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ABSTRACT: Process monitoring is a critical component in modern manufacturing

facilities to guarantee process safety, ensure product quality, and improve process o =y R2-0.894
operability. In this work, we present a lightweight yet effective process monitoring | “++
framework that synergistically incorporates useful process knowledge into online ‘
monitoring. This new framework can greatly enhance the monitoring capabilities of -
existing sensing infrastructure without installing new physical sensors. The idea is to 2
smartly construct essential secondary variables based on domain knowledge to
uncover underlying process behaviors, followed by carefully selecting process variables
with minimal redundancy for soft sensing. Both secondary variable construction and —
variable selection approaches are part of data preprocessing steps and thus can be

easily done offline and integrated with a range of soft sensing algorithms. Compared EEEEEEE

to existing soft sensor modeling approaches that rely on complex deep learning AN
architectures, our framework does not require extensive training and can be

generalized to other monitoring applications. We also introduce and incorporate an adaptive variable selection mechanism based on
the concept of mutual information to select original and secondary variables for monitoring, which significantly reduces
measurement redundancy and further improves computational efficiency and monitoring accuracy. Together, these innovations lead
to the highest accuracy (R* = 0.894) ever reported in the literature in online estimation of product impurity concentration in the
Dow data challenge problem. Overall, our proposed monitoring framework offers a scalable, lightweight, and explainable solution for
real-time process monitoring and quality control of manufacturing processes.

Maximize relevance & minimize redundancy

Secondary Variables Construction

B INTRODUCTION

Fast, accurate, and reliable process monitoring is essential to
ensuring process safety, improving product quality, and

infrastructure without investing heavily in new, expensive
sensors. In other words, new techniques need to be developed
to complement physical sensor measurements to synergistically
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reducing operating costs of modern manufacturing facilities
as their scale and complexity continue to expand. Historically,
process monitoring is enabled by measuring and analyzing
online process data produced by physical sensors installed in
the process units. However, solely relying on primary process
data measured by physical sensors can limit process
monitoring capabilities and lead to subpar performance due
to several reasons. First, many process variables that directly
reflect operating status and system health may not even be
measurable by physical sensors.” And, even if they are, they are
often not accessible in real time. For example, composition
measurement in most chemical plants and refineries generally
requires a sample to be taken by an operator and sent to an
onsite laboratory for analysis while the process is running,
thereby causing considerable time delay and measurement
error in the analyzed results. Although inline composition
analyzers are being developed, most of them are still premature
and expensive to install and maintain, which is a significant
bottleneck for large-scale deployment. As a result, industrial
practitioners have been actively seeking ways to enhance
process monitoring capabilities by leveraging existing sensing
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enhance process monitoring performance.”

Along this line, soft sensing is an emerging concept that
shows great promise in harnessing process knowledge and
uncovering the underlying process dynamics that cannot be
clearly elucidated using only physical sensors. Soft sensing
complements conventional physical sensing by estimating
important yet hard-to-measure target variables using easy-to-
measure primary process variables produced by physical
sensors. Such estimation can be accomplished by two
approaches. One is through the use of first-principle
mathematical models that explicitly describe the functional
relationship between hard-to-measure variables and easy-to-
measure variables, and the other approach uses data-driven
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methods to implicitly learn the relationship between the two
sets of process variables. Clearly, the choice between these two
approaches and the effectiveness of soft sensing in harnessing
process knowledge and dynamics highly depends on, first,
which secondary variables are constructed and added to the list
of monitoring variables and, second, whether explicit func-
tional relationships exist between the primary and secondary
variables. These criteria have directed soft sensing research and
development efforts over the years.

Specifically, compared to data-driven methods, research on
first-principle methods for soft sensing has been quite limited.
This is mainly because industrial process dynamics are typically
highly nonlinear, time-varying, and correlated, and thus it is
nearly impossible to develop soft sensing methods straight
from first-principle mathematical models. Instead, prevailing
soft sensing research has been primarily focusing on
developing data-driven techniques that do not rely on expert
knowledge or understanding of the process being monitored.”
Instead, the idea is to extract and learn the complex process
dynamics from historical process data, from which secondary
process variables can be inferred and predicted. These data-
driven soft sensing methods range from classic statistical
algorithms, such as partial least-squares” and support vector
regression,” to more advanced machine learning and deep
learning approaches, such as denoised autoencoders,” convolu-
tional neural network (CNN),” CNN-based Gaussian process
regression® and hybrid sequence-to-sequence recurrent neural
network-deep neural network (Seq2Seq RNN-DNN).” How-
ever, these purely data-driven approaches face some common
limitations. First, due to the lack of process knowledge, purely
data-driven soft sensing faces interpretability and general-
ization challenges, which would become barriers to their
widespread adoption among plant operators and process
engineers. Furthermore, the monitoring performance of purely
data-driven soft sensing methods depends on the availability of
relevant historical process data. Thus, these methods typically
do not perform well for new operating conditions and
unexpected disturbances or faults that have not been
encountered before.

To address these intrinsic limitations of purely data-driven
approaches, recent soft sensing research efforts have started to
incorporate process knowledge and insights, including mass,
energy and momentum balances, thermodynamic and kinetic
laws, as well as spatiotemporal process dynamics, into a data-
driven modeling framework to enhance its performance. These
efforts can be classified into two broad categories. The first
category directly integrates partial/ordinary differential alge-
braic equations governing into the loss function of data-driven
soft sensing methods in the form of physics-informed neural
networks (PINNs). For instance, to monitor p-carotene
biosynthesis in Saccharomyces cerevisiae fermentation process,
Bangi et al.'” encode mass conservation relationships and
reaction kinetics using neural ordinary differential equation,
which is then embedded in a data-driven soft sensing
framework. The resulting hybrid soft sensing method leads
to notable monitoring performance enhancement.

Despite showing promising potential, the implementation of
PINN in soft sensing for process monitoring inevitably faces
the trade-off between model accuracy and complexity. In
particular, any PINN model that attempts to capture the
nonlinear and coupling process dynamics to a reasonable
degree of accuracy will become quite complex and computa-
tionally expensive to solve, thereby posing a need to carefully

design tailored PINN architectures.'' However, this can only
be done in a trial-and-error procedure with a deep under-
standing of both PINN and detailed process dynamics.
Furthermore, during neural network training, residual loss
functions involving partial/ordinary differential equations are
prone to gradient instability and local optimality issues and
thus require meticulous hyperparameter tuning and substantial
computational resources.'”'® Last but not least, the accuracy of
PINN also depends on the accuracy of model parameters,
many of which are hard to obtain in practice. For example,
characterizing the heat and mass transfer occurring in a
distillation tray using rigorous partial differential equation
models requires precise tray efficiency correlations as well as
vapor—liquid mass transfer and equilibrium relationships, all of
which involve several parameters that may not be available to
industrial practitioners. Overall, these implementation issues
pose several challenges in leveraging PINN for soft sensing.
The second category for introducing process knowledge in
data-driven soft sensing features indirect consideration of
spatial and/or temporal correlations embedded in process
dynamics using primary sensor measurements collected at
different locations. The idea is that, based on the expert
knowledge of a given process, specific physical laws and
process dynamics can potentially be revealed if sensors are
arranged or distributed at strategic locations of the process
units. In other words, process knowledge (mass, energy,
momentum balances and thermodynamic and kinetic laws) can
be inferred by analyzing the spatiotemporal correlations of
multisensor measurements. In this regard, Ma et al'*
introduced a novel spatial feature extraction method to
model the temperature distribution across a prereforming
reactor in a hydrogen production unit. This results in a novel
input feature map, which is then used by a convolutional
autoencoder method for fault detection. Similarly, Chen et al."
proposed a spatial self-attention mechanism, which can be
encoded by graph convolution operations, to discover process
knowledge from sensor data and construct soft sensors to
predict butane content in the bottoms product of a debutanizer
distillation column. Results show that the process knowledge
obtained by this soft sensing approach is mostly consistent
with expert knowledge. More recently, Ma et al.'® proposed a
multiblock monitoring structure that categorizes the process
variables into multiple blocks by leveraging expert process
knowledge about their associations with the overall process.
This multiblock structure integrated with an orthogonal long
short-term memory autoencoder to enhance process monitor-
ing performance. These research efforts highlight the feasibility
and potential of bringing process knowledge to elevate soft
sensing performance. Nevertheless, it is important to note that,
in these methods, process knowledge is only indirectly inferred,
rather than directly embedded, from spatial and/or temporal
correlations of multisensor data. Furthermore, these spatial
and/or temporal correlations may be subtle and may not
always be observable by sensor measurements, which are
subject to various uncertainties. These issues could potentially
limit the effectiveness of the resulting soft sensing techniques.
In summary, we conclude that, despite significant advance-
ments in soft sensing in recent years, questions remain on how
to seamlessly and explicitly integrate process knowledge with
data-driven soft sensing methods to address the aforemen-
tioned issues of prevailing approaches and create an accurate,
effective process monitoring framework. To this end, we
introduce a lightweight yet powerful soft sensing framework

https://doi.org/10.1021/acs.iecr.5c01644
Ind. Eng. Chem. Res. 2025, 64, 15363—15376


pubs.acs.org/IECR?ref=pdf
https://doi.org/10.1021/acs.iecr.5c01644?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as

Industrial & Engineering Chemistry Research

pubs.acs.org/IECR

From
Secondary
Column

From
Reactor

Feed Column

y: impurity

\

-
el

Primary
Column

Secondary
Column

To Primary Column

Figure 1. Block flow diagram of the Dow data challenge problem considered for the industrial data analytics study. This figure is referenced from
the original work of Qin et al.'® (Reproduced or adapted with permission from Qin et al."® Copyright 2021 Elsevier.).

that incorporates only the most essential process knowledge
that is easy to capture, model, and incorporate. Compared to
the existing state of the arts, our new framework has the
following advantages that favor generalization and widespread
adoption. First, rather than pursuing the existing routes of
developing complex and computationally expensive PINNs or
indirectly inferring process knowledge from sensor data, we
propose a more natural, lightweight, and explainable approach
to incorporate process knowledge in the form of secondary
variables that are directly constructed from simple design
equations and shortcut mathematical models. These standard
equations and models are available in most undergraduate
engineering textbooks, thereby allowing plant operators and
process engineers to easily understand and adopt our proposed
framework, as well as to make changes on their end. Second, to
ensure computational efficiency and scalability, we develop and
incorporate a highly effective variable selection method in our
soft sensing framework based on mutual information to
minimize redundancy of information gain from primary and
secondary variables. Third, with strategic secondary variable
construction and variable selection strategy in place to
incorporate process knowledge, we can use standard
machine/deep learning methods for soft sensing, thereby
bypassing any complex deep learning architecture. In other
words, these innovations come together nicely to form a
holistic process monitoring framework that shows outstanding
process monitoring performance. Furthermore, since both
variable construction and variable selection procedures are part
of data preprocessing steps, they can be done offline, making
online monitoring very computationally efficient. Specifically,
in the Dow data challenge problem, our proposed algorithm
achieves the highest accuracy (R* = 0.894) ever reported in the
literature in the online estimation of concentration of product
impurity.

The rest of this article is organized as follows. In The Dow
Data Challenge Problem section, we give an overview of the
Dow data challenge problem as a new, realistic benchmark for
process monitoring and industrial data analytics. We review
recent breakthroughs in tackling this benchmark problem.

Next, in Harnessing Process Knowledge via Secondary
Variables Construction and Variable Selection section, we
construct secondary variables and incorporate process knowl-
edge for the Dow data challenge problem. We also introduce
our adaptive variable selection algorithm to minimize variable
redundancy. In Results and Discussion section, we apply these
proposed methods to the Dow data challenge problem and
systematically compare our monitoring results with existing
approaches. Finally, we make some concluding remarks and
insights and discuss future work directions in Conclusions
section.

B THE DOW DATA CHALLENGE PROBLEM

Overview of Dow Data Challenge Problem. The Dow
data challenge problem was introduced by Braun et al.'” at the
Dow Chemical Company as one of the first industrial
benchmark data sets for process monitoring and data analytics.
The problem provides masked data sets obtained from one of
Dow Chemical’s facilities shown in Figure 1. This process
exhibits slow dynamics as a result of impurity accumulation
due to accelerated catalyst aging. All process variables
presented in the data set (see Table 1) are taken from the
plant’s separation section, which consists of a feed column
(FC), a primary column (PC), and a secondary column (SC).
These distillation columns are interconnected through
materials streams and recycles. In terms of the data set, the
training set covers actual process data collected over a one-year
period, whereas the validation data set covers a nine-month
period after the training data set was collected. The data set is
split into 8800 samples for training, 2200 samples for
validation, and 1000 samples for testing. The main focus is
to develop a reliable and robust model to predict the impurity
concentration in the PC overhead product. For more detailed
explanation and instructions of the data challenge, readers can
refer to Braun et al.'” and https://dschemaiandstats.github.io/
dowdatasciencechallenge.

Prior Soft Sensing Research in Dow Data Challenge
Problem. Since the Dow data challenge problem was first
introduced in 2020, it has attracted considerable attention and
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Table 1. Summary of Process Variables Included in the Dow
Data Challenge Problem”

unit variables unit variables
primary x1: PC reflux flow secondary  x22: SC base
concentration
column x2: PC tails flow column x23: flow from
(PC) (8C) Input to SC
x3: input to PC bed 3 flow x24: SC tails flow
x4: input to PC bed 2 flow x25: SC tray DP
x5: PC feed flow from FC x26: SC head
pressure
x6: PC make flow x27: SC base
pressure
x7: PC base level x28: SC base
temperature
x8: PC reflux drum x29: SC tray 3
pressure temperature
x9: PC condenser reflux x30: SC bed 1
drum level temperature
x10: PC bed 1 DP x31: SC bed 2
temperature
x11: PC bed 2 DP x32: SC tray 2
temperature
x12: PC bed 3 DP x33: SC tray 1
temperature
x13: PC bed 4 DP x34: SC tails
temperature
x14: PC base pressure x35: SC tails
concentration
x15: PC head pressure feed x36: FC recycle flow
x16: PC tails temperature  column x37: FC tails flow to
(FC) PC
x17: PC tails x38: FC calculated
temperature 1 DP
x18: PC bed 4 x39: FC steam flow
temperature
x19: PC bed 3 x40: FC tails flow
temperature
x20: PC bed 2
temperature
x21: PC bed 1
temperature

x43: PC reflux/feed ratio

x44: PC make/reflux ratio

y: impurity
“Reproduced or adapted with permission from Qin et al.'® Copyright
2021 Elsevier.

interest among the process monitoring community as it offers
one of the first industrial data sets that can be used as
benchmark for researcher and students to develop and
experiment various data analytics tools in a realistic setting.
As previously discussed, most research studying the Dow data
challenge problem can be classified into purely or knowledge-
integrated data-driven approaches. For purely data-driven soft
sensing, some of the notable works in statistical machine
learning include Qin and Liu" and Liu and Qin,* who
proposed a robust variable selection method as well as a two-
step sparse learning approach for variable selection and model
parameter estimation with optimally tuned hyperparameters in
each step. The effectiveness of the proposed approach was
demonstrated using the Dow data challenge data set.
Subsequently, Qin et al.*' developed a steepest descent PLS
algorithm that leverages the iterative nature of the steepest
descent method for more granular regularization path and
compared its performance in the Dow data challenge problem
with other regularized algorithms. Meanwhile, Barton and

15366

Lennox™> successfully designed a stacked ensemble learning
model to improve prediction stability and generalizability of
each individual base models consisting of PLS, Lasso, random
forest and XGBoost. In addition to statistical machine learning,
deep learning approaches have also been developed to study
the Dow data challenge problem. For example, Zhu et al.””
proposed a spatiotemporal stacked autoencoder algorithm,
which employs a CNN-LSTM-self-attention architecture to
extract spatiotemporal features. More recently, Xu et al.**
integrated slow feature analysis and LSTM (SLSTM) to
capture gradual process variations in the Dow data challenge
data set arisin§ from the process’s slow dynamics. Meanwhile,
Meng et al.* introduced a robust dual-rate dynamic data
modeling method based on hint convolutional neural network
to make full use of dynamic process data sampled at different
rates. A common feature of these deep learning methods is that
they tend to use fairly complex, stacked neural network
architectures to enable hierarchical processing of process data.
However, this also comes with the price of increasing model
complexity and training efforts. Furthermore, these complex
neural networks could suffer from overfitting and poor
generalizability, making them limited in handling new fault
scenarios, changing operating condition and unforeseen system
dynamics.

For knowledge-integrated data-driven soft sensing, some of
the recent works include Qin et al."® who proposed a statistical
learning procedure to integrate process knowledge in all steps
from preprocessing to model interpretation for the Dow data
challenge problem. An accurate inferential sensor model was
built to predict the impurity concentration. Next, Liu et al.*°
introduced a two-step learnin§ approach that runs a knowl-
edge-informed Lasso algorithm™’ twice to identify and preserve
key, knowledge-informed process variables followed by
building an inferential model using these variables. This
method employs cross-validation for secondary hyperpara-
meter optimization, and the computational complexity scales
quadratically with respect to the number of variables, making it
challenging to adopt in large-scale manufacturing facilities
equipped with numerous sensors.

In Table 2, we summarize the impurity concentration
estimation accuracy in terms of coefficient of determination

Table 2. Summary of Impurity Concentration Estimation
Accuracy for Existing Methods in the Literature

literature algorithm R MSE RMSE

Qinlgt stable lasso 0.683 - -
al.

Bartgzn et stacked ensemble model 0.655 - 0.612
al.

Liu et two-step sparse learning  <0.8 [0.375, 0.4] -
al.

Qin et knowledge-integrated 0.88 - -
al.'® statistical machine

learning

Qin et steepest descent 0.48358 - -
al?! alternative to the PLS

Liu et knowledge-informed 0.7564 0.2286 -
al”® lasso, KILasso

Zhu et spatiotemporal stacked 0.885 - -
al?? autoencoder

Menzg et  dynamic data denoising 0.28838 - -
al.” generative adversarial

imputation network-
hint CNN

https://doi.org/10.1021/acs.iecr.5c01644
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Figure 2. Our proposed framework for efficiently and effectively extracting process knowledge for the Dow data challenge problem. This framework
first constructs a set of secondary variables from existing sensor measurements (see Table 1), followed by selecting a subset of primary and
secondary variables based on a novel redundancy function (to be defined in later) for soft sensing to estimate impurity concentration.

(R?) for all works aforementioned. Up to now, the highest R
reported in the literature is 0.885,”’ which is achieved by
stacking multiple spatiotemporal autoencoders, each consisting
of a sequence of CNN layers, LSTM layers, and self-attention
layers, for feature/knowledge extraction. In this work, we
propose an entirely different approach to harness process
knowledge and integrate it with data-driven soft sensing that
does not require sophisticated, stacked design of neural
networks. Specifically, for the Dow data challenge problem
which consists of three distillation columns, we find out that
process knowledge can be successfully harnessed by incorpo-
rating a few standard distillation design equations, which have
been surprisingly overlooked in previous works. This leads to a
lightweight yet powerful knowledge-integrated soft sensing
framework that outperforms the state-of-the-art methods in
terms of R” result.

B HARNESSING PROCESS KNOWLEDGE VIA
SECONDARY VARIABLES CONSTRUCTION AND
VARIABLE SELECTION

As shown in the flowchart in Figure 2, process knowledge is
acquired and embedded into the data-driven soft sensing
algorithm via two modules, namely the secondary variable
construction module and adaptive variable selection module.
Both modules are part of the data preprocessing step and can
be done offline. This saves significant computational time and
resources in online monitoring, making our soft sensing
framework highly efficient and lightweight to implement. To
construct secondary variables for the Dow data challenge
problem, we recognize that all unit operations involved in the
problem are distillation columns. Therefore, we identify a set
of distillation design parameters and operational properties,
namely reflux ratio, mass and energy balances, temperature and
pressure distribution, and equation of state for the vapor traffic
inside the columns.”” Secondary process variables are then
derived from these design parameters and operational
properties, which are chosen based on the following criteria.
First, they must be directly representable by primary process

15367

variables, so that secondary process variables can be
synthesized and determined from existing sensor measure-
ments. Second, to ensure computational efficiency and
generalizability, each parameter must lead to a simple and
relatively accurate shortcut mathematical model that relates a
secondary process variable with primary process variables.
Again, we emphasize here that, rather than relying on complex
deep learning approaches, we adopt a much simpler,
lightweight approach of directly implementing already existing
and well established distillation modeling equations to uncover
the underlying relationships and/or spatiotemporal dynamics
between primary and secondary variables.

Once a set of secondary process variables are derived from
these design parameters and operational properties, we
perform an adaptive screening process select a subset of
primary and secondary variables to be included in the soft
sensing framework for monitoring. This procedure, which we
call as adaptive variable selection, aims to minimize
redundancy, reduce computational and data transmission
burden during online monitoring, and improve process
monitoring performance. By tracking which variables are
selected, plant operators and engineers can also gain valuable
insights regarding process dynamics and fault propagation.
Next, we will discuss each module in detail.

Constructing Secondary Process Variables from Key
Design Parameters. As discussed above, for the Dow data
challenge problem, secondary process variables are constructed
for each key design parameter using simple mathematical
models which are readily available in chemical engineering
textbooks. And they are directly or indirectly related to the
target variable via fundamental physical laws and chemical
engineering principles. This separates our proposed method
from existing approaches in terms of integrating process
knowledge for soft sensing. In Table 3, we summarize the key
design parameters and operational properties as well as all 12
secondary process variables derived from these parameters and
properties.

https://doi.org/10.1021/acs.iecr.5c01644
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Table 3. List of Secondary Process Variables Derived from
Key Design Parameters and Operational Properties”

secondary
process parameters variable definition MIC
temperature k1 x20 — x19 0.4824
distribution
k2 x19 — x18 0.4417
k3 x30 — x31 0.1476
k4 x32 — x29 0.1124
pressure distribution kS x14 —x1§ 0.4438
k6 x27 — x26 0.1557
. x5
reflux ratio k7 6 0.5442
x23
mass balance k8 sy 0.1914
x40
k9 o 0.5444
. X7
ideal gas law k10 251 ls 0.3586
energy balance k11 xl X (20 —x19)  0.4374
k12 xI X (x19 — x18) 04741

“The secondary variables are related to primary variables via
elementary manipulations, thereby ensuring computational efficiency
and robustness. The maximum information coefficient (MIC) values
for secondary variables with respect to the target variable (impurity
concentration in primary column distillate product) are also
calculated.

Secondary Variable Constructed from Reflux Ratio. Reflux
ratio is one of the key design parameter and is directly related
to the operation and control of distillation column. By tuning
the reflux ratio, operators can adjust product purity and energy
consumption of a distillation column. From Figure 3a, by
combining overall mass balance and component mass balance

around the rectifying section of the column, we obtain the
operating line equation represented in terms of reflux ratio Rp,
aseq 1
Rp
xi,n
Rp+1

XiD
Ry+1

)?,n+1 -

(1)

where x;,, (respectively y;,,,) represent the liquid (respectively
vapor) molar composition of component i leaving stage n
(respectively stage n + 1), and x;p is the composition of
distillate product. From the operating line equation, one can
see that, when fixing the distillate flow rate, as Ry, increases, the
distillate product composition for the more volatile component
will increase. In other words, for primary column, the impurity

. 1, 1
concentration increases as - increases. Therefore, - for the
D D

primary column, namely k7 in Table 3, is chosen as one of the
secondary process variables.

Secondary Variables Constructed from Mass Balance.
From Figure 3b, by combining overall and component mass
balances around the entire column, we obtain the following
relationship connecting an intensive property D/F with
compositions as eq 2
Xi,p — %i,B

Zl,F xi,B (2)
where D and F stand for distillate and feed flow rates,
respectively, and z;r and «x;5 represent the molar composition
of component i in the feed and bottoms product streams,
respectively. Similar to the reflux ratio, the F/D ratio also
reflects impurity concentration. Specifically, since secondary

column and feed column are both connected to the primary
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Figure 3. System boundary to derive operating line equation for distillation column.
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column where impurity concentration in the distillate is of our
interest, F/D for the secondary and feed columns are included
in the list of secondary process variables. As illustrated in Table
3, we construct two secondary variables, k8 and k9, to monitor
the mass balance behavior for the secondary and primary
columns, respectively.

Secondary Variables Constructed from Energy Balance.
Apart from mass balance, energy balance also plays an
important role in distillation column design and operation.
Inside a distillation column, thermodynamic equilibrium is
achieved between the liquid and vapor phases on each stage.
And the standard model for distillation involves simultaneously
solving Mass, Equilibrium, Summation, and Heat (MESH)
equations for every tray. Heat transfer directly affects the
temperature and composition distributions within the dis-
tillation column. Therefore, a secondary variable based on heat
transfer is adopted as an indicator for the impurity
concentration. Such equilibrium involves mass transfer (and
thus composition change) between the two phases, which is
enabled by mixing and heat transfer. Nevertheless, directly
deriving and incorporating detailed energy balance equations
for each and every stage in the column is not only
computationally expensive but also practically infeasible, as
heat cannot be directly measured or determined from primary
process variables. Meanwhile, under the reasonable assumption
of adiabatic column and constant molar overflow (which
translates to similar latent heat of vaporization for all
components),””* it can be shown that the amount of heat
transferred across a section of the column is proportional to
the temperature difference between the two ends of the
column section and the flow rate in the section. With this, we
construct another secondary variable Q as eq 3

Q= Lr(Ttop - Tbot) (3)

where L, is the liquid reflux flow rate and T\, and Ty, denote
the temperature at the top and bottom of the column section
of interest, respectively. As shown in Table 3, we construct two
secondary variables, k11 and k12, to monitor energy balance
within the primary column.

Secondary Variables Constructed from Ideal Gas Law. At
low and medium pressures, most gases behave ideally or close
to ideal gas. In this case, the density of vapor traffic inside the
column is proportional to P/T according to the ideal gas law.
Here, P and T denote the pressure and absolute temperature,
respectively. As a result, we propose a secondary process
variable P/T for the secondary column, namely k10 in Table 3.

Secondary Variables Constructed from Temperature and
Pressure Distributions. Finally, monitoring temperature and
pressure distributions indicates spatiotemporal dynamics of
distillation operation, such as changes in composition and
relative volatility. Therefore, instead of following the deep
1earnin§ approach, such as using spatiotemporal autoen-
coders,” we choose to characterize these spatiotemporal
dynamics using secondary variables based on temperature and
pressure differences across different locations in the primary
and secondary columns. Specifically, secondary variables k1
through k4 listed in Table 3 are constructed to monitor the
temperature distribution, whereas kS and k6 are to monitor the
pressure distribution within the column. The idea is that, since
temperature and pressure sensor locations are typically fixed,
the temperature and pressure gradients within the column,
which reflect disturbances and changes in composition
distribution inside the column, can be effectively monitored

by the temperature and pressure differences taken at different
locations.The maximum mutual information coefficient
(MIC)* was applied to quantify the correlation between the
secondary variables and the product impurities, with a value
between 0 and 1. Larger values indicate stronger correlation,
see Results and Discussion section for more details.

Adaptive Variable Selection for Redundancy Reduc-
tion. As mentioned earlier, variable screening and selection
helps reduce model complexity and redundancy, enhance
computational efficiency, and shed light on process dynamics
and fault propagation. Among various variable selection
criteria, mutual information (MI) is attractive as it can
quantify nonlinear dependencies among variables.”® Consider
any two continuous random variables X and Y, their MI, MI(X,
Y), is given as eq 4

, = x, y)lo ded
M = [ [ pe e istse

where p(x, y) denotes the joint probability distribution of x
and y, and p(x) and p(y) correspond to the marginal
distributions of x € X and y € Y, respectively. If there is no
statistical correlation between X and Y, then MI(X, Y) = 0.
Furthermore, MI is related to the information entropy H by
MI(X, Y) = H(X) + H(Y) — H(X, Y), where H(X, Y) is the
joint entropy of X and Y. Generalizing this to high dimensions
(for multisensor scenarios in industrial process monitoring)
yields the following mutual information expression as eq S

MI((XD sz ) Xn)) Y)

= H(XU X5, Xn) + H(Y) - H(Xlr X5, X Y)

(5)

where W = {X,-X,} is a set containing all n primary and
secondary process variables and Y is the target variable (i.e.,
impurity concentration in primary column distillate product).

To adaptively determine the number of (primary and
secondary) process variables to be used for soft sensing, we
introduce a novel feature selection method based on the
normalization of maximum relevance and minimum common
redundancy.’' For a given W, our goal is to identify a subset S
C W that minimizes the redundancy within S. To do this, note
that the relative redundancy between for any two process
variables X, X; € S can be defined as eq 6

ns

MI(X;, X))
max{MI(X,, X,), MI(X,, ¥), MI(X,, Y)}
(©)

Examining the common redundancy among X, X;, and Y, a
new common mutual information CI can be defined as eq 7

RI(X;, Xj) =

CI(Xi’ Xj) Y) = RI(XM Xj)'min{MI(Xi) Y), MI(X]'; Y)}

(7)
which, when generalizing to the set level, becomes eq 8
MI(X,, S
CI(X, S, Y) = X, 5)
max{MI(X,, S), MI(X,, Y), MI(S, Y)}
min{MI(Xi, Y), MI(S, Y)} (8)

With this, we can define a redundancy function f for a specific
process variable X; as eq 9
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MI(X, Y) — CI(X,, S, Y)
MI(Y, Y) )

f (Xz) =

which favors high relevance with the target variable Y and
penalizes common redundancy with other variables in S. Thus,
fis a desired measure for ranking process variables. Based on
this, we propose an Adaptive Variable Selection method
considering Redundancy (AVSR). Starting from an empty set
S, AVSR first uses mutual information MI(X, Y) to rank each
primary and secondary process variables X; € W, and the
highest ranked process variable is added to S to make it
nonempty (hence being able to calculate CI(X, S, Y) and

15370

f(X;)). Then, following a greedy search mechanism, AVSR
calculates f(X;) for all X; € W/S and the process variable with
the highest f(X;) is selected and added to the subset S. This
process is repeated and more process variables are augmented
into S until MI(S, Y), as calculated from eq S, reaches
maximum for the first time. Beyond this point, adding more
variables into S will not increase the mutual information any
further, suggesting a diminishing return. Here, it is worth
noting that the redundancy function f(X;) is used for ranking
and variable selection, whereas the mutual information MI(S,
Y) is used as the stopping criterion. Through the Dow data
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challenge problem, the effectiveness of AVSR is discussed in
Results and Discussion section.

B RESULTS AND DISCUSSION

In this section, we systematically evaluate our proposed
algorithm using the Dow data challenge data set and compare
the results with state of the art approaches. We divide this
section into two main parts. First, we validate the effectiveness
of our proposed secondary variable construction approach in
harnessing process knowledge and improving soft sensing
performance. Second, we study the effectiveness of our
proposed variable selection method considering redundancy.
Specifically, we perform ablation studies to individually
evaluate the effectiveness of each component or improvement
in our proposed framework to understand how these
components holistically contribute to the overall success of
the soft sensing framework.

Effectiveness of Secondary Variable Construction
Method. First, we validate the effectiveness of secondary
process variables constructed in extracting nonredundant
features and process dynamics. Here, we use the maximal
information coefficient (MIC)*® as an indicator to assess the
correlation among the extracted features.”> MIC uses binning
so as to apply mutual information on continuous random
variables as eq 10

MI(X, Y)
MIC(X, Y) = max ———2 "/
ab<n" log min(a, b) (10)

where n is the sample size of the data set and a and b denote
the number of grid partitions for X and Y, respectively. Similar
to MI, MIC value of 0 between two variables indicates their
mutual independence, whereas as MIC value that approaches 1
suggests the presence of a strong correlation between the two
variables.

We calculate the MIC values between any primary or
secondary process variable and the target variable (impurity
concentration) and summarize the results in Figure 4 and
Table 3. The average MIC value for all primary process
variables is 0.2580, whereas the average MIC value for the 12
secondary process variables is 0.3611, indicating that the
constructed secondary variables perform better in extracting
nonredundant underlying features. Furthermore, Figure S
clearly illustrates the usefulness of introducing these secondary
process variables, as given any MIC threshold value, the
proportion of secondary variables meeting or exceeding this
threshold is always greater than the proportion of primary
variables. This shows that secondary variables consistently
demonstrate stronger correlations with the target variable
compared to primary variables. Overall, these results show that
most of these secondary process variables can harness process
knowledge that has not been explored or incorporated by the
existing primary variables, making these secondary variables
necessary and crucial to the accurate estimation of impurity
concentration.

To further validate the effectiveness of introducing the
constructed secondary variables in soft sensing, we implement
three classic machine/deep learning algorithms, namely
support vector regression (SVR),” artificial neural network
(ANN),** and long short-term memory network (LSTM),*
for impurity concentration estimation task. Specifically, SVR
excels in handling high-dimensional data, ANN exhibits strong
nonlinear approximation capabilities, and LSTM demonstrates

superior performance in processing time-series data due to its
unique memory structure. Given their unique characteristics,
these three models are selected as representatives for
evaluating our proposed method. Table 4 quantitatively

Table 4. Incorporating Our Knowledge-Based Secondary
Process Variables into Soft Sensing Framework Improves
R?, Mean Squared Error (MSE), Root Mean Squared Error
(RMSE) and Mean Absolute Error (MAE) Metrics
Compared to Only Using Existing Primary Variables”

soft
sensing variables
method included R? MSE RMSE MAE

SVR primary variables  0.78456 0.16976 0.41202 0.33670
only

primary and 0.82404 0.13864 0.37235 0.30045
secondary

variables

ANN primary variables  0.74997 0.19701 0.44385 0.34434
only

primary and 0.77929 0.17390 0.41702 0.32298
secondary

variables

LSTM  primary variables  0.81329 0.14712 0.38356 0.30050
only

primary and 0.84035 0.12580 0.35468 0.27706
secondary

variables

“Note that variables with MIC values greater or equal to 0.2 are
selected. For R?, higher value is better (bold font), whereas for other
metrics, lower value is better (bold font).

illustrates how the introduction of secondary process variables
improves the impurity concentration estimation accuracy using
trained SVR, ANN, and LSTM on the test set. In addition, the
estimated and actual impurity concentration under the three
methods are shown in Figure 6. We observe that, when
secondary variables are incorporated, the estimated impurity
concentration profiles match more closely with the actual ones
compared to only using primary variables for monitoring. Note
that here, we only include primary and secondary process
variables whose MIC values are greater than or equal to 0.2
(see Figure 4). This results in 24 out of 42 primary variables
(57%) and 8 out of 12 (67%) secondary variables to be
selected. It turns out that, in all three soft sensing methods,
incorporating secondary process variables improves R* and
reduces estimation error (in terms of MSE, RMSE, and MAE).
Furthermore, we observe that, despite only implementing
classic machine/deep learning methods for soft sensing, thanks
to our proposed secondary variable construction method, our
proposed approach actually achieves great performance that is
already better or comparable to the state-of-the-art algorithms
in the literature (see Table 2). This result is particularly
encouraging and promising, considering that existing state of
the arts typically use complex neural network architectures,
whereas our proposed approach is quite simple and lightweight
to train and deploy. In this case, for models using only primary
variables, the ANN has 24, 32, 16, and 1 neurons per layer,
while the LSTM has 24, 16, and 1. For models using both
primary and secondary variables, the corresponding ANN has
32, 32, 16, and 1 neurons per layer, and the LSTM has 32, 32,
and 1 neurons per layer. For the ANN model, we adopted the
following hyper parameters: a learning rate of 0.001, batch size
of 64, MSE loss function, and the Adam optimizer. The LSTM
network was configured with learning rate (0.001) and
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Figure 6. Impurity concentration estimation using (a) SVR, (b) ANN,

(c) LSTM on the test set. The blue (respectively red) curve corresponds to

the case where only selected primary variables (respectively both selected primary and secondary variables) are considered for soft sensing.

optimizer (Adam), while utilizing a larger batch size of 128 and
MSE as the objective function.

Effectiveness of Adaptive Variable Selection Method
Considering Redundancy (AVSR). Redundancy among
primary and secondary process variables can introduce biases
and obscure the underlying process dynamics, thereby
deteriorating impurity concentration prediction accuracy.

Therefore, we propose an adaptive variable selection method
based on mutual information to identify variables with the
highest mutual dependence with the target variable (impurity
concentration) and lowest common redundancy with other
selected variables, as illustrated in eq 9. As discussed before,
the AVSR procedure follows a greedy search. To initiate the
process, we start from an empty set S, and the process variable
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with the highest mutual information with the target variable,
that is, arg max; MI(X,, Y), is selected and added to S. In this
case, as illustrated in Table 5 and Figure 4, variable x6, which

Table S. Variables Selected Following the AVSR Approach
and Their Order of When the Variable is Added to S

order of when X; is added to S variable MI(S, Y)
1 x6: PC make flow 1.002
2 x43: PC reflux/feed ratio 2.172
3 k3: x30 — x31 3.562
4 x4: input to PC bed 2 flow 4.836
S x17: PC tails temperature 1 5.349
6 x7: PC base level 5.405
7 x24: SC tails flow 5.410
8 x35: SC tails concentration 5.412
9 k4: x32 — x29 5.412
10 x25: SC tray DP 5412
11 x38: FC calculated DP 5412
12 x30: SC bed 1 temperature 5412
13 x44: PC make/reflux ratio 5.412
14 x28: SC base temperature 5412
15 x16: PC tails temperature 5412
16 x34: SC tails temperature 5412
17 x18: PC bed 4 temperature 5.412
18 ' x23xi3xz4 5.412
19 x2: PC tails flow 5412
20 k10: % 5.413
21-54 5413

“Among all 20 variables selected, 4 of them are knowledge-based
secondary variables (highlighted in bold).

represents PC make flow, has the highest mutual information
value among all 42 primary and 12 secondary process variables
and thus is first selected and added to S. Next, we identify the
process variable in W/S with the highest f(X;) and add it to S.
This process repeats itself until MI(S, Y) reaches maximum for
the first time. In this case, MI(S, Y) reaches maximum when 20
variables are selected (see Table 5). Hence, these 20 variables
are used for subsequent soft sensing. Among them, there are 4
knowledge-based secondary variables (20%) and 16 primary

variables (80%). Notably, the maximum MI(S, Y) value of
5.413 also equals the entropy of the target variable. According
to eq S, this means H(S) = H(S, Y), meaning that the optimal
variable set S contains all the information needed to estimate
the impurity concentration.

Furthermore, to validate the effectiveness of our proposed
variable selection method, especially the stopping criterion, we
conduct an experiment where we monitor the soft sensing
performance (in terms of R* and MSE) using SVR for different
number of variables selected based on maximum f(X;)
principle. From the results shown in Figure 7, we see that
the impurity concentration estimation performance first
increases, reaches its peak when 20 variables are selected (as
given by our AVSR approach), and then deteriorates as more
variables are included. This is expected as when the number of
variables reaches a certain threshold, introducing more
variables no longer provides new information but actually
results in redundancy among the variables, thereby leading to a
decline in predictive accuracy. This demonstrates the
effectiveness of the proposed variable selection method.

Table 6 summarizes the improvement in impurity
concentration estimation accuracy on the test set thanks to

Table 6. SVR Results with Knowledge Variables of Different
Variable Selection Method

soft

sensing variable

method selection R? MSE RMSE MAE

SVR MIC > 0.2 0.82404 0.13864 0.37235 0.30045
AVSR 0.85393 0.11509 0.33926 0.26303

ANN MIC > 0.2 0.77929 0.1739 0.41702 0.32298
AVSR 0.79171 0.16412 0.40512 0.31694

LSTM MIC > 0.2 0.84035 0.1258 0.35468 0.27706
AVSR 0.89414 0.08341 0.28881 0.21857

AVSR under different soft sensing methods. In this case, for
models based on MIC variable screening, the ANN has 32, 32,
16, and 1 neurons per layer, while the LSTM has 32, 32, and 1.
For models based on AVSR variable screening, the
corresponding ANN has 20, 16, 8, and 1 neurons per layer,
and the LSTM has 20, 16, 8, and 1 neurons per layer. For the
ANN model, we adopted the following hyper parameters: a
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Figure 7. R? and MSE results using SVR for different numbers of variables selected for soft sensing. Predictive accuracy is the best when 20
variables are selected for monitoring, which matches with our AVSR result.
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Figure 8. Impurity concentration estimation using (a) SVR, (b) ANN,
curve selects variables whose MIC > 0.2 (see Figure 4).

(c) LSTM on the test set. The red curve adopts AVSR, whereas the blue

learning rate of 0.001, batch size of 64, MSE loss function, and
the Adam optimizer. The LSTM network was configured with
learning rate (0.001) and optimizer (Adam), while utilizing a
larger batch size of 128 and MSE as the objective function. In
addition, the estimated and actual impurity concentration
under the three methods are shown in Figure 8. Compared to
only using a static threshold (MIC > 0.2) for variable
selection, the estimated impurity concentration profiles

15374

obtained using our proposed AVSR approach match more
closely with the actual ones under all three soft sensing
methods. Clearly, our proposed knowledge-based secondary
variable construction and adaptive variable selection method
considering redundancy synergistically work together to
improve soft sensing performance. This enables classic
machine/deep learning soft sensing methods to have
comparable or even higher performance than state-of-the-art
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algorithms in the literature (see Table 2). In particular, we
show that, when using standard LSTM as the soft sensing
algorithm, we successfully achieve the highest R® result
reported in the literature. This result is insightful because,
for the first time, we show that, by smartly designing new data
preprocessing steps to incorporate useful process knowledge
and select useful process variables, superior soft sensing
performance can be achieved without having to use complex,
stacked deep learning architectures. Since data preprocessing
steps can be done offline and do not involve extensive
computations, the overall soft sensing framework is simple and
lightweight to implement. More importantly, we remark that
one can seamlessly integrate our proposed methods with any
soft sensing algorithm as plug-ins, thereby demonstrating its
wide adaptability and broad applicability to a range of process

monitoring applications.

B CONCLUSIONS

In this article, we present a simple, lightweight soft sensing
framework to tackle the Dow data challenge problem as well as
a slew of process monitoring applications. This framework
consists of a simple yet powerful knowledge-based secondary
variable construction module and an adaptive variable selection
module that minimizes variable redundancy. As part of the data
preprocessing steps, both modules work synergistically to
construct and select the most essential and useful process
variables based on process knowledge and underlying data
structure for soft sensor design and process monitoring,
thereby significantly reducing computational burden. Using the
Dow data challenge problem as an illustrative case study, we
show that our proposed secondary variable construction
method successfully brings in new process knowledge (in the
form of simple design equations) that is previously underex-
plored by existing physical (primary) sensor measurements.
We also show that our proposed AVSR approach can
systematically identify and eliminate variable redundancies by
leveraging the underlying information and relations embedded
in primary and secondary process variables. Together, these
innovations have led to the best result reported in the literature
in the Dow data challenge even when using a standard LSTM
network for soft sensing. Overall, we believe that the methods
and results presented in this work suggest a new direction of
soft sensing research in that developing more effective data
preprocessing steps that can better incorporate process
knowledge, increase information gain, and reduce variable
redundancy can be as important as developing more advanced
data-driven soft sensing architectures.
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