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Abstract: In this work, we introduce MOLA, a multi-block orthogonal long short-term memory
autoencoder paradigm, to conduct accurate, reliable fault detection of industrial processes. To achieve
this, MOLA effectively extracts dynamic orthogonal features by introducing an orthogonality-based
loss function to constrain the latent space output. This helps eliminate the redundancy in the features
identified, thereby improving the overall monitoring performance. On top of this, a multi-block
monitoring structure is proposed, which categorizes the process variables into multiple blocks by
leveraging expert process knowledge about their associations with the overall process. Each block is
associated with its specific orthogonal long short-term memory autoencoder model, whose extracted
dynamic orthogonal features are monitored by distance-based Hotelling’s T2 statistics and quantile-
based cumulative sum (CUSUM) designed for multivariate data streams that are nonparametric
and heterogeneous. Compared to having a single model accounting for all process variables, such
a multi-block structure significantly improves overall process monitoring performance, especially
for large-scale industrial processes. Finally, we propose an adaptive weight-based Bayesian fusion
(W-BF) framework to aggregate all block-wise monitoring statistics into a global statistic that we
monitor for faults. Fault detection speed and accuracy are improved by assigning and adjusting
weights to blocks based on the sequential order in which alarms are raised. We demonstrate the
efficiency and effectiveness of our MOLA framework by applying it to the Tennessee Eastman process
and comparing the performance with various benchmark methods.

Keywords: process monitoring; fault detection; long short-term memory autoencoder; Bayesian
fusion; CUSUM

1. Introduction

Effective, reliable process monitoring is essential to ensuring process safety, improving
product quality, and reducing operating costs of industrial systems as they continue to
expand in scale and complexity [1]. Nowadays, modern chemical plants are equipped with
numerous sensors connected to distributed control systems (DCSs), continuously gener-
ating massive process data that can be leveraged for data-driven process monitoring in
real time [2]. Traditional methods for process monitoring encompass principal component
analysis (PCA), partial least squares (PLS), and independent component analysis (ICA),
among many others [3]. The idea behind these fault detection methods largely falls in
extracting underlying features that characterize process states (e.g., faulty vs. non-faulty)
from historical process data and monitoring changes in these extracted features [4]. For
instance, PCA leverages linear orthogonal transformations to extract key process features,
projecting them in a principal component subspace and a residual subspace, followed by
developing a monitoring statistic for each subspace for fault detection [5]. Nevertheless,
the relationships among process variables being monitored in modern industrial systems
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are often highly nonlinear, and conventional linear methods such as PCA face challenges in
effectively capturing these nonlinear relationships. To overcome the intrinsic limitations
of conventional linear methods, kernel-based methods, such as kernel PCA, have been
proposed [6,7]. While these kernel-based methods can extract nonlinear relationships,
identifying and computing the kernel functions can be time-consuming, limiting their
capabilities in real-world applications that demand fast real-time fault detection [4]. Fur-
thermore, compared to standard PCA, kernel-based methods exhibit greater sensitivity to
noise and outliers [8], potentially deteriorating monitoring accuracy.

Leveraging the recent breakthroughs in deep learning, artificial neural networks
(ANNs), which consist of multiple fully connected layers and nonlinear activation func-
tions, have achieved remarkable successes in extracting complex nonlinear features among
process variables [9] for process monitoring. Among prevailing ANN-based methods,
multi-layer perceptron (MLP), convolutional neural networks (CNNs), and recurrent neural
networks (RNNs) are some of the most effective and widely-used deep learning architec-
tures for process monitoring [10–12]. Since traditional ANN-based process monitoring
methods are essentially supervised classification methods [13], their monitoring perfor-
mance relies on the availability of a large amount of labeled data, especially faulty data,
which are typically limited and hard to acquire in practice [14].

Meanwhile, unsupervised methods, such as the autoencoder (AE), have gathered
increasing attention due to their ability to extract features from unlabeled data, thereby
presenting a more viable alternative for process monitoring [14]. As illustrated in Figure 1,
the core structure of an AE comprises an input layer, an encoder layer, a latent space, a
decoder layer, and an output layer. Specifically, an encoder maps the original input data
into its latent space consisting of codes (or latent variables) that effectively capture and
retain the key data representations. A decoder is then employed to accurately reconstruct
the original information from these lower-dimensional embeddings, aiming to reproduce
data that are indistinguishable from the original input data [15].
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Figure 1. Illustration of the autoencoder structure and feature extraction.

In traditional AE-based process monitoring methods, the reconstruction error is used
as the primary objective during training and is monitored for fault detection during deploy-
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ment [16]. However, this approach does not explicitly make use of the lower-dimensional
embeddings, which inherently represent the underlying process dynamics. Furthermore,
solely minimizing the reconstruction error may introduce redundancy among extracted
features (see Figure 1). This is illustrated in Figure 1, where the points shown represent
the projections of the original input data onto a two-dimensional latent space after passing
through the encoder layer. Here, the red point F denotes the projection of a faulty data
sample, whereas the rest represent non-faulty data samples. When the extracted features
contain redundancy, the two dimensions of the latent space are not orthogonal to each other.
In this case, the projections of F onto X- and Y-axes will fall in the range of non-faulty data
sample projections, thereby making fault detection more challenging. On the other hand,
when the extracted features contain no redundancy, the latent variables are orthogonal to
one another. In the same example, the projection of F onto the X′-axis now falls outside of
the range of non-faulty data sample projections.

Based on this observation, the orthogonal autoencoder (OAE), which introduces a term
characterizing orthogonality of latent space outputs in the loss function, was proposed to
extract features that are inherently independent or nonredundant [17]. Cacciarelli et al. then
applied the OAE to process monitoring applications by monitoring Hotelling’s T2 statistics
of orthogonal latent features [18]. While OAE effectively improves the fault detection
performance compared to traditional AE, it still has several limitations. First, actual
industrial systems typically involve dynamic behaviors [19], which cannot be captured
by existing OAE-based frameworks. Second, Hotelling’s T2 statistic may not be suited
for capturing changes and shifts in the distribution of latent features [20]. It also does not
explicitly account for the cumulative effects of process anomalies, which can play a crucial
role in detecting certain types of faults promptly [21].

Furthermore, one of the unique characteristics of modern chemical process systems
is that they typically comprise multiple heavily integrated (via mass, energy, and infor-
mation flows) yet relatively autonomous subsystems, each with specific process functions
such as raw material processing, reaction, and product separations. These subsystems
are further disaggregated into smaller unit operations, such as reactors, heat exchangers,
and distillation columns. Such structural complexity and hierarchy can pose significant
challenges to conventional process monitoring paradigms that rely on a single model to
monitor the entire process [22]. As the number of process variables being monitored in-
creases, the number of hyperparameters in the deep learning model increases exponentially,
significantly amplifying the training complexity. To address this challenge, a multi-block
process monitoring methodology has been proposed for large-scale industrial process
systems [23]. The idea is to categorize process variables into various blocks based on the
variables’ associations with the overall process and their relevance with other process
variables, followed by building a process monitoring model for each block. The entire
process will be monitored by integrating these block-wise process monitoring models via a
data fusion mechanism [24]. Conventional data fusion techniques, such as Bayesian fusion,
are static in nature and treat the monitoring statistics from different blocks equally [25].
However, in reality, process anomalies often stem from one block and propagate/spread
to others as time progresses, making conventional data fusion techniques inadequate and
less effective.

To address the aforementioned challenges, we propose a novel process monitor-
ing framework based on a multi-block orthogonal long short-term memory autoencoder
(MOLA). As a significant variant of traditional autoencoders, long short-term memory
autoencoder (LSTM AE) implements the LSTM architecture in both the encoder and de-
coder layers. This allows the extraction of dynamic process features from the time series
data. On top of this, we propose the orthogonal LSTM autoencoder (OLAE), which in-
corporates an orthogonality-based loss function to constrain the latent space output. We
also adopt the multi-block monitoring methodology to assign all process variables into
several blocks based on process knowledge. A local OLAE model is developed for each
block. To effectively detect anomalies of the orthogonal latent features in each block, in
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addition to Hotelling’s T2 approach, we also incorporate a quantile-based multivariate
cumulative sum (CUSUM) process monitoring method [26], a state-of-the-art approach to
monitoring high-dimensional data streams that are nonparametric (i.e., data streams do
not necessarily follow any specific distribution) and heterogeneous (i.e., data streams do
not necessarily follow the same distribution) [27]. The use of quantile-based multivariate
CUSUM successfully overcomes the barrier of Hotelling’s T2 method that overlooks the
changes and shifts in the distribution of latent features. Finally, we propose an adaptive
weight-based Bayesian fusion (W-BF) framework to effectively aggregate the monitoring re-
sults from individual blocks. Our proposed W-BF framework automatically assigns higher
weights to blocks based on how early anomalies occur in each block, thereby improving
overall fault detection speed and accuracy. Among all these technical advancements, the
key contributions of this work are as follows:

1. We introduce a novel autoencoder architecture, OLAE, to extract non-redundant and
mutually independent dynamic features. Compared to existing autoencoder designs,
OLAE demonstrates superior fault detection performance.

2. We incorporate a state-of-the-art quantile-based multivariate CUSUM to our combined
statistics to enable fast, accurate, and robust detection of process anomalies based on
the mean shift in the distribution of extracted features.

3. We propose a novel W-BF approach to dynamically adjust the weights assigned to
monitoring results from different blocks, which significantly enhances fault detection
speed and accuracy.

Datasets from the benchmark Tennessee Eastman process (TEP) problem are used to
evaluate our proposed MOLA framework. Some of the key capabilities of MOLA with
respect to other related process monitoring methods are summarized in Table 1.

Table 1. A high-level comparison of key capabilities of different process monitoring methods.

Capability PCA KPCA DPCA AE LSTM AE Block PCA Block LSTM AE MOLA

Cross-correlation ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Dynamic × × ✓ × ✓ × ✓ ✓

Nonlinearity × ✓ × ✓ ✓ × ✓ ✓
Orthogonality ✓ ✓ ✓ × × ✓ × ✓

Large-scale monitoring × × × × × ✓ ✓ ✓
Adaptive Weight × × × × × × × ✓

Distribution monitoring × × × × × × × ✓

The rest of this paper is organized as follows. Section 2 provides a brief review of LSTM
and the quantile-based multivariate CUSUM method, followed by a detailed introduction
to the proposed MOLA and the adaptive W-BF frameworks. Section 3 discusses the detailed
steps involved in offline training and online monitoring of the proposed process monitoring
framework. Next, in Section 4, we showcase the performance of our proposed methodology
in the benchmark problem of the TEP, demonstrating its outstanding fault detection speed
and accuracy compared to benchmark methods. To conclude, we summarize all the results
and learnings and discuss potential improvements for future research in Section 5.

2. Theory and Methods

In this section, we provide the theoretical background of the backbone methods
(e.g., LSTM and quantile-based multivariate CUSUM) upon which our proposed frame-
work is based. We then formally introduce our proposed approaches, including OLAE and
adaptive weight-based Bayesian fusion (W-BF).

2.1. LSTM

The recurrent neural network (RNN) is a class of neural network architectures specifi-
cally designed for time series modeling and prediction. This makes RNN-based methods



Processes 2024, 12, 2824 5 of 21

particularly attractive in capturing the dynamic features of industrial process data [28].
However, traditional RNNs are prone to the issues of gradient explosion and gradient
vanishing when working with long-term time series [29]. To overcome these issues, LSTM,
an advanced RNN that uses “gates” to capture both long-term and short-term memory, is
introduced, featuring a unique structural unit at its core [30]. As illustrated in Figure 2, an
LSTM unit contains three crucial control gates: the forget gate f (t), the input gate i(t), and
the output gate o(t). These gates work collectively to ensure that essential information is
consistently retained while the less important information is discarded. Therefore, LSTM
achieves superior performance in capturing complex temporal dynamics embedded in
chemical process systems. For more detailed information and mathematical descriptions
about LSTM, readers are encouraged to refer to [31].
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Figure 2. Illustration of LSTM unit architecture featuring forget, input, and output gates.

2.2. OLAE

The LSTM AE is a specialized type of AE that seamlessly integrates LSTM with AE.
This hybrid architecture enables efficient encoding and decoding of temporal sequences
while capturing long-term dynamic features and dependencies within individual data
streams at the same time. Similar to AE, the LSTM AE typically uses the reconstruction
error as the loss function for model training. The mean squared error (MSE) is one of the
most widely adopted reconstruction error formulations:

LossMSE =
1
K

K

∑
i=1

(xi − yi)
2, (1)

where K is the total number of samples, xi represents the i-th original input vector, and yi is
the corresponding reconstructed output vector by the LSTM AE. Nevertheless, as discussed
earlier, the use of only Equation (1) in the loss function can cause redundancies among
the latent features, which will adversely affect the performance of LSTM AE in process
monitoring tasks.

Therefore, in the OLAE architecture, as shown in Figure 3, we define an orthogonality-
based loss function in Equation (2) to constrain the latent space output to generate non-
redundant orthogonal latent features:

Loss⊥ = ∥L0(W)∥2
F + ||CTC − I||2F, L0(W) =


w1wT

1 w1wT
2 . . . w1wT

m
w2wT

1 w2wT
2 . . . w2wT

m
. . . . . . . . . . . .

wmwT
1 wmwT

2 . . . wmwT
m

, (2)

where W = [w1, w2, . . . , wm]T is the weight matrix of the FC layer. The loss function Loss⊥
consists of two components. The primary purpose of having the first component is to
drive the inner products between the weight vectors of neurons in the FC layer towards
zero, which indicates that the linear projection features from the encoder layer to the FC
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layer are mutually orthogonal. This component can also be viewed as a regularization
term, which drives the weights of the FC layer to smaller values during model training and
thus effectively mitigates overfitting issues. Meanwhile, the second term ensures that the
extracted latent features remain as mutually independent as possible even after undergoing
nonlinear transformation (σ).

. .
 .

. .
 .

. .
 .LSTM

Encoder
LSTM

Decoder

Input Data

Codes

FC

Reconstructed Data

Figure 3. Our proposed OLAE architecture consists of an LSTM encoder, an LSTM decoder, and a
fully connected (FC) layer that leverages orthogonality. The FC layer is denoted as C = σ(Wh + b),
where h and C represent the output of encoder and fully-connected (FC) layer, respectively. Here, b
and σ are the bias term and nonlinear activation function of the FC layer, respectively.

The overall loss function of OLAE is defined as follows:

Loss = LossMSE +Loss⊥ . (3)

By minimizing Loss, we ensure that the latent features are non-redundant and as
mutually independent as possible.

2.3. Monitoring Statistics

As previously discussed, AE-based process monitoring methods typically use the
reconstruction error as the monitoring statistic for fault detection. This approach does not
make full use of the lower-dimensional embeddings, which could represent the underlying
process dynamics. Thus, in this work, we propose to directly monitor the extracted features
using the T2 statistic defined as follows:

T2 = cΛ−1
c cT , (4)

where c represents the extracted codes, and Λc is the covariance matrix of the codes. Based
on the T2 statistic during in-control operations, the control limit for the monitoring statistic
can be determined using the kernel density estimation (KDE) method [32].

While many process faults can be recognized based on changes in the numerical
values of process variables being monitored, some faults are more represented by changes
or variations in the distributions of process variables. To better detect the latter faults, in
addition to employing the T2 statistic, we adopt the quantile-based multivariate CUSUM
method recently developed by Ye and Liu [26]. The basic idea behind this new CUSUM
method is to detect process anomalies by monitoring any mean shifts in data stream distri-
butions. Compared to traditional multivariate CUSUM techniques, this novel framework
handles nonparametric and heterogeneous data streams for the first time. Previously, Jiang
successfully applied this method to chemical process monitoring and achieved promising
results [27]. Here, we build upon this CUSUM framework to monitor any subtle deviations
in the distribution of dynamic orthogonal latent features.

For each process variable x = 1, . . . , p, the data collected under normal operating
conditions can be divided into d quantiles: Ix,1 = (−∞, qx,1], Ix,2 = (qx,1, qx,2], . . . , Ix,d =
(qx,d−1,+∞), such that each quantile contains exactly 1

d of the in-control data samples.
Next, we define a vector Yx(t) = (Yx,1(t), Yx,2(t), . . . , Yx,d(t))T for each data stream x
at time t, where Yx,l = I{Gx(t) ∈ Ix,l} with l = 1, . . . , d. Here, I{Gx(t) ∈ Ix,l} is an
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indicator function that equals 1 when the online measurement Gx(t) lies in the interval
Ix,l and 0 otherwise. Then, we define two vectors A+

x (t) = [A+
x,1(t), . . . , A+

x,d−1(t)]
T and

A−
x (t) = [A−

x,1(t), . . . , A−
x,d−1(t)]

T , where A+
x,l(t) = 1 − ∑l

i=1 Yx,i(t), A−
x,l(t) = ∑l

i=1 Yx,i(t).
Ye and Liu [26] showed that detecting the mean shifts in the distribution of Gx(t) is
equivalent to detecting shifts in the distribution of A+

x,l(t) and A−
x,l(t) with respect to their

expected values, which are 1 − l
d and l

d , respectively. With this, the multivariate CUSUM
procedure originally proposed by Qiu and Hawkins [33] can now be employed to detect
the mean shifts of A±

x,l(t). This is done by defining variable C±
x (t) as follows:

C±
x (t) =

[
A±

x (t)−E(A±
x (t)) + S±0

x (t − 1)− S±1
x (t − 1)

]T

· [diag(E(A±
x (t)) + S±1

x (t − 1))]−1

·
[
S±0

x (t − 1) + S±1
x (t − 1)−E(A±

x (t)) + A±
x (t)

]
,

(5)

where S±0
x (t) and S±1

x (t) are (d − 1)-dimensional vectors defined as follows:
S±0

x (t) = 0, S±1
x (t) = 0 if C±

x (t) ≤ k;

S±0
x (t) = (S±0

x (t−1)+A±
x (t))(C±

x (t)−k)
C±

x (t)
;

S±1
x (t) = (S±1

x (t−1)+E(A±
x (t)))(C±

x (t)−k)
C±

x (t)
if C±

x (t) > k.

(6)

In Equation (6), k is a pre-computed allowance parameter that restarts the CUSUM
procedure by resetting the local statistic back to 0 if there is no evidence of upward or
downward mean shift after a while [26]. The local statistic W±

x (t) for detecting any mean
shift in the upward (+) or downward (−) direction is calculated for each time t as follows:

W±
x (t) = max(0, C±

x (t)− k). (7)

Overall, we monitor the two-sided statistic Wx(t) = max(W−
x (t), W+

x (t)) for both
upward and downward mean shifts. An alarm is raised (i.e., an anomaly is detected) when
the monitoring statistic, ∑r

(x)=1 W(x)(t), defined as the sum of the largest r local statistics
Wx at each time t, exceeds a threshold h that is related to the pre-specified false alarm rate
(e.g., 0.0027 for the typical 3σ-limit) [34]. The corresponding stopping time T is as follows:

T = inf

t > 0 :
r

∑
(x)=1

W(x)(t) ≥ h

. (8)

More information about the theory and application of quantile-based multivariate
CUSUM, including detailed derivations of the mathematical formulations above, can be
found in Ye and Liu [26].

2.4. Adaptive Weight-Based Bayesian Fusion Strategy

Here, we describe our multi-block monitoring framework for large-scale, complex
industrial systems. Each block is monitored by two metrics (T2 and W, respectively) using
two approaches (Hotelling’s T2 and quantile-based CUSUM, respectively). We adopt a
Bayesian data fusion framework to aggregate the two monitoring results into a single
monitoring metric in each block, as well as to aggregate all block-level metrics into a
single plant-wide fault index (PFI). Bayesian fusion has shown remarkable robustness and
capabilities in integrating information from diverse sources. It leverages prior knowledge
and real-time measurements to compute posterior probabilities using Bayes’ theorem. In
this work, we extend the classic Bayesian fusion methodology and propose an adaptive
weight-based Bayesian fusion (W-BF) method. The idea is to dynamically adjust fusion
weights based on the relative ranking of the current monitoring statistics from each block.
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Under this framework, the probability of sample Xn
i (t) of block n and monitoring metric i

in normal and fault conditions are given by the following:

Pn
i (Xn

i (t)|N) = exp

(
−

Sn
i (t)

Sn
i,lim

)
; Pn

i (Xn
i (t)|F) = exp

(
−

Sn
i,lim

Sn
i (t)

)
, (9)

where Sn
i (t) and Sn

I,lim denote the current value and control limit of the monitoring metric i,
respectively. With this, the posterior probability can be calculated using Bayes’ rule as follows:

Pn
i (F|Xn

i (t)) =
Pn

i (Xn
i (t)|F)Pn

i (F)
Pn

i (Xn
i (t)|F)Pn

i (F) + Pn
i (Xn

i (t)|N)Pn
i (N)

;

Pn
i (N) = 1 − α;

Pn
i (F) = α,

(10)

where Pn
i (N) and Pn

i (F) denote prior probabilities under normal and abnormal conditions,
respectively; α is the significance level, which is taken to be 0.01 [35,36].

Thus, the fused monitoring statistic of block n, Bn(t) is determined as follows:

Bn(t) =
∑2

i=1 wn
i (t)P

n
i (Xn

i (t)|F)Pn
i (F|Xn

i (t))

∑2
i=1 wn

i (t)P
n
i (Xn

i (t)|F)
, (11)

where wn
i (t) represents the weight for monitoring metric i, which is dynamically updated

at every time t as follows:

wn
i (t) =

exp((Sn
i (t)− Sn

i,lim)/Sn
i,lim)

∑2
1 exp((Sn

i (t)− Sn
i,lim)/Sn

i,lim)
. (12)

Following a similar procedure, we adopt adaptive W-BF once again to aggregate Bn(t)
of all blocks to obtain the PFI. First, we derive the following block-wise probabilities:

Pn(Bn(t)|N) = exp
(
−Bn(t)

Bn
lim

)
; Pn(Bn(t)|F) = exp

(
−

Bn
lim

Bn(t)

)
;

Pn(F|Bn(t)) =
Pn(Bn(t)|F)Pn(F)

Pn(Bn(t)|F)Pn(F) + Pn(Bn(t)|N)Pn(N)
;

Pn(N) = 1 − α;

Pn(F) = α,

(13)

where Pn(Bn(t)|N) and Pn(Bn(t)|F) represent the probability of block n in normal and
fault conditions at time t, respectively; Pn(F|Bn(t)), Pn(N), and Pn(F) are the posterior
probability, the prior integration probability, and prior failure probability for block n,
respectively. Finally, the PFI is calculated as follows:

PFI(t) = ∑N
n=1 wn(t)Pn(Bn(t)|F)Pn(F|Bn(t))

∑N
n=1wn(t)Pn(Bn(t)|F)

;

wn(t) =
exp((Bn(t)− Bn

lim)/Bn
lim)

∑N
n=1 exp((Bn(t)− Bn

lim)/Bn
lim)

,
(14)

where N is the number of blocks, and Bn
lim is the control limit of the fused monitoring

statistic of block n.

3. The MOLA Fault Detection Framework

Now that all components of our proposed process monitoring framework have been
introduced, we will move on to discuss how these components are integrated with our
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MOLA framework during offline learning and online monitoring stages. The overall
flowchart of MOLA is shown in Figure 4.

Plant-wide
Process

Block 1

Block 2

Block N

OLAE 1

OLAE 2

OLAE N

Codes 1

Codes 2

Codes N

. .
 .

. .
 .

. .
 .

. .
 .

. .
 .

W-BF

W-BF

W-BF

W-BF

Figure 4. The MOLA process monitoring framework features an OLAE model for each block and
adaptive W-BF for data fusion.

The steps involved in the offline learning stage are outlined below:

Step 1: Historical in-control data are collected, normalized, and standardized.
Step 2: Based on process knowledge, process variables are divided into blocks. For

each block, we establish a local OLAE model. We use 70% of the historical
in-control data to build the OLAE model, whereas the remaining data serve as
the validation set to determine the optimal hyperparameters for the model.

Step 3: The validation data are sent to the OLAE model of each block to obtain the
corresponding latent features or codes. Then, we calculate T2 and W for each
block and determine their control limits.

Step 4: For each block, we implement the adaptive W-BF strategy to obtain a fused
monitoring statistic.

Step 5: Based on the fused monitoring statistics of each block, we apply the adaptive
W-BF technique again to determine the PFI for the overall process.

The steps involved in the online monitoring stage are as follows:

Step 1: As online data are collected, they are standardized based on the mean and
variance of the in-control data collected during the offline learning phase.

Step 2: Following the block assignments, standardized online data are sent to their
corresponding block’s OLAE model to obtain the codes and monitoring statistics
T2 and W.

Step 3: The fused monitoring statistic is calculated following the adaptive W-BF strategy
for each block.

Step 4: Using the adaptive W-BF method again, we obtain the process-level PFI from
the local statistics of all blocks. If the PFI is greater than our pre-defined signifi-
cance level α (0.01), a fault is declared; otherwise, the process is under normal
operation, and the monitoring continues.

4. Case Study

The Tennessee Eastman process (TEP) is a simulation process developed by the East-
man Chemical Company based on an actual chemical process [37]. The TEP has been
widely adopted as a benchmark for chemical process control, optimization, and monitoring.
As illustrated in the process flow diagram of Figure 5, the TEP contains five major unit
operations, which are associated with 12 manipulated variables and 41 measured variables
in total. Among them, 31 variables (listed in Table 2) are typically selected to conduct
process monitoring, as the remaining variables have relatively low sampling frequencies.
In multi-block process monitoring methods, the choice of block division and assignment
approach directly influences the process monitoring performance. Existing block division
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methods include process knowledge-based methods, variable relation-based methods, and
fault information-aided methods [38]. In this work, we adopt the process knowledge-based
approach developed by Zhu et al. [39] and divide the entire process into four distinct blocks
(N = 4), as outlined in Table 3. The basic idea is to assign process variables associated
with the same equipment into a single block. Due to the relatively small number of process
variables being measured for the condenser and compressor, we assign these variables to
the nearest separator block.

In this work, the simulation data are generated from a Simulink implementation with a
sampling frequency of one minute [40]. Initially, a dataset comprising 60,000 samples under
normal operating conditions is generated and used for offline learning. Subsequently, an
additional 500 datasets, each containing 2,400 samples, are generated to determine the control
limits in process monitoring models. Furthermore, this Simulink implementation can simulate
20 types of process faults (see Table 4) as test datasets for process online monitoring. It is
worth noting that any process fault is introduced at the 600th sample in each test dataset.
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Figure 5. Process flow diagram of the TEP.

Table 2. Detailed description of the monitoring variables.

No. Variable Description No. Variable Description

0 FI-1001 A feed (stream 1) 16 FI-1009 Stripper underflow (stream 11)
1 FI-1002 D feed (stream 2) 17 TI-1003 Stripper temperature
2 FI-1003 E feed (stream 3) 18 FI-1010 Stripper steam flow
3 FI-1004 A and C feed (stream 4) 19 JI-1001 Compressor work
4 FI-1005 Recycle flow (stream 8) 20 TI-1004 Reactor cooling water outlet temperature
5 FI-1006 Reactor feed rate (stream 6) 21 TI-1005 Separator cooling water outlet temperature
6 PI-1001 Reactor pressure 22 FIC-1001 D feed flow (stream 2)
7 LI-1001 Reactor level 23 FIC-1002 E feed flow (stream 3)
8 TI-1001 Reactor temperature 24 FIC-1003 A feed flow (stream 1)
9 FI-1007 Purge rate (stream 9) 25 FIC-1004 A and C feed flow (stream 4)

10 TI-1002 Product separator temperature 26 FV-1001 Purge valve (stream 9)
11 LI-1002 Product separator level 27 FIC-1005 Separator pot liquid flow (stream 10)
12 PI-1002 Product separator pressure 28 FIC-1006 Stripper liquid prod flow (stream 11)
13 FI-1008 Product separator underflow (stream 10) 29 FIC-1007 Reactor cooling water flow
14 LI-1003 Stripper level 30 FIC-1008 Condenser cooling water flow
15 PI-1003 Stripper pressure
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Table 3. Divided blocks of the monitoring variables.

Block Variables Description

1 0, 1, 2, 4, 5, 22, 23, 24 Input
2 6, 7, 8, 20, 29 Reactor
3 9, 10, 11, 12, 13, 19, 21, 26, 27, 30 Separator, compressor and condenser
4 3, 14, 15, 16, 17, 18, 25, 28 Stripper

Table 4. Detailed description of faults in TEP problem [39].

Fault No. Process Variable Type

1 A/C feed ratio, B composition constant (stream 4) Step
2 B composition, A/C ratio constant (stream 4) Step
3 D feed temperature (stream 2) Step
4 Reactor cooling water inlet temperature Step
5 Condenser cooling water inlet temperature Step
6 A feed loss (stream 1) Step
7 C header pressure loss-reduced availability (stream 4) Step
8 A, B, C feed composition (stream 4) Random variation
9 D feed temperature (stream 2) Random variation

10 C feed temperature (stream 4) Random variation
11 Reactor cooling water inlet temperature Random variation
12 Condenser cooling water inlet temperature Random variation
13 Reaction kinetics Slow drift
14 Reactor cooling water valve Sticking
15 Condenser cooling water valve Sticking
16 Unknown Unknown
17 Unknown Unknown
18 Unknown Unknown
19 Unknown Unknown
20 Unknown Unknown

We compare our proposed framework with other process monitoring models, includ-
ing PCA, AE, LSTM AE, block PCA, and block LSTM AE. The complete structure of each
neural network implemented in our framework is listed in Table 5. In this work, all neural
networks use the rectified linear unit (ReLU) activation function. The number of iterations
is determined using early stopping criteria. Specifically, we stop the training process when
the loss function value on the validation dataset does not decrease for 30 consecutive
iterations. The detailed structure of different neural networks is illustrated in Table 5.
Tables 6 and 7 show the performance of these models in terms of fault detection delay
(FDD) and fault detection rate (FDR), respectively. It can be seen that, in general, the
incorporation of a multi-block monitoring strategy not only reduces the FDD but also
increases the FDR of original process monitoring methods. This validates the effectiveness
of our proposed multi-block method and data fusion technique. In particular, our MOLA
framework exhibits superior performance over all other frameworks in terms of FDR and
FDD. For the vast majority of fault cases, particularly faults 13, 15, 16, 24, and 18, MOLA
can detect faults tens to hundreds of minutes ahead of other methods, providing invaluable
time buffers for engineers and operators to take appropriate control actions. For a few
faults, such as faults 3, 11, 14, and 20, MOLA falls behind the best-performing method by
just a few minutes. However, considering that the differences are small and that MOLA
achieves significant improvements in FDR in these faults, MOLA still outperforms other
methods by a considerable margin. For example, for faults 3, 5, 9, 15, and 16, while other
methods perform poorly on these faults, MOLA increases the FRD by 4.6 to 30 times. Note
that faults 3, 9, and 15 are known to be notoriously difficult to detect due to their intricate
process dynamics. Meanwhile, the fault detection rates for MOLA on these three faults
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range between 88.3 and 98.5%, demonstrating MOLA’s exceptional capabilities in tackling
challenging fault detection scenarios.

Table 5. Detailed structure for different neural networks.

Model Structure Activation Function

AE FC(64)-FC(16)-FC(64) ReLU
LSTM AE LSTM(64)-FC(16)-LSTM(64) ReLU

Block LSTM AE LSTM(15)-FC(5)-LSTM(15) ReLU
OLAE LSTM(15)-FC(5)-LSTM(15) ReLU

We now take a close look at fault 3, whose process monitoring results for various methods
are summarized in Figure 6. As we can see, while the LSTM AE-based approach successfully
detects the fault at the 627th sample (i.e., 27 samples after the process fault is introduced into
the simulation), its monitoring statistic only briefly exceeds the control limit and fails to raise
a continuous alarm. Similarly, most other methods are unable to raise any valid alarm for this
fault, as in practice alarms, would only be considered effective when the monitoring statistic
exceeds the control limit multiple consecutive times (e.g., three) [41]. If a process monitoring
model fails to continuously report faults, plant operators may erroneously assume that the
alarm is false or the process has returned back to normal. On the other hand, our MOLA
framework captures the fault starting at the 630th sample and subsequently raises alarms
continuously, making it a useful process monitoring framework in practice.

Similarly, for fault 9 (see Figure 7), the MOLA framework successfully raises the alarm
at the 625th sample and sustains the alarm, whereas all other methods remain ineffective in
raising any meaningful alarm. Although MOLA occasionally produces false alarms during
fault-free periods (see Table 8 for the false alarm rates), these false alarms are isolated incidents
of brief statistical excursions at a single sample, which have minimal impact in practice. These
false alarms are typically attributed to suboptimal tuning of hyperparameters and can be
resolved when more comprehensive model training is conducted.

Table 6. Comparison of FDD results in TEP.

Fault No.
PCA
(T2)

PCA
(Q) AE LSTM AE

Block PCA
(T2)

Block PCA
(Q)

Block
LSTM AE MOLA

1 3 18 3 1 1 15 4 1
2 25 140 22 20 19 726 18 16
3 – – – 27 – – 572 30
4 0 0 0 0 0 0 0 0
5 – – – 208 2 – 3 2
6 0 0 0 0 0 0 0 0
7 0 0 0 0 0 0 0 0
8 29 200 26 28 25 45 27 25
9 229 – – 40 26 – 233 25

10 91 90 77 77 74 188 74 70
11 36 41 36 22 36 37 36 36
12 66 – 65 63 66 475 48 60
13 94 317 86 86 89 307 91 9
14 – 7 3 0 2 3 2 2
15 191 – – – – – 191 6
16 – – – – – – – 21
17 57 62 55 55 56 58 57 24
18 267 280 242 241 259 259 268 147
19 30 32 15 16 21 32 12 11
20 141 178 129 128 138 164 123 124

Note: "0" means that the fault is detected at the time of introduction, while "–" means that the fault is not effectively
detected.
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(a) (b) (c)

(d) (e) (f)

Alarm Point: 627th

Alarm Point: 630th

Figure 6. The process monitoring results of Fault 3 based on (a) PCA, (b) AE, (c) LSTM AE, (d) block PCA, (e) block LSTM AE, and (f) MOLA.
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(a) (b) (c)

(d) (e) (f)

Alarm Point: 625th

Figure 7. The process monitoring results of Fault 9 based on (a) PCA, (b) AE, (c) LSTM AE, (d) block PCA, (e) block LSTM AE, and (f) MOLA.
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Table 7. Comparison of FDR results in TEP. Here, Q is the square prediction error, and % improvement
measures the % difference in FDR between MOLA and the best-performing method.

No.
PCA
(T2)

PCA
(Q) AE LSTM AE

Block PCA
(T2)

Block PCA
(Q)

Block
LSTM AE MOLA % Improvement

1 0.9967 0.9700 0.9950 0.9967 0.9983 0.9750 0.9950 0.9983 0.00
2 0.9617 0.6850 0.9667 0.9650 0.9683 0.7200 0.9700 0.9767 0.68
3 0.0067 0.0000 0.0183 0.0467 0.0267 0.0000 0.0350 0.9567 1950.00
4 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00
5 0.0183 0.0000 0.0033 0.0300 0.0350 0.0000 0.0467 0.2633 464.28
6 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00
7 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.00
8 0.8500 0.6683 0.8883 0.8500 0.8883 0.7000 0.9000 0.9433 4.81
9 0.0300 0.0000 0.0567 0.0633 0.0517 0.0000 0.0400 0.8850 1297.37

10 0.6700 0.5367 0.8100 0.8033 0.8233 0.0400 0.8350 0.8833 5.79
11 0.9400 0.8417 0.9433 0.9500 0.9483 0.8600 0.9433 0.9533 0.35
12 0.3467 0.0000 0.3083 0.3267 0.4383 0.0100 0.4550 0.6467 42.12
13 0.8467 0.4167 0.8483 0.8417 0.8583 0.4133 0.8583 0.8733 1.75
14 0.9883 0.6567 0.9950 0.9967 0.9967 0.7833 0.9767 0.9967 0.00
15 0.0117 0.0000 0.0150 0.0100 0.0133 0.0000 0.0317 0.9850 3010.52
16 0.0167 0.0000 0.0117 0.0083 0.0083 0.0000 0.0250 0.6450 2480.00
17 0.9017 0.7683 0.9083 0.9100 0.9067 0.8283 0.9050 0.9233 2.03
18 0.3500 0.2567 0.4850 0.4817 0.4200 0.3867 0.3950 0.7633 57.39
19 0.9317 0.8000 0.9783 0.9683 0.9683 0.6550 0.9750 0.9817 0.68
20 0.7650 0.5400 0.7933 0.7900 0.7750 0.5583 0.7917 0.7933 0.00

Table 8. Comparison of false-alarm rates in TEP.

PCA
(T2)

PCA
(Q) AE LSTM AE

Block PCA
(T2)

Block PCA
(Q)

Block
LSTM AE MOLA

FDR 0.0017 0.0000 0.0133 0.0067 0.0067 0.0000 0.0283 0.0350

Ablation Studies Evaluating the Contribution of MOLA Components to Its Process
Monitoring Performance

Our MOLA framework consists of several innovative components. To examine how
these components contribute to the overall success of MOLA, we present results from
ablation studies designed to individually evaluate the effectiveness of each component or
improvement, offering quantitative understanding and deep insights into MOLA.

First, we validate the effectiveness of MOLA in extracting non-redundant features.
The maximal information coefficient (MIC) [42], ranging from 0 to 1, serves as a quantitative
measure of the correlation between two variables. An MIC value of 0 between two variables
indicates their mutual independence, whereas as MIC value that approaches 1 suggests the
presence of a strong correlation between the two variables. Here, we use MIC as an indicator
to assess the correlation among the extracted features. Specifically, we calculate the MIC
values between any two features extracted by both the LSTM AE and the MOLA and
summarize the results in Table 9. Clearly, the MIC values for features extracted by MOLA
are close to 0, whereas the MIC values for features extracted by LSTM AE are significantly
larger. This indicates that MOLA demonstrates a significant advantage in extracting non-
redundant features. As illustrated in Table 10, this leads to faster fault detection speed
at the block level for MOLA compared to LSTM AE, when both methods use T2 as the
monitoring statistic. Meanwhile, MOLA without W-BF and CUSUM can detect process
faults earlier than LSTM AE. This result indicates that introducing orthogonality constraints
can facilitate faster detection of process faults. This is primarily because the redundancies
among features extracted by traditional autoencoders may obscure the underlying data
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structure, making faults harder to detect. Instead, our proposed OLAE only extracts
orthogonal features, making fault information more prominent and thus easier to detect.

Table 9. Orthogonality and mutual independence of extracted latent variables.

No. Block 1 Block 2 Block 3 Block 4
LSTM AE MOLA LSTM AE MOLA LSTM AE MOLA LSTM AE MOLA

MIC(F1,F2) 0.2637 0.0337 0.0555 0.0541 0.1278 0.0706 0.9752 0.0405
MIC(F1,F3) 0.7957 0.1558 0.0708 0.0754 0.0427 0.0590 0.6531 0.0586
MIC(F1,F4) 0.3043 0.0628 0.1924 0.0908 0.0901 0.0867 0.7901 0.0547
MIC(F1,F5) 0.7275 0.0256 0.0774 0.1182 0.1287 0.0978 0.9610 0.0438
MIC(F2,F3) 0.7238 0.0723 0.4757 0.0879 0.0712 0.0938 0.9175 0.0789
MIC(F2,F4) 0.6029 0.1292 0.2940 0.1075 0.0663 0.0916 0.8663 0.0664
MIC(F2,F5) 0.5836 0.0946 0.5009 0.0918 0.1219 0.0559 0.9773 0.0550
MIC(F3,F4) 0.5106 0.1165 0.3697 0.0595 0.0352 0.0347 0.8658 0.0480
MIC(F3,F5) 0.9525 0.0948 0.9523 0.0742 0.0523 0.0387 0.8695 0.0417
MIC(F4,F5) 0.4059 0.0397 0.3442 0.0442 0.0944 0.1517 0.5427 0.0598

Note: F1, F2, F3, F4, and F5 represent the features extracted from the latent space.

Table 10. Comparison of fault detection speed using LSTM AE and MOLA.

No. Block 1 Block 2 Block 3 Block 4 Block
LSTM AE

MOLA w/o
BF and CUSUMLSTM AE OLAE LSTM AE OLAE LSTM AE OLAE LSTM AE OLAE

1 21 18 4 1 4 3 3 2 4 2
2 117 118 21 17 22 16 18 9 18 16
3 - - - 139 573 573 - - 572 160
4 - - 0 0 10 10 - 44 0 0
5 - - - 1 3 2 - 3 3 2
6 0 0 1 0 3 3 2 2 0 0
7 - - 0 0 1 1 0 0 0 0
8 56 36 182 28 32 32 27 24 27 27
9 - 23 233 61 - 61 - 62 233 61

10 - - - 380 170 170 74 70 74 70
11 - - 36 36 47 41 63 49 36 36
12 - 553 85 60 48 60 65 65 48 60
13 249 245 97 74 89 84 106 9 91 84
14 - 202 2 2 - 56 - 26 2 2
15 - - - 82 192 191 - 209 191 192
16 - - - - 54 18 - 19 - 25
17 - - 56 54 118 117 140 57 57 56
18 - - 345 345 263 260 346 346 268 260
19 - - 409 244 25 20 12 11 12 12
20 164 162 212 177 129 129 123 124 123 127

Note: “0” means that the fault is detected at the time of its introduction, and “–” means that the fault is not
effectively detected during the entire monitoring period.

Next, we investigate the benefits of introducing the quantile-based CUSUM method
and adaptive W-BF strategy on process monitoring performance. By designing ablation
experiments, we quantify the enhancements and present the results in Table 11. Specifically,
“Full MOLA” represents the complete MOLA framework presented earlier, “MOLA no
CUSUM” refers to the MOLA framework without implementing the CUSUM procedure,
and “MOLA no BF” is the MOLA framework without implementing an adaptive W-BF
strategy. Table 11 shows that introducing adaptive W-BF significantly improves the fault
detection speed for faults 13 and 15 and enhances the fault detection rate for all faults other
than 1, 4, 6, 7, 10, and 14. For instance, for fault 13, the weights assigned to blocks 1 through
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4 by the adaptive W-BF strategy at the 609th time step (i.e., nine samples after the fault
is introduced) are 0.2396, 0.1372, 0.1542, and 0.4689, respectively. Block 4, which has the
highest weight to PFI among all blocks, also turns out to be the first block where an alarm
is raised. Thus, the adaptive W-BF method automatically prompts the FPI to give greater
attention to blocks that detect anomalies earlier, which enhances both fault detection rate
and speed.

We remark that the W-BF method is particularly attractive in monitoring modern,
large-scale industrial processes, whose scale and complexity require process monitoring
to be performed in a distributed manner. Since process faults typically occur locally, by
decomposing the overall process into multiple blocks, our W-BF method ensures that, as a
fault occurs, process monitoring performance is sensitive to the faulty blocks and will not
be negatively impacted by the surveillance of non-faulty blocks.

Table 11. Contribution of quantile-based CUSUM and adaptive W-BF to improvements of process
monitoring performance.

Fault No. Full MOLA MOLA no BF MOLA no CUSUM
FDD FDR FDD FDR FDD FDR

1 1 0.9983 1 0.9983 1 0.9983
2 16 0.9767 16 0.9750 16 0.9750
3 30 0.9567 31 0.9550 139 0.1117
4 0 1.0000 0 1.0000 0 1.0000
5 2 0.2633 2 0.2283 2 0.0717
6 0 1.0000 0 1.0000 0 1.0000
7 0 1.0000 0 1.0000 0 1.0000
8 25 0.9433 25 0.9350 26 0.9167
9 25 0.8850 25 0.8800 23 0.1550

10 70 0.8833 70 0.8833 70 0.8567
11 36 0.9533 36 0.9500 36 0.9500
12 60 0.6467 60 0.6217 60 0.5517
13 09 0.8733 84 0.8667 84 0.8717
14 2 0.9967 2 0.9967 2 0.9967
15 6 0.9850 12 0.9550 192 0.0667
16 21 0.6450 25 0.6233 25 0.0450
17 24 0.9233 24 0.9183 54 0.9117
18 147 0.7633 148 0.7567 260 0.4567
19 11 0.9817 12 0.9800 11 0.9817
20 124 0.7933 124 0.7917 124 0.7933

Average 30.45 0.8734 30.85 0.8658 56.25 0.6855

Meanwhile, a comparison between “full MOLA” and “MOLA no CUSUM” shows
that incorporating quantile-based CUSUM procedure greatly enhances the fault detection
rate and speed for hard-to-detect faults of 3, 9, and 15. Again, take fault 3 as an example.
As shown in Figure 8, under normal and faulty conditions, the numerical range of one of
the specific features extracted from block 2 remains largely the same, making traditional
distance-based monitoring statistics such as T2 struggle to detect the fault. However, when
plotting the distribution of the features under normal and faulty conditions, considerable
changes are noticed. Therefore, the quantile-based multivariate CUSUM method, which
directly targets the detection of distribution changes, significantly improves the accuracy
and speed of fault detection under these scenarios. Furthermore, as shown in Figure 9, the
quantile-based CUSUM statistic continuously accumulates as fault 3 occurs and will not go
below the control limit again once an alarm is raised. This causes less confusion among
plant operators in interpreting alarms and thus offers an additional advantage over other
monitoring methods.
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Figure 8. Feature values and their distribution.

Figure 9. Variations of the quantile-based non-parametric CUSUM statistic for block 2.

5. Conclusions

In this work, we develop a novel process monitoring framework named MOLA for
large-scale industrial processes. By adopting a multi-block monitoring strategy, MOLA suc-
cessfully addresses the challenges posed by the scale and complexity of modern industrial
processes. MOLA can extract dynamic orthogonal latent features, making sure that the
most essential, non-redundant features are identified and extracted. In addition, MOLA
incorporates a quantile-based multivariate CUSUM method, which enhances the ability
to detect faults characterized by subtle changes in feature distributions. Furthermore, the
adaptive weight-based Bayesian fusion strategy enhances fault detection rate and speed.
We remark that these methods lead to synergistic improvement in process monitoring
performance when they are integrated with the MOLA framework. Case study results on
the TEP problem indicate that MOLA not only significantly improves fault detection rates
and speeds but also successfully detects faults that are considered difficult to detect in prior
research, thereby opening up many exciting opportunities for fast, accurate, and reliable
industrial process monitoring applications.

Despite these achievements, we remark that there is still room for improvement in our
MOLA framework. For instance, the current block assignment technique is solely based on
our expert knowledge without fully considering the correlations among blocks, which may
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have an impact on both local and global monitoring performance. Therefore, future research
will focus on exploring more scientific and reasonable methods for dividing process sub-
blocks, taking into account the correlations between sub-blocks to further optimize the
process monitoring model. To be specific, it is worth investigating the correlation analysis
on process variables prior to assigning them to different blocks. In this way, the dynamic
features extracted not only capture the characteristics of process data within individual
blocks but also incorporate the interconnections across different blocks. This will further
enhance its monitoring performance and robustness in complex industrial processes.
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