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Abstract
Modeling and predicting soil moisture is essential for precision agriculture, smart irrigation, and drought preven-
tion. In this work, we introduce a novel data-driven random walk (DRW) approach to solve n-dimensional Richards
equation, a complex partial differential equation that characterizes water flow dynamics in soil. This advanced compu-
tational framework integrates multiple features, including finite volume discretization, adaptive L-scheme, multi-layer
neural networks, and the concept of random walk to enable fast and accurate numerical solution of the Richards equation.
Through an illustrative example, we demonstrate the accuracy and attractiveness of this novel approach. In particular, we
show that our DRW approach can implicitly capture the underlying physical relationships among soil moisture content,
pressure head, and flux, which will enable more accurate characterization of water flow dynamics.
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Introduction

Soil moisture is a key hydrological state variable that has
significant importance for the global environment and hu-
man society. In particular, accurate modeling and monitoring
of root zone soil moisture in crop fields, which defines the
amount of water stored within the plant root zone (top 100
cm of soil) available for transpiration and photosynthesis, is
essential for improving agricultural production and crop pro-
ductivity, providing basis for precision irrigation, preventing
leaching of pesticides and soil nutrients into groundwater,
and predicting agricultural droughts (Babaeian et al., 2019).
Recent studies reveal that monitoring root zone soil mois-
ture at suitable locations and adjusting irrigation schedules
accordingly can reduce water use by 40-60% (Spelman et al.,
2013) and increase farmer’s revenue by 20-60% (Saavoss
et al., 2016). Soil moisture level is also directly related to
the concentration of fertilizers and pesticides in soil, which
has profound environmental and food safety implications.

Estimating root zone soil moisture from surface or near-
surface soil moisture data is typically achieved by solving a
hydrological model that describes water movement through
soils. Most of the advanced agro-hydrological models today
incorporate the Richards equation (Richards, 1931), which
captures irrigation, precipitation, evapotranspiration, runoff,
and drainage dynamics of water in saturated and unsaturated
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Figure 1: A schematic of agro-hydrological system (Source:
Orouskhani et al. (2022)).

porous medium such as soil (Figure 1):

∂tΘ(ψ)+∇ ·q = 0, (1)
q =−K(Θ)∇(ψ+ z), (2)

where ψ stands for pressure head, q is the flux, Θ denotes the
moisture content, K is unsaturated hydraulic water conduc-
tivity, t ∈ [0,T ] denotes the time, and z denotes the vertical
depth. In this work, we ignore the sink term associated with
the root water extraction rate without loss of generality. For
unsaturated flow, both Θ and K are functions of pressure head
ψ and soil properties (Mualem, 1976; van Genuchten, 1980).
In particular, small changes in Θ can change K by several
orders of magnitude (Cockett et al., 2018). Thus, K(Θ) is
a highly nonlinear function, which makes Equation (1) very



difficult to solve in practice. Most existing Richards equation
solvers use discretization approaches such as finite differ-
ence (Agyeman et al., 2021), finite element (Simunek et al.,
2008), or finite volume (Healy, 2008). Unlike finite differ-
ence and finite element methods which no longer preserve
useful physical information after discretization, the finite vol-
ume method (FVM) adopts an integral form of the Richards
equation, which offers some valuable physical insights about
water flow dynamics (Rathfelder and Abriola, 1994). How-
ever, even if the Richards equation is discretized using FVM,
the discretized equations are transformed into a matrix equa-
tion and solved numerically, which lose the physical insights
during solution process. Therefore, our goal is to enhance
the quality and performance of the solution process by de-
veloping a novel computational framework that explores and
utilizes the underlying physics behind the Richards equation.

To explore and incorporate additional useful physical in-
sights to our algorithm, we introduce the concept of random
walk, a stochastic process that describes the paths as N par-
ticles/molecules move in random steps, to the FVM frame-
work to model water flow dynamics subject to external forces
(e.g., gravity) and obstacles. Such a concept has been used to
solve partial differential equations with strong physical back-
ground, such as the diffusion equation (Sandev et al., 2018;
Lawler, 2010). In our case, we anticipate that the number
of water molecules inside a unit volume of soil at any time
is also a random process. With this, we can develop a sys-
tematic computational framework for solving the Richards
equation effectively. Specifically, we use multi-layer neural
network to learn a data-driven random walk model, which is
then incorporated into a modified FVM scheme to obtain so-
lutions of the Richards equation. Through an illustrative case
study, we demonstrate the accuracy and effectiveness of our
innovation solution framework and compare it with state-of-
the-art numerical methods.

Theoretical Foundation

Preliminaries and Notations

Recall that K(Θ) is a highly nonlinear function of moisture
content Θ. To model K(Θ), a number of empirical correla-
tions have been proposed over the past decades, one of which
is proposed by Gardner (1958) as:

Θ(ψ) = Θr +(Θsat −Θr)eαψ, (3)

K(Θ(ψ)) = Ksat
Θ(ψ)−Θr

Θsat −Θr
, (4)

where Θr is the residual water content, Θsat is the water con-
tent in saturated soil, α is a constant, and Ksat is the water
conductivity in saturated soil.

Before moving forward, we would like to remark that
Equation (1) can also be written as the following pressure
head form as we introduce the concept of hydraulic capac-
ity, C(ψ) := ∂Θ

∂ψ
, which itself has been correlated empirically

(van Genuchten, 1980):

C(ψ)∂tψ+∇ ·q = 0, (5)

From Equation (5), ψ can be explicitly expressed by sim-
ply discretizing Equation (1) in a linear scheme, rather than
discretizing Equation (5) directly.

Existence and uniqueness of weak solution of the Richards
equation

Although in most cases, the exact analytical solution of
the Richards equation does not exist, it has been shown that
a weak solution to the Richards equation exists and is unique
(Misiats and Lipnikov, 2013). A weak solution is a function
whose partial derivatives may not all exist but is deemed to
satisfy the partial differential equation to be solved in some
precisely defined context (Evans, 2010). The existence and
uniqueness of weak solution of the Richards equation of-
fers the theoretical guarantee that one can approximate the
solution of the Richards equation by constructing its weak
solution and solving it numerically. Specifically, we in-
troduce the following valid weak solution of Equation (1),
with homogeneous Dirichlet boundary condition given by
ψ(·,z) = 0 where z ∈ ∂Ω and the initial condition given by
ψ(0, ·) = ψ0(·) ∈ H1

0 (Ω) over Ω× [0,T ], by applying the im-
plicit Euler method on time domain:{

Θ(ψm+1,s+1)−Θ(ψm)−∆tK(Θ(ψm+1,s))∇(ψm+1,s+1 + z) = 0
ψs+1|z∈∂Ω = 0

(6)

where ∆t stands for the time step size (between time steps
m and m + 1), and terms like ψm+1,s represents the value
of ψ at the s-th iteration step of implicit Euler procedure at
time step m+1. Note that for the initial condition, H1

0 (Ω) is
the completion of C∞

0 (Ω) with respect to the Sobolev norm
|| · ||1, where C∞

0 (Ω) is the space of infinitely differentiable
functions that are nonzero only on a compact subset of Ω.
Also, note that other boundary conditions can be easily de-
rived from the homogeneous Dirichlet boundary condition.
To show that Equation (6) is a valid weak solution of Equa-
tion (1), we refer the readers to the works of Otto (1996) and
Misiats and Lipnikov (2013). Furthermore, for t ∈ [0,T ], we
have the following result, which can be viewed as the discrete
form of Equation (6):

Definition 2.1. Given ψs ∈ H1
0 (Ω), if for any v ∈ H1

0 (Ω),
⟨Θ(ψs+1)−Θ(ψs),v⟩−∆t⟨ K(Θ(ψs+1))∇(ψs+1 + z),∇v⟩ =
0, then ψs+1 is a weak solution of Equation (6).

In addition to this discrete form, one can also derive a
continuous form of the weak solution by directly integrat-
ing Equation (6) (Misiats and Lipnikov, 2013). From Def-
inition (2.1), it is clear that ψs ∈ H1

0 (Ω) for every itera-
tion step s. This guarantees that the weak solution of the
Richards equation also falls in H1

0 (Ω), which is the neces-
sary condition to ensure that the numerical solution is valid.
Once the existence and uniqueness of weak solution of the
Richards equation are shown, we are safe to develop a nu-
merical scheme. Next, we will introduce our novel data-
driven random walk algorithm that integrates finite volume
discretization and multi-layer neural network.



Discretization Using Finite Volume Method

FVM is a classic numerical method that incorporates con-
servation laws to allow volume integrals to be converted
into surface integrals by applying the divergence theorem
(Vinokur, 1989; Barth and Ohlberger, 2003). To demon-
strate, we first integrate both sides of Equations (1) and (2)
to obtain the integral form of the Richards equation over a
n+1-dimensional control volume V . Next, we apply the di-
vergence theorem to convert the volume integral into a n-
dimensional surface integral after determining the outward
pointing unit normal vector n:∫

V
∂tΘ(ψ)dV =

∫
V

∇ · [K(Θ)∇(ψ+ z)]dV. (7)

To adopt the FVM, we discretize the control volume V
and its surface SV into Nω small cells Vi with i = 1, · · · ,Nω,
and small surfaces ω with volume Aω with ω = 1, · · · ,Nω,
respectively. Now, to discretize Equation (7), we denote the
discretized version of the operator K(·)∇(·) with respect to
the small surface ω as [K(·)∇(·)]ω. The RHS of Equation (7)
can be discretized by summing over [K(·)∇(·)]ω for all ω:

∂tΘ(ψ)vol(Vi) =
Nω

∑
ω=1

[K(Θ)∇(ψ+ z)]ω ·nωAω. (8)

To apply time stepping on the LHS of Equation (8), we
discretize the time domain and approximate the time deriva-

tive ∂tΘ(ψi) as Θ
m+1,s+1
i −Θm

i
∆t , where Θ

m+1,s+1
i represents the

discretized Θ in the i-th small cell at time step m+1 and iter-
ation step s+1, and Θm

i is the converged Θ value in the i-th
small cell at the current time step m. Combining Equations
(7) and (8) leads to:

Θ
m+1,s+1
i −Θm

i
∆t

vol(Vi) =
Nω

∑
ω=1

[K(Θ)∇(ψ+ z)]ω ·nωAω. (9)

After time stepping is complete, the conventional FVM
practice typically writes and solves the discretized equations
in matrix form. Due to the stiffness and sparsity of the re-
sulting matrix, solving such a matrix equation is known to
be computationally challenging. Therefore, we propose an
alternative route that solves the discretized equations in an
iterative manner. Inspired from the work of Mitra and Pop
(2019), we introduce an adaptive L-scheme by adding the
term Lm+1,s

i (ψm+1,s+1
i −ψ

m+1,s
i ) to the LHS of Equation (9).

We point out that this adaptive L-scheme is different from the
standard L-scheme (Suciu et al., 2021), in which Ls,m+1

i is re-
placed by a non-adaptive constant L. In standard L-scheme,
L is arbitrarily chosen and is static subject to changes in Θ

at different time step and small cell. In addition, there is
no theoretical proof regarding the convergence of standard
L-scheme. In fact, the choice of L is not arbitrary and can
greatly impact convergence of the L-scheme. On the other
hand, for adaptive L-scheme, we have shown that conver-
gence is ensured by Lm+1,s

i ≥ sup |Θ̇| as long as there exists b
in which ||ψ0

i −ψ0
i−1||L∞ ≤ b∆t. In practice, we select Lm+1,s

i

to be max{|Θ̈(ψm+1,s−1
i )|,2M∆t}, for proper M ≥ bsup |Θ̈|.

Substituting this adaptive L-scheme into Equation (9)
yields an adaptive linearized FVM numerical scheme that we
use in our algorithm:

ψ
m+1,s+1
i =

1

Lm+1,s
i

Nω

∑
ω=1

Km+1,s
ω ·nω

(ψ+ z)m+1,s
j − (ψ+ z)m+1,s

i

d( j, i)
Aω

− 1

Lm+1,s
i

Θ
m+1,s+1
i −Θm

i
∆t

vol(Vi)+ψ
m+1,s
i .

(10)

Data-Driven Random Walk Algorithm

In this section, we introduce the first-of-its-kind data-
driven random walk (DRW) algorithm that will be integrated
with the FVM scheme to solve the Richards equation. As we
will see later, compared to pure FVM-based approaches, the
additional underlying physical knowledge implicitly learned
by the DRW algorithm can be very useful in obtaining accu-
rate solutions of the Richards equation. Here, we introduce
the global random walk procedure, which allows particles to
move to neighboring nodes simultaneously instead of one at
a time (Vamos et al., 2001). Let nm+1,s

i be the number of
particles in cell i at fixed-point iteration step s and time step
m+ 1, and δnm+1,s

i, j be the number of particles moved from
cell i to cell j at iteration s and time step m+1. Without loss
of generality, let us consider the 1-dimensional case in which
the number of water molecules in cell i follows:

nm+1,s
i = δnm+1,s

i,i +δnm+1,s
i+1,i +δnm+1,s

i−1,i . (11)

Vamos et al. (2001) adopted the concept of random walk
of particles to solve the diffusion equation. Concentration is
modeled simply by taking the arithmetic mean of the number
of particles. Authors showed that the random walk solution
of the diffusion equation is the same as the solution obtained
using finite difference method. While such analogy is intu-
itive and straightforward to draw when modeling concentra-
tion, it cannot be directly extended to the Richards equation
which is a highly nonlinear convection-diffusion equation.
In other words, the relationship between pressure head ψi
and the number of particles ni still remains unclear. In fact,
there exists no theoretical guarantee that such as relationship
is continuous, smooth, or explicit. Thus, the relationship be-
tween ψi and ni may not be describable by any basic func-
tion. Therefore, we decide to model the relationship using a
multi-layer neural network (MNN), which are known to be
possible given that the neural network contains enough neu-
rons (Hornik, 1991). MNN enables us to approximate ψi as
a nonlinear function of ni, ψi = f (ni), at any fixed time step
and iteration step, which can be incorporated in Equation (9)
to yield the following data-driven random walk (DRW) for-
mulation:

nm+1,s+1
i =

1

Lm+1,s
i

Nω

∑
ω=1

Km+1,s
ω ·nω

nm+1,s
j −nm+1,s

i

d( j, i)
Aω

+ f−1(J)+nm+1,s
i ,

(12)



where J = ∑
Nω

ω=1 Km+1,s
ω · nω

zm+1,s
j −zm+1,s

i
d( j,i) Aω −

1
Lm+1,s

i

Θ
m+1,s+1
i −Θm

i
∆t vol(Vi). By the reasonable assump-

tions that ns
i ∈ H1

0 (Ω) and both Θ ◦ f and K ◦ f are C2

functions with bounded first- and second-order derivatives,
one can show that the DRW approach converges to the weak
solution of the Richards equation.

DRW Algorithm Architecture

Figure 2 illustrates our DRW architecture. During of-
fline learning, we first obtain reference solutions from the
global random walk solvers developed by Suciu et al.
(2021) (code available at https://github.com/PMFlow/
FlowBenchmark). We also add Gaussian noise (Williams,
1995) to these reference solutions to reflect the stochastic na-
ture of the relationship between Ψs

i and ns
i and improve the

robustness of DRW algorithm by enhancing its generaliza-
tion performance. Introducing Gaussian noise also improves
the quality of solutions obtained, as the reference solutions
themselves exhibit random error and are not strictly accu-
rate. The noise-added reference solutions are used as train-
ing and validation sets to train two MNNs, namely MNN1
and MNN2 in Figure 2. In MNN1, we learn f that maps the
number of particle in a cell to the pressure head information,
whereas in MNN2, we learn the inverse mapping f−1 from
pressure head information to the number of particles. We
point out that even though deep neural network with more
layers and neurons could also be used for learning f and f−1,
we find MNN with less number of layers (e.g., 3 layers) to be
sufficient as long as there is enough neurons in the neural
network (Hornik, 1991; Pinkus, 1999).

Once offline learning is complete, we proceed to the actual
solution process, where the Richards equation to be solved is
first discretized to the adaptive linearized FVM scheme using
Equation (10). Then, the discretized form is sent to the DRW
algorithm, where it passes through the inverse mapping f−1

learned from MNN2 to generate the solution of the Richards
equation in terms of the particle distribution in each cell, ni.
Finally, to convert this solution ni to physically meaningful
solutions such as pressure head Ψ, flux q, and moisture con-
tent Θ, we apply the trained mapping f . Lastly, we have
theoretically proven that the DRW algorithm is convergent,

and we use ε = maxi

{
| f (ns+1

i )− f (ns
i )|

| f (ns+1
i )|

}
to quantify and moni-

tor the convergence process.

An Illustrative Example

To demonstrate the accuracy and effectiveness of our novel
approach, we study the one-dimensional sandy soil example
proposed by Schneid et al. (2000) and Suciu et al. (2021).
This case study investigates the water flow dynamics within
the top 2 meters of the soil (i.e., Ω = [0,2 m]) from t = 0
to t = 10000 s. We adopt the empirical model of Equations
(3) and (4) for K(Θ) (Gardner, 1958). In this model, we use
Ksat = 2.77× 10−6 m/s, Θsat = 0.36, Θr = 0.06, and α = 10
for sandy soil. For boundary conditions, the water flux is

Solution 
Ψ! , Θ! , 𝑞!

MNN1 Learns 
𝑓: 𝑛(! → Ψ*!Reference solutions 

+ Gaussian noise
Ψ*! , 𝑛(!

MNN2 Learns 
𝑓"#: 	Ψ*! → 𝑛(!

FVM with 
adaptive 
scheme

DRW 
algorithm

Equation to 
be solved

Solution 𝑛!

Figure 2: Schmetic of DRW algorithm architecture.
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Figure 3: Convergence of DRW algorithm with respect to
fixed-point iterations.

2.77× 10−7 kg/(s·m2) at z = 2 m and t = 0 s, and subse-
quently increases to 2.5 × 10−6 kg/(s·m2) at z = 2 m and
t = 100 s. And for the initial condition, we assume that the
moisture content in Ω is uniform: Ψ(z,0) = Ψ0 = 0.5. The
convergence tolerance is set to ε = 10−9. Each of the two
neural networks contains a total of 3 layers and 10 neurons.
We obtain a total of 1010 noise-added reference solutions
from the global random walk solvers (Suciu et al., 2021),
with 70% of them used for training, 15% used for validation,
and 15% used for testing.

The convergence behavior under various times t (in s) is
summarized in Figure 3. Clearly, we observe a stiff con-
vergence rate within the first 100 fixed-point iterations for
all times. Convergence rate slows down after that, but still
reaches the desired tolerance of 10−9 after a total of 2000 it-
erations. Convergence to fixed-point solutions using implicit
Euler for all time steps takes only a few seconds to achieve.
Depending on the accuracy requirement of the solution, one
may choose a tighter or looser convergence tolerance that
balances computational speed and accuracy.

Figures 4, 5, and 6 respectively show the pressure head
ψ(z, t) (in m), soil moisture content Θ(z, t), and flux q(z, t) (in
kg/(s·m2) solutions of the pressure head form of the Richards
equation, Equation (5), at two time stamps: t = 2000 s and

https://github.com/PMFlow/FlowBenchmark
https://github.com/PMFlow/FlowBenchmark
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Figure 4: Comparison of pressure head results ψ(z, t) at t =
2000 s and t = 10000 s.

t = 10000 s. In these figures, we compare the solution from
our DRW algorithm with two benchmark methods, namely
the Global Random Walk (GRW) approach developed by Su-
ciu et al. (2021) and the MFEM framework developed by
Schneid et al. (2000). In general, our DRW results show ex-
cellent agreement with the GRW results for both time stamps
as well as with the MFEM results for t = 10000 s, which is
the only data set currently available in the literature. Nev-
ertheless, in Figure 6, we observe some inconsistency in the
flux results in z ∈ [0,0.8 m]. In GRW and MFEM method,
the flux remains constant throughout this domain. However,
our DRW approach indicates that the flux first stays constant
in z ∈ [0,0.6 m], and then decreases during z ∈ [0.6,0.8 m] to
a new steady state value that is consistent with what GRW
and MFEM give throughout z ∈ [0,0.8 m].

By comparing Figures 5 and 6, one can see that our DRW
framework produces the accurate flux results in z∈ [0,0.8 m].
This is because, if the flux stays identical throughout z ∈
[0,0.8 m], then moisture content in Figure 5 should not accu-
mulate or deplete within the same region. Nevertheless, we
observe a significant drop in water content from z = 0.6 m
to z = 0.8 m in Figure 5, which exactly matches with the
changes in flux from z = 0.6 m to z = 0.8 m as well. Neither
MFEM nor GRW method is capable of learning and utilizing
the first-principle knowledge relating flux and soil moisture
content. On the other hand, by modeling water flow dynam-
ics as random walk of particles, our DRW approach implic-
itly learns the underlying physical relationships among dif-
ferent physical properties in the Richards equation as well,
which enhances the solution accuracy and interpretability.

Conclusion

Soil moisture is an important hydrological state variable
that provides key information which can used in precision
agriculture, smart irrigation, drought prevention, weather
monitoring. In this work, we develop a novel data-driven
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Figure 5: Comparison of soil moisture content results Θ(z, t)
at t = 2000 s and t = 10000 s.

random walk (DRW) computational framework to solve the
n-dimensional Richards equation, a complex partial differen-
tial equation characterizing water flow dynamics in soil. Our
DRW approach integrates finite volume discretization, adap-
tive L-scheme, multi-layer neural networks, and the concept
of random walk to enable fast and accurate numerical solu-
tion of the Richards equation. We also introduce Gaussian
noise to improve the robustness of the DRW framework. To
compare our DRW framework with two benchmark numeri-
cal methods in the literature, we present an illustrative exam-
ple of one-dimensional Richards equation. We show that the
DRW approach not only generates fast and accurate solutions
to the Richards equation, but also implicitly captures the un-
derlying physical relationships among soil moisture content,
pressure head, and flux. Future work involves experimental
validation of our DRW framework in a 2-acre field located
in the Marena, Oklahoma In Situ Sensor Testbed (MOISST)
near Stillwater, Oklahoma using in-situ soil moisture sensors.
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