·⟩ denotes the inner product in the corresponding function
space, and z = exp ix. The adaptive nature of AFD comes from
the adaptability in pole selection. In classic AFD, poles are selected
following the maximal selection principle (MSP), a computationally
expensive procedure. In MSP, the first pole is determined by

a1 = argmax
a∈D

(1− |a|2)|u(a)|2, (5)

where u(a) denotes the reconstructed solution u under the poles a
in Equation (4). The subsequent poles are recursively selected in the
same manner for the residuals.

Reformulating AFD into a data-driven, neural operator-based
framework enables fast and accurate solutions to PDEs by lever-
aging the advantages of adaptive bases [9], which existing neural
operator PDE solvers based on frequency approaches (e.g., Fourier
and wavelet methods [10, 11, 12, 13]) fall short of. Nevertheless,
two issues are impeding this endeavor. First, classic AFD can only
be used to solve a limited variety of PDEs [14, 15], since the func-
tion spaces of many PDEs do not correspond to a reproducing kernel
Hilbert space (RKHS). For those PDEs whose solution space is not
a Hardy space, one can use neural networks to construct the nearest
RKHS [16]. In this work, we propose simple yet effective neural
layers inspired by the classic AFD theory with Blaschkle-type ba-
sis of Equation (3), whose output aligns with the result of Equation
(4). The second issue is how to optimize the poles ak on the m-
dimensional unit disk Dm and the hyperparameters θ of the neural
layers in Euclidean space Rp. Specifically, one needs to solve an
optimization problem on two different domains, and the unit disk
D is a Riemann surface with the Poincaré metric ds2 = 4|dz|2

(1−|z|2)2

[17]. Therefore, this paper provides new perspectives on 1) design-
ing neural architectures with rigorous theoretical justifications and
2) optimizing key parameters in Riemann surfaces and Euclidean
spaces.

2. AFD-INSPIRED NEURAL LAYERS

AFD-inspired neural layers expand the lifted input function into a
set of data-dependent rational orthogonal functions defined on a unit
disk. Specifically, the computational grid {xj}Nj=1 ⊂ Ω is mapped
affinely to the complex unit disk Dm = {z ∈ Cm : |z| < 1} by
xj 7→ zj with radius ρ < 1. For a sequence of poles a1, . . . , am ∈
D, the bases are constructed following Equation (3). Here, we use
the notation Bk(z; a1:k) instead of Bk(z). Evaluating these basis
functions on the grid yields the matrix:

Φ(a) =

 B1(z1; a1) · · · B1(zN ; a1)
...

. . .
...

Bm(z1; a1:m) · · · Bm(zN ; a1:m)

 ∈ Cm×N .

Once the lifted input flift(x) = Lθ([f(x), x]) ∈ RC are avail-
able, AFD-inspired neural layers compute the coefficients:

⟨flift,Bk(·; a1:k)⟩ := f⊤
liftBk(·; a1:k), (6)

and the output can be reconstructed through adaptive expansion:

ûa1:k,θ(x) =

m∑
k=1

ck Bk(x; a1:k), (7)

which reduces to a compact low-rank factorization on discrete grids:

ûa1:k,θ(x) = (f⊤
liftΦ(a))Φ(a)

⊤. (8)

Note that when all poles are fixed (ak = 0), the bases reduce
to standard Fourier atoms zk, making the classical spectral layers a
special case.

Next, we will explore how to optimize poles and hyperparame-
ters by minimizing the empirical loss over n training pairs:

min
a∈Dm, θ∈Rp

L(a, θ) =
1

n

n∑
i=1

ℓ
(
ûa,θ(f(x

(i))), u(i)), (9)

which adopts the following update rules:

R-step: at+1 = Expat

(
− ηt gradaL(a

t, θt)
)
, (10)

E-step: θt+1 = θt − γt∇θL(a
t+1, θt), . (11)

Here, Expz(v) =
z+tanh

(
λz∥v∥

2

)
v

∥v∥

1+z tanh
(

λz∥v∥
2

)
v

∥v∥

, λz = 2
1−|z|2 , gradaL =

(1−|a|2)2
4

gradeuc
a L, where gradeuc

a L is the Euclidean gradient of L
with respect to a.

3. THEORETICAL RESULTS

We outline a few reasonable assumptions in deriving the theoretical
justifications of AFD-inspired neural layers.

(A1) |ak| ≤ 1− ε along iterates for some ε ∈ (0, 1).

(A2) a 7→ L(a, θ) is La-smooth on (Dm, g) and θ 7→ L(a, θ) is
Lθ-smooth in Euclidean space.

(A3) µa-geodesic strong convexity in a and µθ-strong convexity in
θ.

(A4) ∥∇a∇θL∥ ≤ β on the feasible region.

(A5) L satisfies the Kurdyka-Lojasiewicz (KL) property on the fea-
sible set.

(A6) The sequence {θt} is bounded.

Among these assumptions, we remark that the KL property is
satisfied by a broad class of functions (including subanalytic and
semi-algebraic functions) that cover most objective functions used
in deep learning. Also, while we acknowledge that strong convexity
is a strong condition for general neural network training, we only use
this assumption to establish the linear convergence rate in Theorem
3.3. We clarify that our general convergence results, which show
that the objective function decreases monotonically and converges
to a critical point, rely on milder smoothness of the objective func-
tion rather than strong convexity. While PDE solutions may contain
shocks or sharp gradients, Equation (9) generally remains smooth
with respect to parameters, making our assumption appropriate for
the convergence analysis of AFD-inspired neural layers.

3.1. Convergence results

Theorem 3.1. From Assumptions (A1) and (A2), for fixed θ, the R-
step update of Equation (10) with ηt ∈ (0, 2

La
) satisfies

L(at+1, θ) ≤ L(at, θ)−
(
ηt − La

2
η2
t

)∥∥gradaL(a
t, θ)

∥∥2

g
. (12)

In other words, L(at, θ) decreases monotonically. Furthermore,∑
t

∥∥gradaL(a
t, θ)

∥∥2

g
<∞

Proof. By geodesic La-smoothness on a complete Riemannian
manifold, for any v ∈ TatDm,

L(Expat(v), θ) ≤ L(at, θ) + ⟨gradaL(a
t, θ), v⟩g + La

2
∥v∥2g.

Letting v = −ηt gradaL(a
t, θ) yields Equation (12). Since ηt ∈

(0, 2
La

), the decrement is nonnegative. Summing Equation (12) over
t yields

∑
t ∥gradaL∥2g <∞ because

N∑
t=0

(
ηt − La

2
η2
t

)∥∥gradaL(a
t, θ)

∥∥2

g
≤

N∑
t=0

(
L(at, θ)− L(at+1, θ)

)
< L(a0, θ) <∞.

Theorem 3.2. Assuming (A1)-(A3) hold with µa > 0. For η ∈
(0, 1

La
] and the unique minimizer a⋆ of a 7→ L(a, θ),

L(at+1, θ)−L(a⋆, θ) ≤ (1− ηµa)
(
L(at, θ)−L(a⋆, θ)

)
. (13)

Proof. Assumption (A3) implies the Polyak-Lojasiewicz inequality
on manifolds [18]: 1

2
∥gradaL∥2g ≥ µa

(
L − L⋆

)
. Combining it

with Equation (12) for η ≤ 1
La

gives L(at+1, θ) − L(a⋆, θ) ≤(
1− ηµa

)(
L(at, θ)− L(a⋆, θ)

)
.

Theorem 3.3. Assuming (A1), (A2), and (A5) hold with step sizes
ηt ∈ (0, 2

La
) and γt ∈ (0, 2

Lθ
), the sequence {(at, θt)} generated

by Equation (10) and Equation (11) satisfies:

(i) L(at, θt) is monotonically decreasing and convergent.

(ii) Every limit point is a first-order critical point of L.

(iii) If the sequence is bounded, it converges to a single critical
point.

If, in addition, Assumptions (A3) and (A4) hold and β is sufficiently
small, L(at, θt) converges linearly.

Proof. Let xt = (at, θt) denote the sequence of iterates. We prove
each claim in order.

To prove (i), note that the R-step update for a, executed on the
function L(·, θt), is a Riemannian gradient step. From Assumption
(A2), we have the standard descent lemma:

L(at+1, θt) ≤ L(at, θt)− ct∥gradaL(a
t, θt)∥2g, (14)

where ct := ηt − La
2
η2
t > 0. Similarly, the E-step update for θ on

the Lθ-smooth function L(at+1, ·) yields:

L(at+1, θt+1) ≤ L(at+1, θt)− dt∥∇θL(a
t+1, θt)∥2, (15)

where dt := γt − Lθ
2
γ2
t > 0.

Combining (14) and (15) gives:

L(at+1, θt+1) ≤ L(at+1, θt) ≤ L(at, θt).

From Assumption (A1), iterates {at} are bounded. For the sequence
{L(at, θt)} to converge, it must be bounded. From Assumption
(A6), the full sequence of iterates {(at, θt)} is in a compact set. Fur-
thermore, it is continuous from (A2). Since any continuous function
on a compact set is bounded, {L(at, θt)} converges. This proves (i).

To prove (ii), we add Equations (14) and (15) to get:

0 ≤ ct∥gradaL(a
t, θt)∥2g + dt∥∇θL(a

t+1, θt)∥2

≤ L(at, θt)− L(at+1, θt+1).

Summing it from t = 0 to ∞, the RHS is bounded by
L(a0, θ0) − limt→∞ L(at, θt) < ∞, and the convergence of
this series implies its terms must converge to 0. Assuming that step
sizes are bounded away from the interval endpoints, applying the
squeeze theorem gives:

lim
t→∞

∥gradaL(a
t, θt)∥g = 0 and lim

t→∞
∥∇θL(a

t+1, θt)∥ = 0.

From Assumption (A2), gradient ∇θL is Lipschitz continuous.
Since d(at+1, at) = ηt∥gradaL(a

t, θt)∥g → 0, it follows that
∥∇θL(a

t, θt)∥ → 0. As both gradient components vanish, any limit
point must be a critical point. This proves (ii).

To prove (iii), we first leverage Assumption (A1), which ensures
{at} is bounded. Since {θt} is bounded, the sequence {(at, θt)} is
bounded. By the Bolzano-Weierstrass theorem, there exists at least
one limit point (a⋆, θ⋆), which by (ii) must be a critical point. Next,
we leverage Assumption (A5). The key result for functions satisfy-
ing the KL property implies that a bounded sequence with vanishing
gradients must have a finite length:

∞∑
t=0

d
(
(at+1, θt+1), (at, θt)

)
<∞.

A sequence of finite length is a Cauchy sequence, which converges
in a complete metric space. Thus, the full sequence {(at, θt)} con-
verges to a single critical point. This proves (iii).

Based on Assumptions (A3) and (A4), we can establish a linear
convergence rate. We consider the contraction of a Lyapunov func-
tion Ψt := d(at, a⋆)2g + ∥θt − θ⋆∥2, where (a⋆, θ⋆) is the unique
minimizer. Standard gradient descent analysis on strongly convex
functions indicates that each block update is a contraction perturbed
by the cross-variable coupling. This leads to a recursive system of
inequalities:

d(at+1, a⋆)2 ≤ (1− ηµa)d(a
t, a⋆)2 +O(β2)∥θt − θ⋆∥2,

∥θt+1 − θ⋆∥2 ≤ (1− γµθ)∥θt − θ⋆∥2 +O(β2)d(at+1, a⋆)2.

This can be written as a vector inequality vt+1 ≤ Mvt, where
vt = [d(at, a⋆)2, ∥θt − θ⋆∥2]T . The contraction matrix M has
diagonal entries less than 1 and off-diagonal entries proportional to
β2. For a sufficiently small β, the spectral radius ρ(M) is less than
1. This implies Ψt+1 ≤ ρΨt for some ρ < 1, which indicates linear
convergence.

3.2. Increasing the number of poles

Let L(m) denote the objective with m poles. At outer stage m, run
the inner alternating algorithm to stationarity, then insert a new pole
using a greedy rule and continue. This is illustrated in Algorithm 1.

Algorithm 1 AFD-inspired neural layers

1: Input: data {(f (i), u(i))}, initial m, stepsizes (η, γ), buffer ε
2: Initialize poles a ∈ Dm and weights θ
3: repeat ▷ outer loop at fixed m
4: repeat ▷ inner alternating
5: a← Expa(−η gradaL) ▷ R-step
6: Project a to satisfy |ak| ≤ 1− ε
7: θ ← θ − γ∇θL ▷ E-step
8: until ∥gradaL∥+ ∥∇θL∥ ≤ τ
9: Add pole am+1 with proxy gain ∆m ▷ greedy growth

10: Set m← m+ 1
11: until ∆m ≤ δ

Definition 3.4 (Greedy gain [19]). Let x(m)
⋆ = (a

(m)
⋆ , θ

(m)
⋆) be an

inner stationary point. The warm start x(m+1)
0 has gain ∆m ≥ 0 if

L(m+1)(x
(m+1)
0) ≤ L(m)(x

(m)
⋆)−∆m.

Theorem 3.5. If each inner loop reaches stationarity and the outer
step has a gain ∆m ≥ 0, then the sequence Vm := L(m)(x

(m)
⋆) is

nonincreasing and convergent. If infm ∆m > 0, the procedure ter-
minates after finitely many outer steps. If the target is exactly repre-
sentable at some m̄ and the inner loops reach the unique minimizer,
then the algorithm achieves the global optimum at m = m̄.

Proof. Based on Definition 3.4 and inner optimality,

Vm+1 ≤ L(m+1)(x
(m+1)
0) ≤ Vm −∆m,

hence (Vm) is nonincreasing and bounded below, and thus conver-
gent. If infm ∆m > 0, strict decrease implies finite termination.
Exact representability at m̄ and exact inner solves imply Vm̄ = L⋆

and stagnation thereafter.

4. NUMERICAL EXPERIMENTS

In this section, we experimentally validate our proposed method in
solving both forward and inverse PDE problems. We run all ex-
periments in a Dell Precision 7920 Tower equipped with Intel Xeon
Gold 6246R CPU and NVIDIA Quadro RTX 6000 GPU (with 24GB
GGDR6 memory).

4.1. Self comparison and comparison with benchmark solvers

Table 1 presents the relative L2 error results of our AFD-inspired
neural operator with and without Equations (10) and (11), as well as
three benchmark solvers. Clearly, with pole and hyperparameter op-
timization, the accuracy of AFD-inspired neural layer is significantly
enhanced for both forward (Burgers’ equation) and inverse (Darcy

flow equation) problems. Also, our method outperforms benchmark
solvers in solving the inverse Darcy flow problem. Although our
model does not perform the best in Burgers’ equation, we point out
that our model contains only one neural layer and only takes ≈ 1.1
seconds/epoch for training. We utilize the initial m = 16, step size
η = 0.3, γ = 2 × 10−3, and ε = 10−7 to train our model for 100
epochs.

Models Burgers’ equation Inverse Darcy flow
Ours (full) 4.32E-03 7.65E-02

Ours (Euclidean) 1.64E-02 4.05E-01
NAO [20] 7.87E-03 7.71E-02
MWT [10] 1.17E-02 9.73E-01
FNO [13] 1.05E-03 8.01E-02

Table 1. Comparison of relative L2 error among different models
on Burgers’ (forward problem) and Darcy flow (inverse problem)
equations.

Additional experiments feature more complex geometries and
realistic datasets. When solving the magnetic Schrödinger equation
on a nontrivially projectable complex manifold (closed unit ball with
Kähler metric) [21], our full AFD-inspired neural operator achieves
a relative L2 error of 3.02E-03, whereas FNO [13] has a much higher
relative L2 error of 5.56E-01. When learning the real-world latex
glove Digital Image Correlation measurement dataset, state-of-the-
art Implicit Fourier Neural Operator (IFNO) [22] has a relative L2

error of 3.30E-02, whereas our full AFD-inspired neural operator
achieves a lower relative L2 error of 2.97E-03.

4.2. Validation of Theorem 3.3 and Theorem 3.5

To validate Theorem 3.3 and Theorem 3.5, we construct a synthetic
target signal that is exactly representable by three poles. We fix
N = 128 equally spaced points t ∈ [−5, 5] and map them into
the unit disk as zj = ρ · 2(tj−min t)

max t−min t
− ρ, where ρ = 0.92. Then,

we select three poles inside the unit disk, a1 = 0.3 + 0.2i, a2 =
−0.55 + 0.1i, a3 = 0.15 − 0.6i, each satisfying |ak| < 1. For

each pole, the analytic atom is defined as ϕ(a; z) =
√

1−|a|2
1−az

. Next,
we choose complex weights θ1 = 1.2 − 0.8i, θ2 = −0.9 + 0.2i,
and θ3 = 0.6 + 0.7i. The ground truth signal is then given by
ytrue(z) = θ1ϕ(a1; z)+θ2ϕ(a2; z)+θ3ϕ(a3; z). One can observe
from Figure 1 (a) and (c) that Algorithm 1 is convergent, while linear
convergence is observed only at m = m̄ = 3. We also find that the
true poles can be identified when m = m̄. Moreover, from Figure
1 (b) and (d), it is clear that having more than 3 poles may not be
necessary. Finally, the nonincreasing and convergent nature of Vm

and the global optimum can be verified from Figure 2.

5. CONCLUSIONS

To summarize, we propose an AFD-inspired neural layer that ex-
plicitly incorporates Blaschke-type bases and reconstructs AFD op-
erations in a data-driven way. The AFD theory has demonstrated
remarkable effectiveness in signal processing through its adaptive
selection of poles. However, in the context of neural networks, poles
cannot be directly optimized during training. To address this issue,
we leverage the geometric insight that the unit disk, where the poles
reside, constitutes a Riemann surface (manifold) with constant nega-
tive curvature of−1. This perspective allows us to design an iterative
optimization scheme, which consists of a R-step for updating poles

(a) Training loss (m = 10) (b) Pole trajectories (m = 10)

(c) Training loss (m = 3) (d) Pole trajectories (m = 3)

Fig. 1. Numerical results of the target signal. Note that ytrue lies in
the span of three poles, i.e., m̄ = 3.

Fig. 2. Visualization of Vm and ∆m.

along the Riemannian manifold and a E-step for updating network
parameters within the Euclidean space.

Numerical experiments on both forward and inverse PDE prob-
lems demonstrate the attractiveness of our AFD-inspired neural layer
to generalize across various tasks that require expressive and adap-
tive function representations. Thus, this work marks an initial step
toward systematically embedding AFD theory into neural architec-
tures. We believe that such a mathematically grounded neural layer
design can be flexibly integrated into a wide range of existing net-
work models, offering new opportunities for manifold-aware opera-
tor learning.

Our future work will focus on exploring strategies for identify-
ing the minimum number of poles, m̄, required to achieve global
optima on real-world datasets. Such advancements not only offer
new theoretical insights of our AFD-inspired neural layer but also
enhance its computational efficiency and accuracy in solving large-
scale, complex PDE problems.

6. ACKNOWLEDGEMENT

This work is funded by the U.S. National Science Foundation (NSF)
under Award Number 2442806.

7. REFERENCES

[1] Zeyuan Song and Zheyu Jiang, “Mp-fvm: Enhancing finite
volume method for water infiltration modeling in unsaturated
soils via message-passing encoder-decoder network,” Comput-
ers and Geotechnics, vol. 190, pp. 107745, 2026.

[2] Zeyuan Song and Zheyu Jiang, “A physics-based, data-driven
numerical framework for anomalous diffusion of water in soil,”
Systems & Control Transactions, vol. 4, pp. 2391–2397, 2025.

[3] Zeyuan Song and Zheyu Jiang, “A novel bayesian framework
for inverse problems in precision agriculture,” Systems & Con-
trol Transactions, vol. 4, pp. 246–251, 2025.

[4] Zeyuan Song and Zheyu Jiang, “A data-driven modeling ap-
proach for water flow dynamics in soil,” Computer Aided
Chemical Engineering, vol. 52, pp. 819–824, 2023.

[5] Zhiping Mao and George Em Karniadakis, “A spectral method
(of exponential convergence) for singular solutions of the dif-
fusion equation with general two-sided fractional derivative,”
SIAM Journal on Numerical Analysis, vol. 56, no. 1, pp. 24–
49, 2018.

[6] Tao Qian, “Intrinsic mono-component decomposition of func-
tions: an advance of Fourier theory,” Mathematical Methods
in the Applied Sciences, vol. 33, no. 7, pp. 880–891, 2010.

[7] Tao Qian, Liming Zhang, and Zhixiong Li, “Algorithm of
adaptive Fourier decomposition,” IEEE Transactions on Signal
Processing, vol. 59, no. 12, pp. 5899–5906, 2011.

[8] Zeyuan Song and Zuoren Sun, “Representing functions in H2

on the Kepler manifold via WPOAFD based on the rational
approximation of holomorphic functions,” Mathematics, vol.
10, no. 15, pp. 2729, 2022.

[9] Zeyuan Song and Zheyu Jiang, “Adaptive mamba neural opera-
tors,” in The Fourteenth International Conference on Learning
Representations, 2026.

[10] Gaurav Gupta, Xiongye Xiao, and Paul Bogdan,
“Multiwavelet-based operator learning for differential
equations,” Advances in neural information processing
systems, vol. 34, pp. 24048–24062, 2021.

[11] Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav Gupta,
Gengshuo Liu, Chenzhong Yin, Radu Balan, and Paul Bogdan,
“Coupled multiwavelet operator learning for coupled differen-
tial equations,” in The Eleventh International Conference on
Learning Representations, 2022.

[12] Tapas Tripura and Souvik Chakraborty, “Wavelet neural opera-
tor for solving parametric partial differential equations in com-
putational mechanics problems,” Computer Methods in Ap-
plied Mechanics and Engineering, vol. 404, pp. 115783, 2023.

[13] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli,
Burigede Liu, Kaushik Bhattacharya, Andrew Stuart, and An-
ima Anandkumar, “Fourier neural operator for parametric par-
tial differential equations,” arXiv preprint arXiv:2010.08895,
2020.

[14] Hongfang Bai, Ieng Tak Leong, and Pei Dang, “Reproduc-
ing kernel representation of the solution of second order lin-
ear three-point boundary value problem,” Mathematical Meth-
ods in the Applied Sciences, vol. 45, no. 17, pp. 11181–11205,
2022.

[15] Hongfang Bai and Ieng Tak Leong, “A sparse kernel approx-
imate method for fractional boundary value problems,” Com-
munications on Applied Mathematics and Computation, vol. 5,
no. 4, pp. 1406–1421, 2023.

[16] Peter Y Lu, Samuel Kim, and Marin Soljačić, “Extracting in-
terpretable physical parameters from spatiotemporal systems
using unsupervised learning,” Physical Review X, vol. 10, no.
3, pp. 031056, 2020.

[17] Étienne Ghys, “Poincaré and his disk,” The scientific legacy of
Poincaré, vol. 36, pp. 17, 2006.

[18] Siwan Boufadène and François-Xavier Vialard, “On the global
convergence of wasserstein gradient flow of the coulomb dis-
crepancy,” SIAM Journal on Mathematical Analysis, vol. 57,
no. 4, pp. 4556–4587, 2025.

[19] Jerome H Friedman, “Greedy function approximation: a gra-
dient boosting machine,” Annals of Statistics, pp. 1189–1232,
2001.

[20] Yue Yu, Ning Liu, Fei Lu, Tian Gao, Siavash Jafarzadeh, and
Stewart A Silling, “Nonlocal attention operator: Materializ-
ing hidden knowledge towards interpretable physics discov-
ery,” Advances in Neural Information Processing Systems, vol.
37, pp. 113797–113822, 2024.

[21] Zeyuan Song and Zheyu Jiang, “Adaptive fourier
decomposition-guided neural operator design for inverse PDE
problems,” in Submitted to The Fourteenth International Con-
ference on Learning Representations, 2025, under review.

[22] Huaiqian You, Quinn Zhang, Colton J. Ross, Chung-Hao Lee,
and Yue Yu, “Learning deep implicit fourier neural operators
(ifnos) with applications to heterogeneous material modeling,”
Computer Methods in Applied Mechanics and Engineering,
vol. 398, pp. 115296, 2022.

	 Introduction and Motivation
	 AFD-inspired neural layers
	 Theoretical results
	 Convergence results
	 Increasing the number of poles

	 Numerical Experiments
	 Self comparison and comparison with benchmark solvers
	 Validation of Theorem 3.3 and Theorem 3.5

	 Conclusions
	 Acknowledgement
	 References

