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Abstract
Distillation of multicomponent mixtures forming one or more azeotropes is ubiquitous in chemical process in-
dustries. The minimum reflux ratio of a distillation column is directly related to its energy consumption and capital cost.
Thus, it is a key parameter for distillation systems design, operation, and comparison. However, this problem remains
an open challenge to researchers and industrial practitioners due to the highly nonideal nature of azeotropic systems. In
this work, we present a simple and easy-to-use shortcut method to analytically calculate the minimum reflux ratio for a
broad class of multicomponent homogeneous azeotropic mixture separations. Compared with existing techniques, this
method does not involve any rigorous tray-by-tray calculation and is iteration free. Through an illustrative example, we
demonstrate the accuracy and effectiveness of this new approach.
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Introduction

Distillation is an important separation process that ac-
counts for 90-95% of all liquid separations and consumes
more than 40-70% of energy in chemical process industries
(Humphrey, 1992). For multicomponent distillation, one
common challenge frequently faced by process engineers is
that the multicomponent systems involved are highly non-
ideal and form one or more azeotropes. At an azeotrope,
the vapor that is in equilibrium with the liquid phase has the
same composition as the liquid. Therefore, the liquid or va-
por at azeotropic composition cannot be further separated by
conventional distillation. As illustrated in the residue curve
maps of Figure 1, unlike zeotropic systems (e.g., Figure 1a),
the presence of azeotropes poses complexities to the sep-
aration task as the composition space is divided into two
or more distinct distillation regions that restrict the feasi-
ble product composition a distillation column can achieve
(e.g., Figure 1b), as the composition profile within the col-
umn cannot cross from one distillation region to another
(Van Dongen and Doherty, 1985). Moreover, due to the non-
ideality of the azeotropic system, a distillation region can
sometimes be further divided into several distillation com-
partments (e.g., Figure 1c) in which residue curves belonging
to different compartments start from the same unstable node
and terminate at the same stable node but approach differ-
ent saddle points (Thong and Jobson, 2001). To synthesize
and design efficient azeotropic distillation systems, process
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engineers must have a clear understanding of how operating
parameters (e.g., reflux ratio, internal liquid and vapor traffic)
affect column performance (e.g., product purity).

The minimum reflux ratio of a distillation column, which
directly translates to its reboiler vapor duty requirement at
minimum reflux condition, is an important parameter that
provides key information on the column’s optimal design and
operation (Koehler et al., 1995). With the knowledge of min-
imum reflux ratio, process engineers can estimate the actual
heat duty requirement of the distillation column in operation.
The minimum reflux ratio also serves as a direct indicator for
the capital cost of a distillation column, as it is closely re-
lated to the number of stages, column diameter and height,
as well as reboiler and condenser sizes (Jiang et al., 2019).
Because of these reasons, the minimum reflux ratio has been
commonly chosen as the objective function for optimizing,
comparing and ranklisting different distillation column de-
signs (Tumbalam Gooty et al., 2019). Hence, a fast and ac-
curate determination of minimum reflux ratio is crucial for
synthesizing and designing attractive multicomponent distil-
lation systems, and failing to do so often leads to inefficient
and unnecessarily large columns being built and operated.

Over the past decades, a number of research efforts have
been made on minimum reflux calculation for highly non-
ideal and azeotropic mixture distillations. Levy et al. (1985)
introduced the boundary value method (BVM) based on tray-
by-tray calculation of column composition profiles. The min-
imum reflux ratio corresponds to the smallest reflux ratio that
ensures rectifying and stripping section composition profiles
intersect with each other. However, such tray-by-tray calcu-
lation is highly sensitive to the composition of the key com-
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Figure 1: (a) Residue curve map of a typical 3-component
zeotropic system, pointing in the direction of increasing time.
(b) Residue curve map of a typical 3-component azeotropic
system with a binary maximum boiling azeotrope. The com-
position space is divided by a distillation boundary into two
distillation regions. (c) A residue curve map containing
two distillation compartments inside a distillation region en-
closed by acetone, the binary azeotrope between acetone and
chloroform, the ternary azeotrope, and the binary azeotrope
between acetone and methanol.

ponents in the product stream. Also, BVM cannot be ap-
plied to mixtures with more than four components. To ad-
dress these drawbacks, Julka and Doherty (1990) extended
the BVM and developed the zero-volume criterion (ZVC),
an algebraic criterion for minimum reflux based on collinear-
ity of feed composition and different pinch points. Since the
ZVC can be checked using a simple determinant formula, it
can be applied to any number of components in theory. Nev-
ertheless, ZVC is limited to only direct and indirect splits,
thereby limiting its applicability and use. Later, Koehler
et al. (1991) proposed an empirical minimum angle criterion
(MAC) and claimed that it improved the ZVC. Yet, the MAC
does not really have physical basis for quaternary separations
and above. Also, it was shown that the MAC fails when no
pinch point is located at the feed stage and the feed is not
introduced as saturated liquid. Poellmann et al. (1994) pre-
sented an eigenvalue criterion (EC) that can be considered
as a hybrid of the BVM and ZVC. However, this approach
requires tremendous computational efforts. Finally, Bausa
et al. (1998) developed the rectification body method (RBM)
which constructs a pinch point curve and calculates the min-
imum reflux ratio in an iterative manner. Unfortunately, the
calculation of pinch point curves is known to be computa-
tionally intensive (Liu et al., 2004; Jiang, 2020). Also, the
iterative nature of the RBM algorithm leads to computational
challenges that hinder it from solving large-scale problems.
Thus, an accurate and easy-to-use shortcut method that does
not involve rigorous tray-by-tray calculations or tedious iter-
ations is yet to be developed.

Composition Space Decomposition

The singular points in a residue curve map are compo-
sitions at which the driving force for the change in liq-
uid composition is zero. Thus, any pure component or
azeotropic point in the composition space corresponds to a
singular point. In fact, it has been shown that azeotropes
behave exactly like pure components for binary and mul-
ticomponent systems (Anderson and Doherty, 1984; Vo-
gelpohl, 1999). Therefore, an azeotrope can be treated as
a pseudo-component, which decomposes the original com-
position space into two or more decomposed composition
spaces. In this regard, each distillation compartment is es-
sentially a decomposed composition space. Depending on
which decomposed composition space it lies in, any mixture
composition can be converted to a new coordinate through
a linear transformation T . To illustrate, consider a com-
mon ternary system shown in Figure 4a with a binary min-
imum boiling azeotrope Az between the lightest component
A and the intermediate component B. The original compo-
sition space can be decomposed into two distinct distillation
compartments. Suppose the distillation column feed stream
composition lies in the compartment enclosed by Az, B, and
C. Through T : X → X , compositions of the distillation com-
partment of interest are mapped to the new coordinate system
X = (x1, · · · ,xc) (Figure 4b), whose vertices are (x1,x2,x3) =
(0,0,1) (mapped from azeotrope Az), (x1,x2,x3) = (0,1,0)
(mapped from component B), and (x1,x2,x3) = (1,0,0)
(mapped from component C). Of course, in order for such
composition space decomposition to be physically feasible
for a given c-component azeotropic system, each and every
decomposed composition space must contain exactly c sin-
gular points with 1 stable node, 1 unstable node, and c− 2
saddle points. We point out that most azeotropic systems re-
ported in literature satisfy this rule (Kiva et al., 2003), with
only a few exceptions such as the acetone/benzene/n-heptane
ternary system (see Figure 2a). In fact, among all of the 1783
published 3-component azeotropic systems summarized by
Kiva et al. (2003), more than 80% of them belong to five ma-
jor topological classes as illustrated in Figures 2b thru f, all
of which fulfill this rule.

Minimum reflux calculation using shortcut methods typ-
ically assumes every component has a constant relative
volatility (CRV). Conventionally, relative volatility of a pure
component is defined as the ratio of its equilibrium constant
with respect to that of the least volatile component. However,
since the temperature varies substantially from top to bottom
of a column, relative volatility values vary substantially as
well. Furthermore, when azeotrope is present, even the rela-
tive volatility order of each pure component and azeotrope
can be different from one distillation compartment to an-
other. Thus, we extend the CRV assumption by develop-
ing a new procedure to approximate the VLE behavior in
each decomposed composition space using constant relative
volatilities. For a c-component azeotropic system, once we
know in which distillation compartment the feed composition
lies, we can generate a series of residue curves via simulation
within the compartment. We then solve a minimization prob-
lem which identifies the optimal relative volatility set {αi}c

i=1
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Figure 2: (a) An exception case to the general rule of compo-
sition space decomposition. (b)-(f) Topological structures of
the five most common ternary azeotropic systems. Here and
thereafter, unfilled circles, triangles, and filled circles repre-
sent unstable nodes, saddle points, and stable nodes, respec-
tively.
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Figure 3: Schematic diagram of the rectifying section, in
which the vapor and liquid flow rate for component i leav-
ing stage n based on the transformed composition are respec-
tively given by vi,n and li,n.

for the c pure components and/or azeotropes involved in the
distillation compartment of interest, such that the root-mean-
square error between simulated residue curves and an ideal
VLE surrogate (Equation (1)) is minimized:

yi =
αixi

∑
c
j=1 α jxi

∀i ∈C := {1, · · · ,c}, (1)

where xi and yi denote the liquid and vapor composition of
pure component or azeotrope i in the new coordinate system
for the transformed composition space, respectively. αi is the
relative volatility of i with respect to the least volatile pure
component or azeotrope in the distillation compartment. We
follow the convention that αc > · · ·> α1 = 1.

Mathematical Modeling

We consider the rectifying section of an azeotropic distilla-
tion column (Figure 3). The same analysis approach follows
for the stripping section. Under the constant molar over-
flow (CMO) assumption, which has been extensively vali-
dated (Jiang et al., 2022; Madenoor Ramapriya et al., 2018),
the total vapor (V ) and liquid (L) flow rates inside the sec-
tion do not change from tray to tray. Thus, the total distillate

flow rate D := V − L is also constant. According to com-
ponent mass balance, for every i ∈ C, its component distil-
late flow rate di = vi,n − li,n+1 also remains unchanged for all
n = 1,2, · · · in the rectifying section. Here, vi,n := V yi,n and
li,n := Lxi,n. Note that in the rectifying (resp. stripping) sec-
tion, di ≥ 0 (resp. di ≤ 0) for every i ∈C. Let us consider two
adjacent stages, namely (n+ 1) and n, and substitute Equa-
tion (1) into component mass balance:l1,n+1

...
lc,n+1

=
V

∑
c
k=1 αklk,n

α1l1,n
...

αclc,n

−

d1
...

dc

=
A

∑
c
k=1 αklk,n

l1,n
...

lc,n

 ,

(2)

where A is a c× c matrix defined as:

A :=


α1(V −d1) −α2d1 · · · −αcd1
−α1d2 α2(V −d2) · · · −αcd2

...
...

. . .
...

−α1dc −α2dc · · · αc(V −dc)

 . (3)

We can linearize Equation (2) by defining a new vec-
tor Ln :=(L1,n, · · · ,Lc,n)

T =(l1,n, · · · , lc,n)T
∏

n−1
j=1 ∑

c
k=1 αklk, j

for every n ∈ N+. With this, Equation (2) is successfully lin-
earized as Ln+1 = ALn for every n ∈ N+. It turns out that
matrix A contains all the information about the composition
profile and pinch conditions in the rectifying section. In par-
ticular, we are interested in the fixed point solution of the
linear system associated with Equation (3), which is given
by the eigenvalues and eigenvectors. We determine the char-
acteristic polynomial of A as:

det(A−λI) =

(
1−

c

∑
i=1

αidi

V αi −λ

)
c

∏
i=1

(V αi −λ) , (4)

from which one can easily see that the eigenvalues of A are:

λi =V αi ∀i ∈C such that di = 0
λi =V γi ∀i ∈C such that di ̸= 0,

(5)

where γi represents the ith root of the following equation:

c

∑
j=1

α jd j

α j − γi
=V, (6)

and by convention, γc > · · ·> γ1. Equation (6) looks familiar
as it resembles the well-known Underwood’s distillate equa-
tion (Underwood, 1949), except that {di}c

i=1 are now defined
in the transformed composition space. Next, for each eigen-
value λi, we derive the corresponding eigenvector zi:

νi =
1
L

(
αid1

α1 −αi
, · · · , αidi−1

αi−1 −αi
, Ii,

αidi+1

αi+1 −αi
, · · · , αidc

αc −αi

)T

if di = 0,

νi =
1
L

(
γid1

α1 − γi
, · · · , γidc

αc − γi

)T

if di ̸= 0,

(7)



where Ii =V −∑
c
j ̸=i

α jd j
α j−αi

. Essentially, these eigenvectors are
c possible liquid pinch zone compositions in the new coordi-
nate system. Recall that a pinch zone is a region in the col-
umn section where the liquid or vapor composition remains
unchanged from stage to stage. When the section is pinched,
there is zero driving force for mass transfer in the pinch zone
and an infinite number of stages is required to achieve sepa-
ration. Furthermore, one can show that these c eigenvectors
are affinely independent. Thus, a c−1-dimensional simplex
called the pinch simplex can be constructed, in which every
liquid pinch zone composition (i.e., eigenvector) is a vertex
of the pinch simplex denoted as Zi with i ∈ C (see Figure
4c). We also derive the equations characterizing the facets of
pinch simplex as:

zi = xi = 0 ∀i ∈C such that di = 0,

zi =
c

∑
j=1

α jx j

α j − γi
= 0 ∀i ∈C such that di ̸= 0,

(8)

As discussed by Franklin and Forsyth (1997), one can di-
rectly calculate the liquid composition profile without per-
forming explicit tray-by-tray calculations inside rectifying
section using the results derived so far (see Figure 4c and d).
We emphasize that, depending on where the starting compo-
sition lies with respect to the pinch simplex, the liquid com-
position profile can exhibit different trajectories and patterns
(Figure 4d), and the exact pinch zone composition the col-
umn section would observe as the number of stages becomes
infinite would also be different.

Following a similar procedure as above, we can also de-
termine the eigenvalues and eigenvectors of matrix A cor-
responding to the stripping section, from which a c − 1-
dimensional pinch simplex for the stripping section can be
constructed given its internal vapor traffic and bottoms prod-
uct composition and flow rate.

Minimum Reflux Condition for Azeotropic Distillation

To determine the minimum reflux ratio of an azeotropic
distillation column, the pinch simplices for both rectifying
and stripping sections are constructed using Equation (8)
simultaneously. When the distillation column is operated
above the minimum reflux, the desired separation can be
achieved with finite number of stages. When the column is at
minimum reflux, the desired separation can only be achieved
using infinite number of stages. Both column sections are
pinched at minimum reflux condition. If the column is unable
to achieve the desired separation even with infinite stages, it
is operated below the minimum reflux ratio.

How is this related to the pinch simplex? It turns out that,
in order for a distillation task to be feasible, the rectifying and
stripping section pinch simplices must be connected, which
allows the composition profile to be continuous from the top
to bottom of the column (Franklin and Forsyth, 1997). Fur-
thermore, it can be shown that this geometric condition is
equivalent to a set of eigenvalues constraints γrec

i ≥ γ
strip
i−1 for

every i∈C whose αi lies in between the relative volatilities of
light and heavy key components (Jiang et al., 2022). And the
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Figure 4: (a) The distillation compartment of interest drawn
in the original composition space. (b) Through a linear map-
ping T : X →X , the original compartment is transformed into
a new composition space. (c) A pinch simplex can be con-
structed under the transformed composition space. (d) The
pinch simplex can be used to generate all liquid composition
profile patterns subject to a given distillate composition and
total vapor or liquid flow rate in the column section. The ar-
rows indicate the direction where liquid composition evolves
as one moves downward in the column section.

minimum reflux is reached in the limiting case when these
two pinch simplices only share a common face (see Figure
5b). Algebraically, this is equivalent to γrec

i = γ
strip
i−1 := θi−1

for all i ∈ C whose αi ∈ (αHK,αLK). We can show that all
candidate θ roots can be directly calculated using feed stream
information:

c

∑
j=1

α j f j

α j −θi
=VF ∀i ∈ {1, · · · ,c−1}, (9)

where θi ∈ [αi,αi+1] and fi and VF denote the component ma-
terial flow rate and vapor portion flow rate of the feed stream,
respectively. Equation (9) is similar to the classic Underwood
feed equation (Underwood, 1949), but is now generalized to
homogeneous azzeotropic distillation. Note that there might
be more than one feasible θ root candidate whose value lies
within (αHK,αLK). In this case, the minimum rectifying sec-
tion vapor flow V rec

min is given by its largest value determined
from Equation (6) after substituting all feasible θ root candi-
dates. And the minimum reflux ratio is simply:

Rmin =
V rec

min
D

−1 (10)

An Illustrative Example

To demonstrate the accuracy and effectiveness of
this shortcut method, we study the separation of ace-
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Figure 5: The pinch simplex diagram of a distillation column
operated (a) above minimum reflux; (b) at minimum reflux;
(c) below minimum reflux. The red and blue pinch simplices
describe the rectifying and stripping sections, respectively.
The red, green, and block dots represent the liquid compo-
sition of distillate, feed, and bottoms product in the trans-
formed composition space, respectively. Note that the feed is
not in saturated liquid state, otherwise the feed composition
is colinear with distillate and bottoms product compositions.

tone/chloroform/acetonitrile, which consists of a binary max-
imum boiling azeotrope (b.p. 64.04 °C) at 34.1 mol% ace-
tone/65.9 mol% chloroform. The topological class of this
azeotropic system is shown in Figure 2c. The residue curve
map (Figure 6) is synthesized by rigorous Aspen Plus sim-
ulations using the NRTL activity coefficient model. From
Figure 6, it is clear that the distillation boundary between
acetonitrile and the azeotrope (Az) separates the composition
space into two distillation compartments. In this example, we
consider a saturated liquid feed (1000 mol/hr) containing 65
mol% acetone, 20 mol% chloroform, and 15 mol% of ace-
tonitrile. The feed composition lies in the distillation com-
partment enclosed by acetone, acetonitrile, and azeotrope.
Hence, we apply the following linear mapping that trans-
forms this distillation compartment into a new ternary com-
position space:

T =

1 0 0
0 1

0.659 0
0 1− 1

0.659 1

 .

Residue Curve Map of Acetone/Chloroform/Acetonitrile
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Figure 6: Residue curve map of acetone-chloroform-
acetonitrile ternary system, with a binary maximum boiling
azeotrope at 34.1 mol% acetone, 65.9 mol% chloroform.

Through this transformation, acetone (original coordinate
(0,0,1)), azeotrope (original coordinate (0,0.659,0.341)),

and acetonitrile (original coordinate (1,0,0)) are mapped to
X3 = (0,0,1), X2 = (0,1,0), and X1 = (1,0,0), respectively.
Using the parameter estimation procedure described above,
the relative volatilities of acetone (i.e., α3) and azeotrope
Az (i.e., α2) with respect to acetonitrile (i.e., α1 = 1) are
estimated to be 2.1 and 1.2, respectively. The distillate
product (300 mol/hr) contains 99.50 mol% of acetone, 0.50
mol% of chloroform, and negligible quantity of acetoni-
trile. And the bottoms product (700 mol/hr) contains 50.21
mol% of acetone, 28.36 mol% of chloroform, and 21.43
mol% of acetonitrile. The component flow rates of distil-
late and bottoms streams in the transformed space are calcu-
lated to be (d1,d2,d3) = 300× (0.9924, 0.0076, 0) mol/hr
and (b1,b2,b3) = 700 × (0.2143, 0.4303, 0.3554) mol/hr,
respectively. Based on this information, the active root of
Equation (9) is θ2 = 1.4527, which is substituted to Equa-
tions (6) and (10) to give Rmin = 2.183.

Figure 7: The pinch simplex diagram in the new coordinate
system at minimum reflux. The rectifying and stripping sec-
tion pinch simplices share a common edge in which the feed
composition lies. The blue dots correspond to the actual liq-
uid composition profile obtained from rigorous Aspen Plus
simulation.

Figure 7 shows the pinch simplex diagram at minimum
reflux operation. The two pinch simplices share a common
edge, during which γrec

3 = φ
strip
2 = θ2. We validate this mini-

mum reflux ratio result by simulating the distillation column
in Aspen Plus. Both sections are given 50 theoretical stages
(Figure 8). The minimum reflux ratio determined from As-
pen Plus simulation is 2.174, which is only 0.46% different
compared to our shortcut calculation result. The simulated
liquid composition profile is also mapped to the new compo-
sition space and drawn in Figure 7.

Conclusion

In this article, we develop a shortcut model for multicom-
ponent homogeneous azeotropic distillation and derive min-
imum reflux condition. This shortcut model can be applied
to most common homogeneous azeotropic systems. We first
discuss composition space decomposition technique to trans-
form a distillation region into a new multicomponent sys-



Liquid Composition Profile at Minimum Reflux

Stage

M
ol

e 
fra

ct
io

n

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96 101
0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.00
Acetone

Chloroform

Acetonitrile

Figure 8: The actual liquid composition profile within the
column at minimum reflux. Both column sections are given
sufficient number of stages to ensure that the true minimum
reflux is achieved.

tem, in which the azeotrope becomes a pseudo-component
in the decomposed composition space. We outline an effec-
tive procedure for determining the relative volatility param-
eters for the resulting new multicomponent system, thereby
allowing us to adopt an ideal VLE surrogate model while
ensuring accuracy. We utilize these techniques and method-
ologies to develop the shortcut model, which generalizes the
classic Underwood method (Underwood, 1949) that was de-
veloped for ideal multicomponent systems. Compared with
existing approaches, our proposed method is simple, accu-
rate, and easy-to-use. Furthermore, similar to the classic Un-
derwood method, our model can be easily incorporated into
an optimization framework to synthesize and design energy-
efficient azeotropic distillation systems.
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