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ABSTRACT 
Modern industrial processes are continuously monitored by a large number of sensors. Despite 
having access to large volumes of historical and online sensor data, industrial practitioners still 
face challenges in the era of Industry 4.0 in effectively utilizing them to perform online process 
monitoring and fast fault detection and diagnosis. To target these challenges, in this work, we 
present a novel framework named “FARM” for Fast, Accurate, and Robust online process Monitor-
ing. FARM is a holistic monitoring framework that integrates (a) advanced multivariate statistical 
process control (SPC) for fast anomaly detection of nonparametric, heterogeneous data streams, 
and (b) modified support vector machine (SVM) for accurate and robust fault classification. Unlike 
existing general-purpose process monitoring frameworks, FARM’s unique hierarchical architecture 
decomposes process monitoring into two fault detection and diagnosis, each of which is con-
ducted by targeted algorithms. Here, we test and validate the performance of our FARM monitor-
ing framework on Tennessee Eastman Process (TEP) benchmark dataset. We show that SPC 
achieves faster fault detection speed at a lower false alarm rate compared to state-of-the-art 
benchmark fault detection methods. In terms of fault classification diagnosis, we show that our 
modified SVM algorithm successfully classifies 17 out of 20 of the fault scenarios present in the 
TEP dataset. Compared with the results of standard SVM trained directly on the original dataset, 
our modified SVM improves the fault classification accuracy significantly. 

Keywords: Fault Detection and Diagnosis, Process Monitoring, Statistical Process Control, Riemannian Mani-
fold, Support Vector Machine 

INTRODUCTION 
Safe and efficient operation of an industrial plant 

depends on effective, continuous process monitoring 
(e.g., fault detection and diagnosis), which is enabled by 
advanced sensory systems that continuously generate 
streams of data to dictate the state of the plant. Despite 
having access to large volumes of historical and online 
sensor data, challenges remain in how these data could 
be used for effective online process monitoring. Existing 
techniques for process monitoring are inadequate be-
cause (a) fault scenarios in industrial systems and plants 
are complex, (b) sensors continuously produce massive 
arrays of big data streams that are often nonparametric 
(i.e., data streams may not follow any specific distribu-
tion) and heterogeneous (i.e., data streams may not 

follow the same distribution), and (c) there is an intrinsic 
trade-off between fault detection time and diagnostic 
accuracy.  

To address this need, several process monitoring 
solutions have been developed over the past decades. 
Among them, dimensionality reduction techniques, such 
as principal component analysis (PCA), partial least 
squares (PLS) regression, as well as their different varia-
tions, are the most popular ones in the literature [1–3]. 
Dimensionality reduction techniques assume that the 
statistics characterizing the in-control profiles also span 
the subspace where out-of-control states (faults) lie in 
[4]. However, this assumption is generally invalid for in-
dustrial process monitoring as the process dynamics are 
quite complex and out-of-control states cannot be fully 
enumerated a priori. Also, plant operators often find it 
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difficult to interpret the results from PCA/PLS-based 
methods because the features are in the reduced space 
and do not have one-to-one mapping to the original sen-
sor data sources. In addition, monitoring only the most 
significant subset of features often causes significant er-
rors, as the fault may not be noticeable in the selected 
features. Lastly, dimensionality reduction techniques 
have no statistical guarantee on false alarm rate, making 
them unreliable for actual plant monitoring which requires 
false alarm to be low and controlled (e.g., ≤0.0027, the 
classic three-sigma limit) due to the significant money 
loss and safety issues of unplanned unit shutdown. 

More recently, various machine learning (ML) tools 
such as support vector machine, decision tree, and deep 
neural network, have also been proposed and applied to 
process monitoring [5–8]. Nevertheless, existing ML 
methods still face problems such as overfitting and poor 
predictive accuracy. For example, while most published 
ML algorithms perform well during training and validation, 
their fault detection accuracies deteriorate and rarely ex-
ceed 90-95% in test sets. Considering the severe conse-
quences in case of fault detection failure, such predictive 
accuracy is unacceptable. Furthermore, ML methods do 
not scale well with rare or new fault scenarios due to the 
lack of sufficient training data. 

To target these challenges, in this work, we present 
a novel industrial process monitoring tool, which we 
named it as “FARM”, for fast, accurate, and robust online 
fault detection and diagnosis. FARM is a holistic monitor-
ing framework that integrates (a) advanced multivariate 
statistical process control (SPC) for fast anomaly detec-
tion of nonparametric, heterogeneous data streams, and 
(b) a modified support vector machine (SVM) for accu-
rate and robust fault classification. Unlike existing gen-
eral-purpose process monitoring frameworks, FARM’s 
unique hierarchical architecture (see Figure 1) decom-
poses process monitoring into two fault detection and di-
agnosis, each of which is conducted by targeted algo-
rithms. Only if a process anomaly is detected will the 
online data be sent to the fault classification/diagnosis 
module for accurate fault classification. Such hierarchical 
architecture successfully bypasses the intrinsic trade-off 
between fault detection speed and accuracy that is pre-
sent in existing monitoring tools. Furthermore, using 
FARM, plant operators can choose a user-specified false 
alarm rate based on their expert knowledge of the pro-
cess.  

STRUCTURE AND WORKFLOW OF FARM 

 As mentioned earlier, FARM consists of two distinct 
yet interconnected modules. The first module performs 
fault detection by adopting the state-of-the-art quantile-
based non-parametric SPC proposed by Ye and Liu [9]. 
Quantile-based nonparametric SPC can detect any 

process mean shift or anomaly from heterogeneous high-
dimensional sensor data streams as early as possible 
while maintaining a pre-specified incontrol average run 
length. Inspired by the work of Smith et al. [10], 2the 
second module conducts fault classification through a 
modified SVM model. Both modules are connected as 
shown in Figure 1. FARM's workflow contains two steps: 
(1) offline training with historical data, followed by (2) 
online monitoring of real-time sensor data streams. 
During offline training, the parameters of the SPC module 
to be used for online monitoring are obtained using the 
historical in-control data. Also, the modified SVM module 
is trained by treating the faulty data's covariance 
matrices as features and the corresponding faulty 
scenario as labels. 
 Once offline training of FARM is complete, online 
sensor measurements will continuously be sent to FARM 
for simultaneous fault detection and diagnosis. First, they 
are monitored by the SPC module to detect any process 
anomaly in real time. Only if a process anomaly is 
detected will the online data be sent to the fault diagnosis 
module for accurate fault classification. Unlike general-
purpose process monitoring frameworks, FARM’s 
hierarchical architecture decomposes process 
monitoring tasks into two subtasks (fault detection and 
diagnosis), each of which is accomplished by specialized 
techniques. This allows fast, accurate, and robust fault 
detection and diagnosis to be simultaneously 
accomplished by FARM. 
 

 
Figure 1. FARM’s hiearchical structure consisting of fault 
detection and diagnosis modules. 

Fault Detection 
The backbone of FARM’s fault detection module is 

the quantile-based non-parametric SPC algorithm pro-
posed by Ye and Liu [9]. Jiang modified the original quan-
tile-based SPC formulation of Ye and Liu [9] to monitor 
fully observable data streams [11]. Here, a brief descrip-
tion of the modified SPC formulation is presented. In of-
fline training, the sensor measurements in each of the 𝑀𝑀 
historical in-control data streams 𝑋𝑋𝑗𝑗 (𝑗𝑗 = 1,2, … ,𝑀𝑀) are 
sorted in ascending order and partitioned into 𝑑𝑑 number 
of quantiles 𝐼𝐼𝑗𝑗,1, … , 𝐼𝐼𝑗𝑗,𝑑𝑑 defined as: 
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    𝐼𝐼𝑗𝑗,1  =  �−∞,  𝑞𝑞𝑗𝑗,1�, 𝐼𝐼𝑗𝑗,2 = �𝑞𝑞𝑗𝑗,1, 𝑞𝑞𝑗𝑗,2�, … , 𝐼𝐼𝑗𝑗,𝑑𝑑 = �𝑞𝑞𝑗𝑗,𝑑𝑑−1, +∞�  (1) 

 For each 𝑞𝑞𝑗𝑗,𝑖𝑖, two intervals called positive and nega-
tive cumulative intervals are defined as:  

    C𝐼𝐼𝑗𝑗,𝑖𝑖
+ = �𝑞𝑞𝑗𝑗,𝑖𝑖 , +∞� and 𝐶𝐶𝐶𝐶𝑗𝑗,𝑖𝑖

− = �−∞, 𝑞𝑞𝑗𝑗,𝑖𝑖�,      (2) 

for every 𝑖𝑖 = 1, … ,𝑑𝑑 − 1 and 𝑗𝑗 = 1,2, … ,𝑀𝑀. With these pos-
itive/negative cumulative intervals identified from histor-
ical in-control data, one can detect anomalies in real time 
by detecting any upward/downward mean shift of online 
sensor data streams. To do this, for an online sensor data 
stream 𝑋𝑋𝑗𝑗(𝑡𝑡) where 𝑡𝑡 stands for time, we define a binary 
variable 𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,…,𝑑𝑑−1]

+  and 𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,…,𝑑𝑑−1]
−  to indicate which pos-

itive and negative cumulative interval 𝑋𝑋𝑗𝑗(𝑡𝑡) lies in at time 
𝑡𝑡, respectively: 

𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,2,…,𝑑𝑑−1]
+ =   �1 if 𝑋𝑋𝑗𝑗(𝑡𝑡)  ∈  𝐶𝐶𝐼𝐼𝑗𝑗,𝑖𝑖

+  
0        otherwise

,       (3) 

𝐴𝐴𝑗𝑗,𝑖𝑖∈[1,2,…,𝑑𝑑−1]
− = �1 if 𝑋𝑋𝑗𝑗(𝑡𝑡)  ∈  𝐶𝐶𝐼𝐼𝑗𝑗,𝑖𝑖

−  
0        otherwise

.       (4) 

With this, we obtain two vectors 𝐀𝐀𝑗𝑗+(𝑡𝑡) and 𝐀𝐀𝑗𝑗−(𝑡𝑡) as: 

    𝐀𝐀𝑗𝑗+(𝑡𝑡) = �𝐴𝐴𝑗𝑗,1
+ ,𝐴𝐴𝑗𝑗,2

+ , … ,𝐴𝐴𝑗𝑗,𝑑𝑑−1
+ �,        (5) 

 𝐀𝐀𝑗𝑗−(𝑡𝑡) = �𝐴𝐴𝑗𝑗,1
− ,𝐴𝐴𝑗𝑗,2

− , … ,𝐴𝐴𝑗𝑗,𝑑𝑑−1
− �.        (6) 

 One can show that 𝔼𝔼�𝐀𝐀𝑗𝑗+(𝑡𝑡)� = �1 − 1
𝑑𝑑

, 1 − 2
𝑑𝑑

, … ,1 −
𝑑𝑑−1
𝑑𝑑
� and 𝔼𝔼�𝐀𝐀𝑗𝑗−(𝑡𝑡)� = �1

𝑑𝑑
, 2
𝑑𝑑

, … , 𝑑𝑑−1
𝑑𝑑
� for 𝑗𝑗 = 1, … ,𝑀𝑀 and 𝑖𝑖 =

1, … ,𝑑𝑑. Therefore, by defining 𝐀𝐀𝑗𝑗+(𝑡𝑡) and 𝐀𝐀𝑗𝑗−(𝑡𝑡), the idea is 
to convert the task of detecting any mean shift in the dis-
tribution of 𝑋𝑋𝑗𝑗(𝑡𝑡) with respect to the distribution of histor-
ical in-control data into an equivalent task of detecting 
the upward (resp. downward) mean shift in the distribu-
tion of 𝐴𝐴𝑗𝑗,𝑖𝑖

+  (resp. 𝐴𝐴𝑗𝑗,𝑖𝑖
− ) with respect to 𝔼𝔼�𝐴𝐴𝑗𝑗,𝑖𝑖

+ � (resp. 𝔼𝔼�𝐴𝐴𝑗𝑗,𝑖𝑖
− �). 

This transformation presents at least two major ad-
vantages. First, it has been shown that 𝐴𝐴𝑗𝑗,𝑖𝑖

+  (resp. 𝐴𝐴𝑗𝑗,𝑖𝑖
− ) is 

more sensitive to upward (resp. downward) mean shifts 
than the original data streams themselves [9], thus allow-
ing faster fault detection. And second, it allows nonpara-
metric, heterogeneous data streams to be successfully 
monitored for the first time. 
 Quantile-based SPC implements the multivariate 
cumulative sum (CUSUM) procedure first proposed by 
Qiu and Hawkins [12, 13] to monitor multivariate big data 
streams of 𝐀𝐀𝑗𝑗+(𝑡𝑡) and 𝐀𝐀𝑗𝑗−(𝑡𝑡) for 𝑗𝑗 = 1, … ,𝑀𝑀. This is achieved 
by defining 𝐶𝐶𝑗𝑗+(𝑡𝑡) and 𝐶𝐶𝑗𝑗−(𝑡𝑡) as: 

𝐶𝐶𝑗𝑗
±(𝑡𝑡) = ��𝑺𝑺𝑗𝑗

±, obs(𝑡𝑡 − 1)+ 𝑨𝑨𝑗𝑗
±(𝑡𝑡)� − �𝑺𝑺𝑗𝑗

±, exp(𝑡𝑡 −

1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗
±(𝑡𝑡)��

𝑇𝑇
 ⋅ (diag �𝑺𝑺𝑗𝑗

±, exp(𝑡𝑡 −

1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗
±(𝑡𝑡)�

−1
⋅   ��𝑺𝑺𝑗𝑗

±, obs(𝑡𝑡 − 1)+ 𝑨𝑨𝑗𝑗
±(𝑡𝑡)� − �𝑺𝑺𝑗𝑗

±, exp(𝑡𝑡 −

1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗
±(𝑡𝑡)��              (7)

                         

 In Equation (7), 𝑺𝑺𝑗𝑗
±,obs(𝑡𝑡) and 𝑺𝑺𝑗𝑗

±,exp(𝑡𝑡) are four vec-
tors of size 𝑑𝑑 − 1 that are the CUSUM statistics initiated 
at 𝑺𝑺𝑗𝑗

±,obs(𝑡𝑡 = 0) = 𝑺𝑺𝑗𝑗
±,exp(𝑡𝑡 = 0) = 0: 

⎩
⎪
⎨

⎪
⎧𝑺𝑺𝑗𝑗

±, obs(𝑡𝑡) = 0 , 𝑺𝑺𝑗𝑗
±, exp(𝑡𝑡) = 0,                                     if 𝐶𝐶𝑗𝑗

±(𝑡𝑡) ≤ 𝑘𝑘

𝑺𝑺𝑗𝑗
±, obs(𝑡𝑡) =

�𝐶𝐶𝑗𝑗
±(𝑡𝑡)−𝑘𝑘�

𝐶𝐶𝑗𝑗
±(𝑡𝑡)

�𝑺𝑺𝑗𝑗
±, obs(𝑡𝑡 − 1)+ 𝑨𝑨𝑗𝑗

±(𝑡𝑡)�

𝑺𝑺𝑗𝑗
±, exp(𝑡𝑡) =

�𝐶𝐶𝑗𝑗
±(𝑡𝑡)−𝑘𝑘�

𝐶𝐶𝑗𝑗
±(𝑡𝑡)

�𝑺𝑺𝑗𝑗
±, exp(𝑡𝑡 − 1)+ 𝔼𝔼(𝑨𝑨𝑗𝑗

±(𝑡𝑡)�
. if 𝐶𝐶𝑗𝑗

±(𝑡𝑡) > 𝑘𝑘 
   (8) 

 In Equation (8), 𝑘𝑘 is an allowance parameter that re-
starts the CUSUM procedure if no evidence of significant 
shift is detected after a while [14]. The value of 𝑘𝑘 is ob-
tained during offline training using historical in-control 
data. Then, one-sided local statistics 𝑊𝑊𝑗𝑗

+ and 𝑊𝑊𝑗𝑗
− for re-

spectively detecting upward and downward mean shifts 
of data stream 𝑗𝑗 can be defined as: 

𝑊𝑊𝑗𝑗
+(𝑡𝑡) = max�0,𝐶𝐶𝑗𝑗+(𝑡𝑡) − 𝑘𝑘�,      (9) 

𝑊𝑊𝑗𝑗
−(𝑡𝑡) = max�0,𝐶𝐶𝑗𝑗−(𝑡𝑡) − 𝑘𝑘�.      (10) 

 If one wants to detect either upward or downward 
mean shifts, then a two-sided local statistic 𝑊𝑊𝑗𝑗(𝑡𝑡) can be 
defined as the maximum of the two one-sided local sta-
tistics: 

�
𝑊𝑊𝑗𝑗(𝑡𝑡 = 0) = 0,

𝑊𝑊𝑗𝑗(𝑡𝑡 > 0) = max �𝑊𝑊𝑗𝑗
+(𝑡𝑡),𝑊𝑊𝑗𝑗

−(𝑡𝑡)� .
     (11)  

 Finally, to determine the stopping time 𝑇𝑇 for raising 
the alarm by declaring the process is out-of-control, the 
top-𝑟𝑟 approach proposed by Mei [15] is adopted. First, at 
each time step 𝑡𝑡, the values of individual local statistics 
𝑊𝑊𝑗𝑗(𝑡𝑡) for all data streams are ranked from largest to 
smallest: 𝑊𝑊(1)(𝑡𝑡) > ⋯ > 𝑊𝑊(𝑘𝑘)(𝑡𝑡) > ⋯ > 𝑊𝑊(𝑀𝑀)(𝑡𝑡), in which 
𝑊𝑊(𝑘𝑘)(𝑡𝑡) corresponds to the 𝑘𝑘th largest local statistic. Next, 
the top 𝑟𝑟 of the local statistics at time 𝑡𝑡 is calculated, and 
the stopping time 𝑇𝑇, also known as the out-of-control run 
length, is defined as: 

𝑇𝑇 = inf {𝑡𝑡 > 0:∑ 𝑊𝑊(𝑘𝑘)(𝑡𝑡) ≥ ℎ}𝑟𝑟
(𝑘𝑘)=1 ,     (12) 

where ℎ is a threshold value that corresponds to the pre-
specified false alarm rate and can be obtained during of-
fline training using historical in-control data. A commonly 
used ℎ is obtained based on the false alarm rate of 0.27% 
(the classic 3𝜎𝜎 limit). 

Fault Classification and Diagnosis 

 
 
Figure 2. Flowchart of the modified SVM algorithm for 
improved facult classifcation. 

 In this section, we discuss how accurate fault 
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diagnosis can be achieved using a modified SVM module 
in FARM. Figure 2 illustrates how we modify standard 
SVM for fault classification by adding a data pre-pro-
cessing step in the training step. To train the SVM model 
using the historical sensor data corresponding to differ-
ent fault scenarios, we first compute the covariance ma-
trix of the historical faulty data streams, followed by 
training the SVM model over the covariance matrix in-
stead of the original faulty data streams. This modifica-
tion is inspired by the fact that covariance matrices are 
symmetric and positive definite, and thus always lie on a 
Riemannian manifold. It has been recently shown that, by 
respecting this important geometric insight, one can 
greatly enhance the accuracy and interpretability of clas-
sification, regression, dimensionality reduction algo-
rithms by conducting these computations on the tangent 
space of the manifold [10]. Inspired by this finding, we 
map the generated covariance matrices to their tangent 
space, which intersect the Riemannian manifold where 
these covariance matrices reside at the geometric mean 
of the covariance matrices (see Figure 3). This mapping 
is done through the logarithm operation as: 

𝐀𝐀�𝑖𝑖 = log𝐴̅𝐴(𝐀𝐀𝑖𝑖),          (13) 

where 𝐀𝐀𝑖𝑖  is the covariance matrix of sensor data streams 
for dataset 𝑖𝑖 calculated as: 

𝐀𝐀𝑖𝑖 = 1
𝑁𝑁−1

𝐗𝐗𝑖𝑖𝐗𝐗𝑖𝑖𝑇𝑇,        (14) 

where 𝐗𝐗i is the original sensor data matrix containing 𝑀𝑀 
number of data streams values over 𝑁𝑁 time steps. 𝐀𝐀� is the 
geometric mean of covariance matrices (𝐀𝐀𝑖𝑖), and 𝐀𝐀�𝑖𝑖 is the 
mapped matrix of matrix 𝐀𝐀𝑖𝑖 to the tangent space as 
shown on Figure 3. The reader is encouraged to read the 
main reference explaining this mathematical calculation if 
interested [10].  

 
  (a)     (b) 

Figure 3. Illustration of (a) a Riemannian manifold and (b) 
the associated tangent space. The logarithmic map as 
well as the geodesic between the geometric mean 𝐀𝐀� and 
each covariance matrix 𝐀𝐀𝑖𝑖 are also shown. 

After this data preprocessing step, the mapped covari-
ance matrices are used as input features, whereas the 
corresponding fault scenarios are used as labels to train 
a standard SVM model using a radial basis function (RBF) 
kernel.  
 
 During online monitoring stage, real-time sensor 

data streams are processed in the fault/anomaly detec-
tion module first. Only when a process anomaly is de-
tected will the data streams be sent to the fault classifi-
cation/diagnosis module. Such an arrangement will fur-
ther enhance the accuracy and reliability of fault diagno-
sis module, as the data streams are certain to be faulty. 
Next, the covariance matrix for the sensor data streams 
is calculated, mapped to the tangent space of the Rie-
mannian manifold, and used as the input to the trained 
SVM model to classify its fault label.  

CASE STUDY: TENNESSEE EASTMAN 
PROCESS 

Abstracted from a real chemical process, the Ten-
nessee Eastman Process (TEP) is a nonlinear open-loop 
unstable process that has been widely used in various 
computational studies as benchmark case for plant-wide 
control, process monitoring, and data-driven optimiza-
tion [16]. As shown in the schematic of Figure 4, the TEP 
consists of 4 major unit operations: a reactor, a stripping 
column, a separator, and a product condenser. The pro-
cess involves the production of two liquid product com-
ponents G and H from four gaseous reactants A, C, D and 
E with an additional inert B and a by-product F. The pro-
cess is continuously monitored by a total of 52 process 
variables, including 11 manipulated and 41 measured var-
iables. 

 
Figure 4. Schematic of TEP (figure extracted from [17]). 

Fault Detection Module Performance 
Table 1 lists the comparison results of our SPC mod-

ule with respect to two benchmark fault detection algo-
rithms, which are PCA-T2 and SVM [11]. The data used for 
this study is obtained by the MATLAB graphical user in-
terface (GUI) originally developed by Andersen et al. [18]. 
Overall, a total of 50 hours (simulation) of normal opera-
tion data were generated using this GUI to determine the 
threshold value ℎ in Equation (12) and to construct the 
quantiles 𝐼𝐼𝑗𝑗,1, … , 𝐼𝐼𝑗𝑗,𝑑𝑑 as well as the cumulative intervals 
𝐶𝐶𝐼𝐼𝑗𝑗,𝑖𝑖

± . In addition to normal operation (in-control) data, the 

Riemannian manifold

Tangent Space
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GUI can generate process data for 28 different fault sce-
narios. Here, we select three faults, namely IDV 2, 3, and 
13 (see Table 1 for description), to compare the perfor-
mance of the SPC algorithm with other benchmarks.  
 
Table 1. Description of faults for comparison study of 
multiple fault detection benchmarks. 
Fault # Description  Fault Type 
IDV  B composition in stream  with 

A/C ratio constant 
Step 

IDV  D feed temperature in stream  Step 
IDV  Reaction kinetics Slow drift 
 
 Table 2 summarizes the comparison results of fault 
detection speed and the corresponding false alarm rate 
of all three monitoring frameworks, quantified by out-of-
control run length (i.e., how many additional observations 
are needed to declare out-of-control status and raise 
alarm after the actual fault is introduced) for each algo-
rithm. As we can see, among the three monitoring frame-
works, quantile-based SPC framework yields the fastest 
fault detection speed in all three fault scenarios, while 
maintaining the lowest false alarm rate. Given that a lower 
false alarm rate generally sacrifices fault detection speed 
due to more conservative monitoring behavior, the quan-
tile-based SPC framework achieves a win-win situation 
compared to other benchmark algorithms. 

Table 2. Fault detection results in terms of out-of-control 
run length (false alarm rate) for SPC , PCA-T2 and SVM 
for TEP dataset [11]. 

Fault # SPC PCA-T SVM 

IDV   (%)  (%)  (%) 

IDV   (%)  (%)  (%) 

IDV   (%)  (%)  (%) 
 

Fault Diagnosis Module Performance 
For fault diagnosis, we experimented various classi-

fication algorithms using the TEP dataset developed by 
Rieth et al. [19], which consists of 500 simulation cases 
of normal (in-control) operation as well as 20 fault sce-
narios. To illustrate, we present three representative 
models here. 

First, we highlight the “best model” obtained by fol-
lowing training procedure illustrated in Figure 2. Figure 5 
shows the confusion matrix obtained through 10-fold 
cross-validation of these 20 faults. Clearly, the modified 
SVM model demonstrated outstanding classification per-
formance for all faults except for faults IDV 3, 9, and 15. 
This result outperforms a number of fault diagnosis algo-
rithms in the literature. It is worth noting that faults IDV 3, 
9, and 15 correspond to “step change in temperature of 

reactor feed D”, “random variation in temperature of re-
actor feed D”, and “sticking value failure for condenser 
cooling water valve”, respectively. And these three faults 
are well-known to be particularly challenging to differen-
tiate due to the close similarity of their dynamic behaviors 
to the overall process. To tackle this longstanding chal-
lenge of successful differentiation of these faults, new, 
creative methodologies need to be developed. 

 
Figure 5. Confusion matrix (after 10-fold cross validation) 
of fault diagnosis results for our proposed modified SVM 
model. 

 
 As a direct comparison, Figure 6 shows the 
confusion matrix for the case where standard SVM 
without any data pre-processing is used for training and 
validation. It is clear that fault classification accuracy 
deteriorates significantly in this case.  
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Figure 6. Confusion matrix (after 10-fold cross validation) 
of fault diagnosis results for standard SVM model without 
the introduced data pre-processing step. 
 
 Finally, we present the results for another fault 
diagnosis algorithm based on principal geodesic analysis 
(PGA) discussed by Smith et al. [10]. PGA is a counterpart 
of principal component analysis (PCA) applied on the 
tangent space of the Riemannian manifold, as it identifies 
the geodesics that capture the most variance in the data. 
In other words, in PGA, we simply apply PCA technique to 
the mapped covariance matrices of faulty data streams 
for dimensionality reduction. To determine the number of 
principal geodesics (which are the “principal 
components” in PGA) needed, we perform sensitivity 
analysis and identify that 29 principal geodesics are 
required to capture 99% of the variance in the original 
dataset containing covariance matrices on the 
Riemannian manifold. Furthermore, four distance 
measures, namely Euclidean, Mahalanobis, Manhattan, 
and Cosine are tested and compared. Clustering is done 
by assigning a point to its closest cluster based on the 
distance mesure used. We identify that, among these 
four measures, the cosine distance offers the best fault 
classification performance. Figure 7 shows the confusion 
matrix of PGA-cosine approach with the 10-fold cross 
validation. As we can see, in general, 12 out of the 20 
faults can be fully classified, whereas faults IDV 3, 5, 9, 
10, 12, 13, 15, and 18 cannot. Although its accuracy is yet 
to match with the best model, the PGA-Cosine algorithm 
performs much better than standard SVM without data 
pre-processing. 
 Since the modified SVM model showed superior 
performance over PGA-Cosine method, the confusion 

matrix of this method is compared with 10-fold confusion 
matrix of the ridge classifier model presented by Smith et 
al. [10], which trained on the mapped covariances. Figure 
8 depicts the difference of confusion matrices between 
the modified SVM (A) and Ridge (B) classifiers. Positive 
numbers show that the prediction probability values of 
modified SVM model were higher than Ridge classifier. 
Conversely, the negative values indicate that the Ridge 
model’s prediction probabilies were more than the 
modified SVM. Lastly, zero means that both models had 
the same prediction probability. As can be seen, both 
models have the same accuracy for all faults excepts 
faults 9 and 15, which the ridge classifier had a better 
accuracy than the modified SVM model by looking at the 
diagnoal values of the difference matrix. 
 

 
Figure 7. Confusion matrix (after 10-fold cross validation) 
of fault diagnosis results for PGA-Cosine classification 
algorithm with 29 principal components being selected. 
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Figure 8. The difference confusion matrix between 10-
fold cross validation matrices of the modified SVM 
classifier presented in this study (A) and the ridge 
classifier presented by Smith et al. (B) [10]. 

CONCLUSION 
 In this work, we present a fast, accurate, and robust 
algorithmic framework named FARM for industrial pro-
cess monitoring. FARM is a holistic framework that syn-
ergistically performs fault detection and diagnosis tasks 
to improve monitoring performance. The fault detection 
module inside FARM adopts an advanced quantile-based 
SPC approach that can detect any mean shift of non-par-
ametric and heterogenous multivariate data streams as 
soon as possible while maintaining a pre-specified false 
alarm rate. Meanwhile, the fault diagnosis module inside 
FARM implements a modified SVM algorithm for fault 
classification. Compared to standard SVM approach, our 
modified SVM algorithm includes an important data pre-
processing step that makes use of the manifold insight of 
covariance matrix to greatly enhance classification accu-
racy. By validating and evaluating the performance of our 
FARM framework using the TEP dataset, we observe that 
1) our fault detection module can achieve fast anomaly 
detection speed at a low false alarm rate, and 2) our fault 
diagnosis module successfully classifies 17 out of 20 fault 
scenarios at 100% accuracy. Unfortunately, faults IDV 3, 
IDV 9, and IDV 15 of the TEP dataset, which are known to 
be hard to classify, still face challenges in differentiating 
among one another with high accuracy. Our future work 
involves revamping the FARM framework to improve the 
classification accuracy of these hard-to-differentiate 
faults.  
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