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Abstract

Multi-feed, multi-product distillation columns are ubiquitous in multicomponent

distillation systems. The minimum reflux ratio of a distillation column is directly

related to its energy consumption and capital cost. Thus, it is a key parameter for

distillation systems design, operation, and comparison. In this series, we present the

first accurate shortcut based algorithmic method to determine the minimum reflux

condition for any general multi-feed, multi-product (MFMP) distillation column

separating any ideal multicomponent mixture. The classic McCabe-Thiele or Under-

wood method is a special case of this general approach. Compared with existing

techniques, this method does not involve any rigorous tray-by-tray calculation, nor

does it require guessing of key components. In this first part of the series, we present

the mathematical model for a general MFMP column, derive constraints for feasible

separation and minimum reflux condition, discuss their geometric interpretations, and

present an illustrative example to demonstrate the effectiveness of our approach.
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1 | INTRODUCTION

Distillation is an important separation process that accounts for 90%–

95% of all liquid separations and consumes more than 40% of energy

in the chemical and refining industries.1,2 While alternative separation

technologies are under development and testing, the predominance

of distillation is unlikely to change at least in the near future for a

number of industrial applications due to its inimitable technical advan-

tages and economic attractiveness.3–6 To separate a multicomponent

mixture that contains n components into n pure products by distilla-

tion, a sequence of distillation columns known as a distillation configu-

ration is generally required. Shah and Agrawal7 successfully generated

the complete search space of distillation configurations that use

exactly n�1ð Þ columns for n-component mixture separation. Figure 1

shows two of the 152 distinct distillation configurations for separating

a four-component mixture derived from Shah and Agrawal's method.7

It turns out that most configurations in this search space contain at

least one distillation column with multiple feed streams and/or one or

more side-stream withdrawals.9 In addition, compared to configura-

tions that use only simple columns each with exactly one feed and two

product streams (e.g., Figure 1A), it has been shown that configura-

tions involving one or more multi-feed, multi-product (MFMP) col-

umns (e.g., Figure 1B) often lead to significant energy and capital cost

savings.9 These MFMP columns have been widely used in industrial

applications such as crude oil fractionation, air separation, extractive

distillation, multi-effect distillation, and so on. To design these distilla-

tion systems effectively, process engineers need to fundamentally

understand how the internal liquid and vapor traffic within an MFMP
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column affects product quality, including the column's minimum reflux

condition.

The minimum reflux ratio of a distillation column, which directly

translates to its reboiler vapor duty requirement at minimum reflux

condition, is an important parameter that provides key information on

the column's optimal design and operation. With the knowledge of

minimum reflux ratio, process engineers can estimate the actual heat

duty requirement of the distillation column in operation.10,11 The min-

imum reflux ratio also serves as a direct indicator for the capital cost

of a distillation column, as it is closely related to the number of stages,

column diameter and height, as well as reboiler and condenser

sizes.12–14 Because of these reasons, the minimum reflux ratio has

been commonly chosen as the objective function for optimizing, com-

paring, and ranklisting different distillation column designs.9,15–19 As a

result, a fast and accurate determination of the minimum reflux ratio

or minimum reboiler vapor duty requirement is crucial for synthesizing

and designing attractive multicomponent distillation systems, and fail-

ing to do so often leads to inefficient and unnecessarily large columns

being built and operated.

Over the past decades, a number of attempts have been made to

identify the true minimum reflux condition for MFMP columns that

carry out ideal/near ideal, nonideal, or even azeotropic mixture sepa-

rations. These attempts led to the development of various shortcut,

geometric, or rigorous methods. Most rigorous methods involve

detailed tray-by-tray calculations by simultaneously solving the so-

called MESH equations which incorporate mass and energy balances

as well as phase equilibrium relations.20–24 These methods are now

embedded in process simulation tools such as Aspen Plus. However,

as the number of components involved increases, these tray-by-tray

calculations quickly become too computationally expensive to be per-

formed in a global optimization framework, in which optimal operating

conditions are to be identified for either one or the entire search

space of configurations where each configuration consists of multiple

columns.

In addition to rigorous methods, several geometric based

approaches have also been proposed to address the minimum reflux

problem in an iterative manner. Lucia et al.25 conducted a comprehen-

sive literature survey summarizing these geometric methods. Among

them, Levy and Doherty26 made one of the earliest and most influen-

tial contributions by introducing first-order finite difference approxi-

mation followed by numerical integration to calculate the liquid

composition profile for each column section in a multi-feed column

separating ternary mixtures. In order for a separation to be feasible,

composition profiles associated with any two adjacent column sec-

tions must be connected. In the extreme case of minimum reflux,

composition profiles inside the pinched column sections barely touch

each other. A column section is said to be pinched when there exists a

region in which the liquid or vapor composition stays unchanged from

tray to tray. Therefore, a pinched column section will require an infi-

nite number of stages for separation. Subsequently, Koehler et al.27

suggested a “minimum angle” criterion for minimum reflux condition

in a simple column separating binary and ternary mixtures. This

method is based on the observation that, when the column is oper-

ated under minimum reflux, the angle between the vector connecting

feed composition and rectifying section pinch zone composition and

the vector connecting feed composition and stripping section pinch

zone composition is minimized. Later, Koehler et al.28 extended this

criterion to characterize the minimum reflux behavior for multi-

product columns separating ternary mixtures. Nevertheless, the

minimum angle criterion, which is generally formulated as a complex

nonlinear programming (NLP) problem,27 is computationally challeng-

ing to solve and lacks solid physical basis. Other geometric based

approaches (e.g., “zero-volume” method, “separation driving force”
method, and “rectification body” method) have also been proposed to

calculate the minimum reflux ratio for nonideal or azeotropic multi-

component distillation in a simple column.29–34 Although some of

these methods have been extended to MFMP columns,35–37 they still

suffer from computational inefficiency and convergence issues due to

model complexity and numerical instability. Moreover, while some of

these methods work well for three- or four-component mixture sepa-

rations where composition profiles can be visualized, generalizing

them to separations involving higher number of components is tricky,

and a clear generalization does not exist. To address these difficulties,

there is a need to develop an accurate, robust shortcut based

approach that does not require rigorous tray-by-tray calculations or

tedious iterative procedures.

Most existing shortcut methods for estimating the minimum

reflux ratio for multicomponent distillation in MFMP columns general-

ize the well-known Underwood method,38,39 which was originally

developed for simple columns. The Underwood method avoids the

need for rigorous tray-by-tray calculations by making three major

underlying assumptions: ideal liquid–vapor equilibrium (ideal-VLE), con-

stant relative volatility (CRV), and constant molar overflow (CMO). As

corollaries of these assumptions, all components have constant and

equal latent heat of vaporization, and there is no enthalpy of mixing.

Despite these simplifications, the minimum reflux ratio can be esti-

mated with reasonable accuracy even for many nonideal40 or azeotro-

pic systems41 that cover a wide range of industrially important

separations.
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F IGURE 1 (A) A four-component configuration containing only
simple columns; (B) the well-known fully thermally coupled
configuration8 in which columns 2 and 3 are both MFMP columns.
Here and thereafter, letters A, B, C, and so on represent pure
components with their volatilities decreasing in alphabetical order.
Also, we indicate reboilers by open circles and condensers by filled

circles.
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One of the first generalizations of the Underwood method was

derived by Barnes et al.42 to study the minimum reflux behavior for

multi-feed columns. Unfortunately, their solution procedure still

requires extensive iterative calculations. Wachter et al.43 modified the

Underwood method to estimate the minimum reflux ratio for MFMP

columns. However, the success of their method relies on correct iden-

tification of key components in the separation. In general, identifying

the right key components is not a straightforward task for MFMP col-

umns. Sugie and Lu44 extended the Underwood method to multi-

product columns with only saturated liquid sidedraws. They claimed

that, at minimum reflux, such multi-product columns must be pinched

at the feed location. Later, Glinos and Malone45 derived shortcut

design equations for columns with exactly one feed and one sidedraw

stream. Nikolaides and Malone46 further extended the work of Glinos

and Malone45 to general MFMP columns. They argued that an MFMP

column could always be decomposed into a series of simple columns,

each containing exactly one feed or sidedraw stream sandwiched by

two column sections (see Figure 2). The classic Underwood method

can then be applied to determine the minimum reflux ratio for each

simple column generated. Finally, they postulated that the minimum

reflux ratio of the original MFMP column corresponds to the largest

minimum reflux ratio value among all decomposed simple columns.

Thereafter, this assumption has been widely accepted and adopted by

a number of articles, including some of the recent ones such as Cabal-

lero and Grossmann,14 Ruiz-Marín et al.,47 Adiche and Vogelpohl,48

G�omez-Castro et al.,49 Adiche and Aissa,50 Nallasivam et al.,18 Jiang

et al.,13,51,52 and Tumbalam Gooty et al.19

As we can see, in order to generalize the Underwood method to

MFMP columns, existing shortcut methods incorporate several addi-

tional assumptions and constraints which cause the resulting models

to only be valid under restricted settings. This work is the first to

develop an accurate and easy-to-use shortcut based method to esti-

mate the minimum reflux ratio for a general MFMP column without

needing extensive simplifying assumptions. Specifically, unlike existing

approaches, our method is meant to be generally applicable and does

not pose any restriction on the number of feed or sidedraw streams, the

relative locations and physical properties (e.g., thermal quality) of these

streams, or the number of components involved in the separation. Fur-

thermore, it is designed to be computationally efficient so that it can be

incorporated into a global optimization framework. In this series, in addi-

tion to presenting how this first-of-its-kind shortcut based method is

derived and formulated, we will also use our method to revisit some of

the well-accepted design heuristics and modeling assumptions men-

tioned before. In particular, we would like to address the following key

questions that distillation/separations community is concerned about:

1. What are the fundamental physical and mathematical interpreta-

tions behind the well-known Underwood method?

2. What is the optimal strategy to arrange the relative locations of

feed and/or sidedraw streams in order to minimize the energy con-

sumption. Is it always more energy efficient to place these streams

based on their temperature levels?

3. Is it true that an MFMP column can always be decomposed into

individual simple columns, so that its true minimum reflux ratio is

given by the largest minimum reflux ratio value among all decom-

posed simple columns?

We will answer the first question in this article, while the remain-

ing two will be addressed in the second article of the series. We will

show that, despite widely held beliefs regarding the answers to some

of the above questions, the real answers are surprising and often

counterintuitive.

2 | OVERVIEW OF SOLUTION STRATEGY

We propose a bottom-up approach to solve this longstanding problem

in chemical engineering. First, we recognize that the basic module or

F IGURE 2 According to column decomposition, this two-feed,
three-product column can be decomposed into two simple columns.
Let VSec 2

min and VSec 4
min be the minimum reboiler vapor duties determined

by the Underwood method for the upper and lower simple columns,
respectively. Then, column decomposition postulates that the
minimum reboiler vapor duty of this MFMP column is given by

max VSec 2
min �VBCD,V

Sec 4
min

n o
, where VBCD is the vapor portion flow rate

of feed BCD.

F IGURE 3 A general MFMP column. The topmost and
bottommost column sections are present in both simple columns and
MFMP columns. However, the intermediate sections are unique to
MFMP columns. Note that by considering a general column section as
the smallest module of an MFMP column, our modeling framework is
fundamentally different from the column decomposition method
proposed by others.
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building block of a general MFMP column is a column section,

which can be modeled as a countercurrent mass exchange unit. As

shown in Figure 3, even though the topmost and bottommost col-

umn sections in an MFMP column are respectively equivalent to

the rectifying and stripping sections in a simple column, it is the

presence of other intermediate column sections that really differ-

entiates the MFMP column from a simple column. In a simple col-

umn, the net material flow of any component that is not

withdrawn as a product from a column section is zero. For exam-

ple, in the rectifying section of column 1 of Figure 1B, components

A, B, and C have net material flows pointing upward, whereas the

least volatile component D has zero net material flow. In the strip-

ping section, components B, C, and D have net material flows

pointing downward, whereas the most volatile component A has

zero net material flow. However, when considering an intermedi-

ate column section in Figure 3 as highlighted by a red box, it is

very likely to have some components with net material flows

pointing upward and others pointing downward based on compo-

nent mass balances. Due to the simultaneous presence of compo-

nents with net upward and downward flows, these intermediate

sections require a special mathematical treatment. Thus, rather

than decomposing an MFMP column into a series of simple col-

umns, here we construct a shortcut model for a general column

section assuming ideal-VLE, CRV, and CMO as in Underwood

method.39 Also, by default, the composition, flow rate, and ther-

mal quality of all feed and product streams are specified. These

are the only assumptions we make throughout the model develop-

ment. Each general column section exhibits a set of physical and

mathematical properties, some of which can be interpreted geo-

metrically and easily visualized. We will explore these properties

and use them to derive the minimum reflux condition of an MFMP

column as a set of algebraic constraints.

3 | MODELING COLUMN SECTION AS
COUNTERCURRENT MASS EXCHANGE UNIT

We consider a general column section drawn in Figure 4 that involves

a total of c components. As a result of the CMO assumption, the total

vapor and liquid flow rate, respectively denoted as V and L, do not

change from stage to stage within this section. The total net material

upward flow D¼V�L stays constant as well. When the column

section of interest corresponds to the topmost section of an MFMP

or a simple column, D is just the total distillate flow rate. On the other

hand, considering the column section to be the bottommost

section of an MFMP column or the stripping section of a simple col-

umn, D is always negative and equals bottoms flow rate in magnitude.

In terms of each individual component i�C¼ 1, � � �, cf g, its net mate-

rial upward flow rate di, which is given by di ¼ v
0
i,n�1� l

0
i,n ¼ vi,n� li,n�1

in any stage n�ℕþ, also remains unchanged within the section. Here,

v
0
i,n (resp. vi,n) and l

0
i,n (resp. li,n) stand for the vapor and liquid flow rates

of component i leaving stage n in the lower (resp. upper) part of col-

umn section, respectively. Notice that by convention, the component

vapor (v
0
i,n or vi,n) and liquid flows (l

0
i,n or li,n) are always nonnegative

and follow the direction shown in Figure 4. The direction of di, on the

contrary, is not necessarily the same for every component in the same

column section. When di <0 for some component i in the section, the

net material flow direction for component i is pointing downward. Fol-

lowing the notations and conventions defined so far, next we will model

the lower and upper part of a general column section. Subsequently, we

will analyze the pinch condition in the column section as the number of

stages n in both upper and lower parts approaches infinity.

In this section, our goal is to derive all relevant equations that

enable calculation of stage-to-stage liquid and vapor compositions as

well as potential pinch zone compositions. We first discuss the trans-

formation of liquid component flow rates on each stage n to a new

variable which encapsulates the nonlinearity associated with the

ideal-VLE relation and thereby allows the solution of mass balance

equations to be determined in the transformed variable space. Once

the eigenvalues and eigenvectors of the transformed variable space

become available, rather than immediately deriving the expressions for

liquid and vapor compositions on any given stage, we take the following

detour. First, we explore the connection between potential pinch zone

compositions and eigenvectors in the transformed space. Next, we dis-

cuss tray-by-tray evolution of liquid composition profile in the trans-

formed variable space. The resulting c�1 dimensional pinch simplex

obtained from this transformation has interesting features as each of

its vertices matches exactly with a potential pinch zone liquid compo-

sition. Finally, we go back to the original problem and derive expres-

sions for liquid and vapor compositions in the column section.

3.1 | Mass balance equations, eigenvalues, and
eigenvectors

To model a general column section, we first write down the compo-

nent mass balance equation:

F IGURE 4 A general column section modeled as a countercurrent
mass exchanger. The molar flow rate of component i in the vapor and

liquid traffic leaving stage n in the lower (resp. upper) part of column
section are respectively given by v

0
i,n (resp. vi,n) and l

0
i,n (resp. li,n). These

component flow rates are always nonnegative following the direction
shown here.
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Lower part : l
0
i,nþ1 ¼ v

0
i,n�di

Upper part : li,n ¼ vi,nþ1�di
8i�C, n�ℕ: ð1Þ

Note that the mass balances for the lower and upper part of a col-

umn section differ due to the way stages are numbered (see Figure 4),

which is necessary especially when the column section is pinched

(which implies an infinite number of stages in the section). Neverthe-

less, the modeling procedure is the same for both the upper and lower

parts of column section. For now, we focus on the lower part to dem-

onstrate the modeling procedure. The nonlinearity of the model origi-

nates from the ideal-VLE relation which says that, on any stage n:

v
0
i,n

V
¼ αi l

0
i,nPc

k¼1
αkl

0
k,n

8i�C, n�ℕ, ð2Þ

in which αi stands for the relative volatility of component i with

respect to the heaviest component, which is Component 1. By con-

vention, the relative volatility of each component follows

αc > αc�1 > � � �> α1 ¼1. Let us consider two adjacent stages, namely

nþ1ð Þ and n, and substitute Equation (2) into (1):

l0nþ1 ¼

l01,nþ1

..

.

l0c,nþ1

0BBB@
1CCCA¼ VPc

k¼1
αkl

0
k,n

α1l
0
1,n

..

.

αcl
0
c,n

0BBB@
1CCCA�

d1

..

.

dc

0BBB@
1CCCA

¼ 1Pc
k¼1

αkl
0
k,n

α1 V�d1ð Þ �α2d1 � � � �αcd1

�α1d2 α2 V�d2ð Þ � � � �αcd2

..

. ..
. . .

. ..
.

�α1dc �α2dc � � � αc V�dcð Þ

0BBBBBB@

1CCCCCCA

l01,n

l02,n

..

.

l0c,n

0BBBBBBB@

1CCCCCCCA
¼ 1

αT l0n
Vdiag αð Þ�dαT
� �

l0n,

ð3Þ

where α¼ α1, � � �, αcð ÞT , d¼ d1, � � �, dcð ÞT , and diag αð Þ is a c� c diagonal

matrix whose entries are the elements of α. Therefore, we can define

a c� c matrix A as:

A≔Vdiag αð Þ�dαT ¼

α1 V�d1ð Þ �α2d1 � � � �αcd1
�α1d2 α2 V�d2ð Þ � � � �αcd2

..

. ..
. . .

. ..
.

�α1dc �α2dc � � � αc V�dcð Þ

0BBBB@
1CCCCA: ð4Þ

Since α and d are independent of the stage number, matrix A is

independent of the stage number as well. Now, let us multiply both

sides of Equation (3) by
Qn�1

j¼1 α
T l

0
j and rearrange to get:

l
0
nþ1

Yn
j¼1

αT l
0
j ¼Al

0
n

Yn�1

j¼1

αT l
0
j :

Therefore, the nonlinearity associated with Equation (2) can be

encapsulated by defining a new variable L0
n as:

L0
n

L0
1,n

..

.

L0
c,n

0BB@
1CCA¼ l

0
n

Yn�1

j¼1

αT l
0
j 8n�ℕþ, ð5Þ

from which we obtain a linear system in terms of the new variable:

L0
nþ1 ¼AL0

n 8n�ℕþ: ð6Þ

This newly introduced variable L0
n not only leads to a linear sys-

tem of Equation (6), but also preserves the liquid composition infor-

mation and the ideal-VLE relation, as x
0
n, the liquid composition on

stage n, and y
0
n, the vapor composition in equilibrium with x

0
n, can be

determined as:

x
0
n ¼ l

0
n

eT l
0
n

¼ L0
n

eTL0
n

y
0
n ¼ diag αð Þl0n

eTdiag αð Þl0n
¼ diag αð ÞL0

n

eTdiag αð ÞL0
n

8n�ℕþ: ð7Þ

Together, these two facts enable us to directly compute the

composition profile in a column section without explicit tray-by-

tray calculations. To show this, we first need to understand matrix

A in Equation (4), which contains all the information about the compo-

sition profile and pinch conditions in a column section. In particular,

we are interested in the fixed point solution of the linear system asso-

ciated with Equation (6), which is given by the eigenvalues and

eigenvectors of A. To obtain the eigenvalues, notice that

det A�λIð Þ¼det Vdiag αð Þ�λIð Þ�dαT
h i

. Applying the matrix determi-

nant lemma, we can determine the characteristic polynomial of A as:

det A� λIð Þ ¼det Vdiag αð Þ� λIð Þ�αTadj Vdiag αð Þ� λIð Þd

¼
Yc
j¼1

Vαj� λ
� ��Xc

i¼1

αidi
Yc
j≠ i

Vαj� λ
� �

¼ 1�
Xc
i¼1

αidi
Vαi� λ

 !Yc
i¼1

Vαi�λð Þ,

ð8Þ

where adj Mð Þ stands for the adjoint of matrix M. From Equation (8),

we can easily see that the eigenvalues of A are:

λi ¼Vαi 8i such thatdi ¼0

λi ¼Vγi 8i such thatdi ≠0,
ð9Þ

where γi represents the ith root of the following equation:

Xc
j¼1

αjdj
αj� γ

¼V, ð10Þ

and by convention, γc > � � �> γ1.
Equation (10) looks familiar. In fact, when considering the rectify-

ing (resp. stripping) section of a simple column, this equation is identi-

cal to the Underwood distillate (resp. bottoms) equation.40 In this

JIANG ET AL. 5 of 21
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special case, we readily recognize that the Underwood roots γi are

nothing but the eigenvalues of A divided by the rectifying (resp. strip-

ping) section vapor flow V.53 Furthermore, in this case, each Under-

wood root is bounded by: γi � αi�1, αið Þ (resp. γi � αi, αiþ1ð Þ) for i�C

(assuming α0 ¼�∞ and αcþ1 ¼þ∞). For a general column section, the

root behavior may be slightly different. Suppose dc, � � �, dkþ1 are posi-

tive and dk , � � �, d1 are negative, Equation (10) is plotted in Figure 5.

Note that there exists two distinct roots, namely γk and γkþ1, in the

interval αk , αkþ1ð Þ. We will later show that these roots are indeed dis-

tinct and real when the column section has enough vapor flow V to

ensure physically feasible separation in the section.

Next, for each eigenvalue λi determined from Equation (9), the

corresponding eigenvector ni can be obtained by standard procedure

(i.e., solving A�λiIð Þνi ¼0) as:

νi ¼ 1
L

λid1
Vα1�λi

,…,
λidi�1

Vαi�1�λi
,
λi
αi

1�
Xc
j≠ i

αjdj
Vαj�λi

 !
,

0@
λidiþ1

Vαiþ1�λi
,…,

λidc
Vαc�λi

1AT

:

ð11Þ

Specifically, depending on whether di ¼0 or not, we have:

νi ¼1
L

αid1
α1�αi

, � � �, αidi�1

αi�1�αi
,V�

Xc
j≠ i

αjdj
αj�αi

,
αidiþ1

αiþ1�αi
,

0@
� � �, αidc

αc�αi

1AT

ifdi ¼0,

νi ¼1
L

λid1
Vα1�λi

, � � �, λidi
Vαi�λi

, � � �, λidc
Vαc�λi

� �T

¼1
L

γid1
α1� γi

, � � �, γidc
αc� γi

� �T

ifdi ≠0:

ð12Þ

Since all eigenvalues will be shown to be distinct and real, these

eigenvectors are linearly independent. Thus, L0
1 can be expressed as

the linear combination of these eigenvectors, and L0
n can subse-

quently be determined by recursively applying Equation (6):

L0
n ¼An�1L0

1. Nevertheless, before going through these derivations,

let us further examine the connection between eigenvector νi and

pinch zone composition.

3.2 | Relationship between liquid pinch
compositions and eigenvectors

To establish the relationship between liquid pinch zone compositions

and eigenvectors of A, recall that a pinch zone is a region in which the

liquid or vapor composition remains unchanged from one stage to

another. When the column section is pinched, the equilibrium curve

(i.e., Equation 2) intersects the operating line (i.e., Equation 1), result-

ing in zero dividing force for mass transfer. The concept of pinch has

been extensively discussed by Underwood38,39 as well as Franklin and

Forsyth54 for the case of simple column operating at minimum reflux.

They found that each Underwood root is related to a unique possible

pinch composition. They also pointed out that, even though some of

the pinch compositions calculated might not be physically feasible in

an actual distillation column, they play an equally important role in

constructing the composition profile inside the column section and

also in deriving the minimum reflux condition. Analogously, for a gen-

eral column section, each eigenvalue of Equation (9) is associated with

a unique pinch composition. In fact, each νi exactly gives a pinch zone

liquid composition associated with eigenvalue λi. To show this, sup-

pose l
0
pinch is the component liquid flow rate in the pinch zone and

remains unchanged from stage to stage. Then, by Equation (3), we

have Al
0
pinch ¼ αT l

0
pinch

� �
l
0
pinch, which indicates that αT l

0
pinch must be

an eigenvalue and l
0
pinch must be an eigenvector. Thus, l

0
pinch ¼ βνi

where β is a scalar. To determine β, for any component i with nonzero

di, recall that Vγi ¼ λi ¼αT l
0
pinch ¼ βαTνi , which equals to βVγi=L from

Equations (10) and (12). This implies that β¼ L. For any component i

F IGURE 5 The root behavior of Equation (10) as the component net material upward flow dc, � � �, dkþ1 > 0 and dk , � � �, d1 < 0:

6 of 21 JIANG ET AL.
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with a zero di, Vαi ¼ λi ¼ βαTνi , which can be shown to equal to βVαi=L.

Again, this implies that β¼ L. Since the argument above holds for every

i�C, there are as many pinch compositions as components involved

in the multicomponent system. Therefore, the pinch zone component

vapor and liquid flows associated with λi are respectively given by:

v
0
pinch ¼ Lνiþd; l

0
pinch ¼ Lνi 8i�C: ð13Þ

In summary, for a c-component system, there are c possible liquid

pinch compositions, which are essentially the c eigenvectors ν1, � � �, νc.
From Equations (9)–(11), all possible pinch zone liquid and vapor com-

positions (or pinch zone component liquid and vapor flows) will be

determined once d and either V or L in the column section are known.

Thus, these pinch compositions are intrinsic characteristics of a col-

umn section and are independent of which part of the column

section is being considered.

3.3 | Calculation of composition profile

To calculate the composition profile within a general column section,

we first diagonalize matrix A as QΛQ�1 using eigendecomposition, in

which the columns of Q contain all the eigenvectors (i.e.,

Q¼ ν1, � � �, νc½ �) and Λ is a diagonal matrix whose diagonal elements

are all the eigenvalues. To determine Q�1, we first introduce a very

useful relation obtained by substituting two distinct eigenvalues,

λi ¼Vγi and λj ¼Vγj (assuming di, dj ≠0), into Equation (10), followed

by subtracting one expression from the other:

Xc
k¼1

αkdk
αk� γið Þ αk� γj

� �¼0 8i≠ j�C: ð14Þ

Using Equation (14), one can verify that, for any i such that

di ≠0, the ith row of Q�1 is given by the product of a row vector ωT
i

and a scaling factor ri that depends on λi:

ωT
i ¼ Vα1

Vα1�λi
, � � �, Vαc

Vαc�λi

� �
¼ α1

α1� γi
, � � �, αc

αc� γi

� �
,

1
ri

¼Vλi
L

Xc
k¼1

αkdk

Vαk�λið Þ2
¼ γi

L

Xc
k¼1

αkdk

αk� γið Þ2
:

ð15Þ

It can be shown that the scaling factor ri and di have the same

sign. For λi ¼Vαi when di ¼0, the ith row of Q�1 is simply the ith prin-

cipal vector eTi multiplied by a scaling factor ri:

wT
i ¼ eTi ,

1
ri

¼ λi
Lαi

1�
Xc
j≠ i

αjdj
Vαj�λi

 !
¼V

L
�1
L

Xc
j≠ i

αjdj
αj�αi

:
ð16Þ

Now that matrix A is diagonalized, let us now solve for the com-

position profile in the lower part of column section. Substituting

QΛQ�1 into Equation (6), and noticing that L0
1 ¼ l

0
1 for the boundary

case, gives L0
n ¼An�1L0

1 ¼QΛn�1Q�1l
0
1. Using Equation (7), we can

write down the liquid and vapor composition profile in the lower part

of column section compactly as:

x
0
nþ1 ¼ QΛnQ�1l

0
1

eTQΛnQ�1l
0
1

¼ QΛnQ�1x
0
1

eTQΛnQ�1x0
1

y
0
n ¼diag αð ÞQΛn�1Q�1l

0
1

αTQΛn�1Q�1l
0
1

¼diag αð ÞQΛn�1Q�1x
0
1

λnð ÞT=LQ�1x0
1

8n�ℕ, ð17Þ

in which we denote λ as λ1, � � �, λcð ÞT , a column vector containing all

the eigenvalues of A. In deriving Equation (17), we apply Equa-

tions (10) and (12) and use the fact that αTQ¼ λT=L. In summary, given

the set of relative volatilities (α), component material upward flows

(d), component liquid flows leaving the bottom of column section (l
0
1),

and the total vapor flow (V), the column section composition profile

can be calculated without explicit tray-by-tray calculation by first solv-

ing Equation (8) for λi, followed by substituting these eigenvalues to

obtain Q, Λ, and Q�1. If we are interested in expanding the matrix

representation in Equation (17), the liquid and vapor composition pro-

files, assuming that none of the components has a zero net material

upward flow, are explicitly written as:

x
0
i,nþ1 ¼ di

L

Pc
j¼1

ajγ
nþ1
j

αi� γjPc
j¼1

ajγnj

y
0
i,n ¼αidi

V

Pc
j¼1

ajγnj
αi� γjPc

j¼1
ajγnj

8i�C, n�ℕ,

where the quantity a
0
j is determined to be:

a
0
j ¼

rj
L

Xc
k¼1

αkl
0
k,1

αk� γj
¼ rj

Xc
k¼1

αkx
0
k,1

αk� γj
8j�C:

It follows from Equation (15) that a
0
1, � � �, a

0
c

� �T ¼Q�1x
0
1. Since

eTQ¼ eT from Equation (12), we also have eTQ�1 ¼ eT and there-

fore,
Pc

j¼1a
0
j ¼ eTQ�1x

0
1 ¼1.

Similarly, when di ¼0, we can show from Equation (12) that

eTνi ¼1. This again implies that eTQ¼ eTQ�1 ¼ eT . With this, one can

also write down the explicit vapor or liquid composition profile

expressions for cases when some components have zero net material

upward flows.

To generalize, we can define the following linear transformation

that maps the original composition space in ℝc, denoted as the

x-space, to a new space in ℝc, which we refer to as the z-space:

z xð Þ¼
z1 xð Þ
..
.

zc xð Þ

0BB@
1CCA¼Q�1x¼

r1wT
1x

..

.

rcwT
c x

0BB@
1CCA: ð18Þ

By substituting Equation (18) to Equation (17), we can now

express the liquid composition profile in z-space as:

JIANG ET AL. 7 of 21
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z
0
nþ1 ¼

Λnz
0
1

eTΛnz01
8n�ℕ, ð19Þ

where we denote z
0
1 to be z x

0
1

� �¼ a
0
1, � � �, a

0
c

� �T
and z

0
n as z x

0
n

� �
. Equa-

tion (19) looks familiar. Indeed, as we will discuss shortly, it resembles

the well-known Fenske equation55 that characterizes the liquid com-

position profile in a simple column operated at total reflux. Such

resemblance sheds light on the geometric significance of z-space.

3.4 | Composition profile and pinch compositions
in z-space

So far, we have shown that the liquid or vapor composition profile

in the lower part of a column section can be characterized either

in x-space or in z-space. Specifically, the set of liquid composition pro-

files calculated using Equation (17) (resp. 19) with various starting

compositions x01 (resp. z01) that satisfy eTx01 ¼1 (resp. eTz01 ¼1), also

known as the liquid composition trajectory bundle, can be described

by a c�1ð Þ-dimensional simplex called the composition simplex (resp.

pinch simplex). Both the composition and pinch simplices can be

drawn in x-space as well as in z-space. For illustration, let us consider

a ternary mixture distillation example. As shown in Figure 6A, the

composition simplex drawn in x-space (Cx) is an equilateral triangle

bounded by x ≥0 and eTx¼1. Thus, it contains all feasible composi-

tions. The extreme points of Cx, which are denoted as Xi ¼ ei for

i¼1, 2, 3, correspond to the pure components in the ternary system.

The facets of Cx are given by xi ¼0 for i¼1, 2, 3. On the other hand,

the pinch simplex, Px, is bounded by Q�1x ≥0 and eTx¼1 in x-space.

The extreme points of Px in x-space, Zi ¼ νi for i¼1, 2, 3, are essen-

tially liquid pinch compositions according to Equation (13). The facets

of Px are given by zi xð Þ¼0 for i¼1, 2, 3. Of course, as shown in

Figure 6B, both simplices can also be represented in the z-space.

Table 1 summarizes how both simplices are constructed in both

spaces.

As summarized in Table 1, when a distillation column is operated

at total reflux (i.e., di ¼0 for every i�C), ωT
i ¼ eTi and ri ¼1 from Equa-

tion (16) for every i�C, implying that Q�1 ¼ I. Therefore, the pinch

simplex for total reflux operation is characterized by

Px ¼ x�ℝcjIx ≥0, eTx¼1
� 	

, which matches with the composition sim-

plex Cx exactly. Similarly, Pz and Cz are identical in z-space as well

when the column is operated at total reflux. Furthermore, from

Figure 7B, it is also clear why Equation (19) resembles the Fenske

(A) (B)

F IGURE 6 An illustrative example of composition simplex and pinch simplex drawn in x-space and z-space for
α1, α2, α3ð Þ¼ 1, 1:5, 2ð Þ, d1, d2, d3ð Þ¼ 0:03, 0:06, 0:21ð Þ, andV¼1:4552. Thus, γ1, γ2, γ3ð Þ¼ 0:9659, 1:3928, 1:7702ð Þ from Equation (10).
(A) Composition simplex and pinch simplex in x-space; (B) Composition simplex and pinch simplex in z-space.

TABLE 1 Construction of composition simplex and pinch simplex
in x-space and z-space.

Composition simplex Pinch simplex

x-space

Cx ¼ x�ℝcjx ≥0, eTx¼1
� 	

Px ¼ x�ℝcjQ�1x ≥0, eTx¼1
n o

Extreme points: columns of I Extreme points: columns of Q

z-space

Cz ¼ z�ℝcjQz≥0, eTz¼1
� 	

Pz ¼ z�ℝcjz≥0, eTz¼1
� 	

Extreme points: columns of Q�1 Extreme points: columns of I

8 of 21 JIANG ET AL.
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equation in z-space. Specifically, the eigenvalue matrix Λ and z
0
n in

z-space are respectively analogous to the relative volatility matrix and

liquid composition x
0
n in x-space.

An important question related to these liquid pinch compositions

is: “Given the starting composition x
0
1 (or z

0
1), which pinch will be

reached from the bottom of column section?” To reach a specific liq-

uid pinch composition, say Zi, from the bottom of the column section,

Zi must first be physically feasible. From Figure 6, it can be seen that

some pinch compositions (Z2 and Z3) are located outside of the feasi-

ble region bounded by the composition simplex. Suppose dc, � � �, dk >0
and dl, � � �, d1 < 0 for some component l< k, then Zi being physically

feasible means that νi is real and nonnegative, which implies that

index i� l, � � �, kf g (i.e., Vαl < λi <Vαk or αl < γi < αk) from Equation (11).

In addition to the requirement that Zi must be physically feasi-

ble, the starting composition x
0
1 (or z

0
1) at the bottom of the column

section must satisfy certain criteria in order for x
0
n !Zi (or νi) as

n!∞. To see this, let us examine the liquid composition trajectory

bundle drawn in Figure 7. Clearly, depending on where x
0
1 (resp. z

0
1)

lies with respect to Px (resp. Pz), the liquid composition profile follows

different trajectories. From Equations (18) and (19), we can see that Zi

can only be reached as we move upward from the bottom of column

section if the starting composition x
0
1 lies in a subspace of pinch sim-

plex satisfying zj x
0
1

� �¼ rjωT
j x

0
1 ¼0 for all j > i.

Before moving on, we remark that the actual pinch zone liquid

composition, Zi, is physically feasible if and only if all c eigenvalues of

matrix A are real. To show this, suppose Zi is physically feasible, then

v
0
pinch,j ¼ αjdj

αj�γi
is nonnegative for every component j�C from Equa-

tion (13). This implies that there is a single real root of equationPc
j¼1

v
0
pinch,j

αj�x ¼0 between αk and αkþ1 for every k� 1, � � �, c�1f g.

Furthermore, comparing this equation with Equation (14), we find that

these c�1 distinct and real roots are essentially γj with j�C ∖ if g. On

the other hand, if all eigenvalues are real, then for αl < γi < αk (recall

that dk > 0 and dl <0), the corresponding pinch composition Zi must be

real and nonnegative, making it physically feasible.

3.5 | The upper part of column section

Once we successfully build the mathematical model to character-

ize the lower part of column section, the model for the upper part

is similar. The key difference is that the numbering of stages is

now reversed as indicated in Figure 4 and Equation (1). Similar to

Equation (17), we can directly write down the liquid and vapor

composition profile in the upper part of column section:

xn ¼ QΛ�nQ�1l0
eTQΛ�nQ�1l0

¼ QΛ�nQ�1x0
eTQΛ�nQ�1x0

ynþ1 ¼diag αð ÞQΛ�n�1Q�1l0
aTQΛ�n�1Q�1l0

¼diag αð ÞQΛ�n�1Q�1x0
λ�nð ÞT=LQ�1x0

8n�ℕ,

ð20Þ

in which xn can also be expressed in z-space based on the definition

of Equation (18):

zn ¼ Λ�nz0
eTΛ�nz0

8n�ℕ, ð21Þ

where zn ¼ z xnð Þ. Of course, the composition and pinch simplices in

x-space and z-space (Table 1) hold true irrespective of which part of

column section is considered. However, the conditions for reaching a

(A) (B)

F IGURE 7 Liquid composition trajectory bundle for the illustrative example of Figure 6. The arrow indicates the direction of liquid
composition evolution as we move upward from the bottom of the column section. The stage is numbered following the convention of Figure 4.

(A) Liquid composition trajectory bundle drawn in x-space; (B) Liquid composition trajectory bundle drawn in z-space.

JIANG ET AL. 9 of 21
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particular pinch zone liquid composition Zp from the top of column

section as n!∞ are slightly different. This time, Zp can be reached

from the top if the starting composition x0 lies in a subspace of pinch

simplex satisfying zj x0ð Þ¼ rjωT
j x0 ¼0 for all j< p. Clearly, a pinch zone

can be reached from both the top and bottom of the column section.

To summarize, in this section, we develop a shortcut mathemati-

cal model that calculates the composition profile in a general column

section without requiring explicit tray-by-tray calculations. We also

derive possible pinch zone compositions and relate them with compo-

sition simplex and pinch simplex in x-space and z-space.

4 | SOME PROPERTIES OF THE MODEL

In this section, we would like to explore some of the mathematical

properties of this new shortcut model, which will allow us to derive

the feasible separation and minimum reflux conditions for MFMP

columns.

4.1 | Existence and uniqueness of pinch zone in a
general column section

Here, we would like to show that an infinite column section contains

one and only one pinch zone. This is done by verifying that the same

pinch zone is reached as we move into the column section from both

top and bottom ends. In other words, we will show that, as n

approaches infinity, v0n and vn converge to the same limit, which we

later denote as v¼ v1, � � �, vcð ÞT . To illustrate the existence of pinch

zone in an infinite column section, we first construct two functions

f
0
n xð Þ and fn xð Þ for stage n in the lower and upper part of the column

section, respectively:

Lower part : f
0
n xð Þ¼

Xc
i¼1

v
0
i,n

Vαi�x
;

Upper part : fn xð Þ¼
Xc
i¼1

vi,n
Vαi�x

:

ð22Þ

These two functions, which have not been proposed or studied

before, turn out to be quite useful. Here, we focus on the lower part

of column section and explore properties for f
0
n xð Þ. These properties

are also valid for the upper part. Since v
0
n is nonnegative on any stage

n, there is a single real root x
0
k nð Þ between Vαk and Vαkþ1 for every

k� 1, � � �, c�1f g such that f
0
n x

0
k nð Þ� �¼0. In fact, one can show that

component vapor flow v
0
i,n is related to x

0
k nð Þ via:

v
0
i,n ¼V

Yc�1

k¼1

αi�x
0
k nð Þ=V

� �
 Yc
k¼1

k ≠ i

αi�αkð Þ 8i�C: ð23Þ

Furthermore, for every k� 1, � � �, c�1f g, x0
k nð Þ forms a monotonic

sequence with respect to the stage number n:

Proposition 1. The roots of f
0
n xð Þ¼0 form a monotonic

sequence x
0
k nð Þ� 	

with respect to n for

every k� 1, � � �, c�1f g.

Proof. We take the fractional part of the characteristic

polynomial of A and define a function C xð Þ as:

C xð Þ :¼
Xc
i¼1

αidi
Vαi�x

�1, ð24Þ

and observe that C xð Þ is independent of stage number

n. Substituting the mass balance equation v
0
n� l

0
nþ1 ¼ d,

the ideal-VLE relation l
0
nL¼ diag 1=αð Þv0n

eTdiag 1=αð Þv0n
, and eTyn ¼1 into

Equation (24), we obtain C xð Þ¼ 1
V xf

0
n xð Þ�αT l

0
nþ1f

0
nþ1 xð Þ

h i
.

Thus, C x
0
k nð Þ� �¼�αT l

0
nþ1f

0
nþ1 x

0
k nð Þ� �¼ x

0
k nð Þ
V f

0
n�1 x

0
k nð Þ� �

,

implying f
0
nþ1 x

0
k nð Þ� � � f 0n�1 x

0
k nð Þ� �

≤0. Since v
0
n ≥0, f

0
n xð Þ

monotonically increases with x between Vαk and Vαkþ1.

Therefore, x
0
k nð Þ lies within x

0
k n�1ð Þ and x

0
k nþ1ð Þ. If

x
0
k nþ1ð Þ≥ x0

k n�1ð Þ, x
0
k nð Þ� 	

is a monotonically increas-

ing sequence. Otherwise, it is monotonically decreasing.

In either case, x
0
k nð Þ� 	

is monotonic. □

Since x
0
k nð Þ� 	

is bounded and monotonic, it is a convergent

sequence. Let us denote x
0
k nð Þ! x

0
k as n!∞ for every

k� 1, � � �, c�1f g. Figure 8 shows convergence of sequence x
0
k nð Þ� 	

for

the lower part of the rectifying section of a simple column simulated

in Aspen HYSYS V11 using actual column vapor composition profile

data. Note that it follows from Equation (23) and Figure 8 that

v
0
k,n !0 when and only when x

0
k nð Þ!Vαk (i.e., x

0
k ¼Vαk). In other

cases when v
0
k,n↛0, it can be shown that x

0
k nð Þ is bounded away from

both Vαk and Vαkþ1. We can also bound df
0
n xð Þ
dx at the root x

0
k nð Þ in a

stage-independent manner. Specifically, df
0
n xð Þ
dx ¼Pc

i¼1
vi,n

Vαi�xð Þ2, whose

denominator is bounded away from zero at x
0
k nð Þ. Therefore, df

0
n xð Þ
dx can

be upper bounded by V=δ2, where 0 < δ≤ min x�Vαk ,Vαkþ1�xf g. A
valid lower bound for df

0
n xð Þ
dx is zero. Using these bounds, for

limn!∞v
0
k,n ≠0, we can show that C x

0
k nð Þ� �!0 as n!∞:

Proposition 2. C x
0
k nð Þ� �� 	

is a convergent sequence and

C x
0
k

� �¼0 when limn!∞v
0
k,n ≠0.

Proof. Recall that C x
0
k nð Þ� �¼� LPc

j¼1
v
0
j,nþ1

αj
f
0
nþ1 x

0
k nð Þ� �

and note that the term LPc

j¼1
v0
j,nþ1

=αj
can be lower bounded

by Lα1
V . According to the mean value theorem, for x

0
k nð Þ

sufficiently close to x
0
k nþ1ð Þ:

0≤C x
0
k nð Þ

� �
≤
Lα1
V

f
0
nþ1 x

0
k nþ1ð Þ

� �
� f

0
nþ1 x

0
k nð Þ

� �h i
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≤
Lα1
V

V

δ2
x
0
k nþ1ð Þ�x

0
k nð Þ�� ��

¼ L

δ2
x
0
k nþ1ð Þ�x

0
k nð Þ�� ��:

Since x
0
k nþ1ð Þ�x

0
k nð Þ�� ��!0 as n!∞, it follows

from the continuity of C xð Þ within x� Vαk ,Vαkþ1ð Þ
that limn!∞C x

0
k nð Þ� �¼C x

0
k

� �¼0. □

Summarizing the findings above, especially from Equation (23)

and Propositions 1 and 2, we conclude that, with component vapor

flows always staying nonnegative, v
0
n eventually converges to a limit

denoted as v
0 ¼ limn!∞v

0
n ¼ v

0
1,…, v

0
c

� �T
. Similarly, component liquid

flow l
0
n also converges to a limit l

0 ¼ v
0 �d≥0. In other words, a pinch

zone forms in an infinite column section. Let the limiting function of

the sequence f
0
n xð Þ

n o
be f xð ÞPc

i¼1
v
0
i

Vαi�x, which also has c�1 distinct

real roots, namely x
0
1 < x

0
2 < � � �< x

0
c�1 with x

0
k � Vαk ,Vαkþ1½ �. Inside the

pinch zone, f
0
n xð Þ¼ f

0
nþ1 xð Þ¼ f xð Þ, and thus C xð Þ¼ 1

V x�αT l
0� �
f xð Þ.

Note that the roots of C xð Þ¼0, which are x
0
1, � � �, x

0
c�1,α

T l
0
, are solu-

tions of a c-degree polynomial with real coefficients. Therefore, if

complex roots exist, there must be at least two of them forming com-

plex conjugate. However, since all c�1 roots of f xð Þ¼0 are distinct

and real, it follows that all roots of C xð Þ¼0 must be real in pinch zone

as n!∞. Furthermore, these roots are consistent with the eigen-

values of A determined from its characteristic polynomial. Therefore,

although we do not yet have a rigorous proof, given dc, � � �, dk >0,
dk�1, � � �, dlþ1 ¼0, and dl, � � �, d1 < 0 for some l < k in a column section,

based on Equation (9), Figure 5, as well as numerical simulation results

obtained from numerous case studies, we have sufficient evidence

and confidence to relate all roots of f xð Þ¼0 with c�1 of the c roots

of C xð Þ¼0:

x
0
i ¼ λi ¼Vγi � Vαi ,Vαiþ1ð Þ for i� 1, � � �, lf g
x
0
i ¼ λi ¼Vαi for i� lþ1, � � �, k�1f g
x
0
i ¼ λiþ1 ¼Vγiþ1 � Vαi,Vαiþ1ð Þ for i� k, � � �, c�1f g:

ð25Þ

The remaining root of C xð Þ¼0, αT l
0
, corresponds to the remaining

eigenvalue of A denoted as λp. It turns out that αT l0 or λp is closely

related to the actual pinch zone composition and therefore will be

referred to as the pinch root or pinch eigenvalue. For the boundary

cases, when di <0 for all i�C, which is the case in the bottommost

section of an MFMP column, we set l¼ c�1 and k¼ c so that

Equation (25) simply becomes x
0
i ¼ λi ¼Vγi � Vαi,Vαiþ1ð Þ for

i� 1, � � �, c�1f g. In this case, λp ¼ λc ¼Vγc >Vαc. When di > 0 for all

i�C, which is the case in the topmost section of an MFMP column,

we set l¼0 and k¼1 and Equation (25) simply reduces to

x
0
i ¼ λiþ1 ¼Vλiþ1 � Vαi,Vαiþ1ð Þ for i� 1, � � �, c�1f g. And in this case,

λp ¼ λ1 ¼Vγ1 <Vα1 ¼V. On the other hand, when 1 ≤ l< k ≤ c�1,

it can be shown from Equation (25) that

λp ¼ λk � Vαk�1,Vαkð Þ� Vαl,Vαkð Þ.
Since there is only one set of eigenvalues λ1, � � �, λc for a particular

column section, the solutions to the limiting function for the sequence

fn xð Þf g characterizing the upper part of column section are identical

to the solutions of C xð Þ¼0 for the lower part. Therefore, from

Equation (23), both the upper and lower parts converge to the same pinch

zone as n!∞ from both ends. The component vapor and liquid flows

in this unique pinch zone are denoted as v¼ v0 and l¼ l0 , respectively.

This means that αT l¼αT v�dð Þ¼ λp, which can be rearranged to get:

v¼ Vα1d1
Vα1� λp

,…,
Vαcdc

Vαc� γp

� �T

¼ωp ∘d; l¼ λpd1
Vα1�λp

,…,
λpdc

Vαc�λp

� �T

¼ Lνp,

ð26Þ

where the symbol ∘ stands for the Hadamard product. Comparing

Equations (13) and (26) implies that the actual pinch zone liquid com-

position is Zp. Recall from the previous section that for dc, � � �, dk >0
and dl, � � �, d1 < 0 for some l< k in an infinite column section, pinch Zp is

physically feasible if and only if Vαl < λp <Vαk . In other words, the

pinch eigenvalue must lie in the interval where the sign change in

component net upward flow occurs. Furthermore, since a single pinch

zone is reached from the top and bottom of an infinite column sec-

tion, we remark that at most one sign change in the elements of d is

allowed for a physically feasible pinch zone to develop in an infinite

column section.

4.2 | Relating eigenvalues to the inlet stream
compositions in an infinite column section

Now we would like to study how the liquid (l0) and vapor streams (v
0
0)

entering an infinite column section (see Figure 4) are related to the

eigenvalues of A, provided that the pinch zone is Zp. We are inter-

ested in understanding this connection because l0 and v
0
0 come from

neighboring column sections as leaving streams. Thus, by building

F IGURE 8 Convergence of monotonically decreasing sequence x
0
1 nð Þ� 	

and monotonically increasing sequence x
0
2 nð Þ� 	

for the rectifying
section of a simple column separating an equimolar saturated liquid feed of n-octane (Component 1), n-heptane (Component 2), and n-hexane
(Component 3), where α1, α2, α3ð Þ¼ 1, 2:2500, 5:1168ð Þ. The reflux ratio is set to be 2.0, and the distillate flow rate is half of the feed flow rate
and contains 66.67mol% n-hexane and 33.33mol% n-heptane.
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connections between the eigenvalues that characterize the internal flow

behavior of the column section of interest and boundary component liq-

uid and vapor flows, we can uncover relations that need to be satisfied

as different column sections are stacked back to form the original MFMP

column. To start, we define two functions F1 xð Þ and F2 xð Þ as follows:

F1 xð Þ¼
Xc
i¼1

αiv0i,0
Vαi�x

�1, ð27Þ

F2 xð Þ¼
Xc
i¼1

αi li,0
Vαi�x

: ð28Þ

It can be shown that F1 xð Þ¼ x
V f

0
0 xð Þ¼ αT l01

V f 01 xð ÞþC xð Þ, and F2 xð Þ
can be rewritten as x

V f1 xð Þ�C xð Þ. The roots of F1 xð Þ¼0 and F2 xð Þ¼0

are denoted as 0¼φ0 <φ1 < � � �<φc�1 and ϕ1 < � � �<ϕc�1, respectively.

Clearly, φk and ϕk roots lie in the interval between Vαk and Vαkþ1 for

k� 1, � � �, c�1f g. These roots are related to the eigenvalues of A.

Proposition 3. The eigenvalues of A are related to the

roots of F1 xð Þ¼0 and F2 xð Þ¼0 as follows:

λi ¼φi�1 8λi > λp;

λi ¼ϕi 8λi < λp:

Proof. f 0n λið Þ in Equation (22) can be compactly written

as f0n λið Þ¼ ωT
i diag Vαð Þ�1v0n. We substitute Equation (17)

into this compact form and get:

f00 λið Þ¼ωT
i QΛ�1Q�1x01
eTQ�1x01

¼ ωT
i ν1, � � �,ωT

i νc
� �

Λ�1z01,

where we use eTQ�1 ¼ eT . Recall from Equation (14)

and the definition of Q and Q�1 that ωT
i νj is 0 for any

j�Cn if g and equals 1=ri if and only if i¼ j�C, which

implies that f00 λið Þ¼ 0, � ��, 0, 1
λi ri

, 0, � ��, 0
� �

z01 ¼
zi x01ð Þ
λi ri

¼ 1
λi
ωT
i x

0
1. So F1 λið Þ¼ λi

V f
0
0 λið Þ¼ωT

i x
0
1=V. Since the actual

pinch zone liquid composition is Zp, ωT
i x

0
1 ¼0 for all i> p,

because otherwise the eigenvector with a larger eigen-

value would survive with repeated applications of

Equation (6). This means λi ¼φi�1 � Vαi�1,Vαi½ � for

every λi > λp. □

Similarly, fn λið Þ in Equation (22) can be written as

fn λið Þ¼ωT
i diag Vαð Þ�1vn. Substituting Equations (20) and (14) yields

f1 λið Þ¼ωT
i QΛ�1Q�1x0 ¼ 0, � � �, 0, 1

λi ri
, 0, � � �, 0

� �
z0 ¼ 1

λi
ωT
i x0. So

F2 λið Þ¼ωT
i x0=V�C λið Þ¼ωT

i x0. Again, since Zp is the actual pinch

zone liquid composition, F2 λið Þ¼0 for all i< p. In other words,

λi ¼ϕi � Vαi,Vαiþ1½ � for every λi < λp.

Proposition 3 tells us that, on any stage in the lower part of col-

umn section (i.e., between the pinch zone Zp and the bottom of col-

umn section), all eigenvalues larger than the pinch eigenvalue λp are

also roots of f
0
n xð Þ¼0. Meanwhile, as we move infinitely up from the

bottom of column section into the pinch zone, all roots of f
0
n xð Þ even-

tually match with all the eigenvalues (or roots of C xð Þ¼0) besides λp

as C xð Þ¼ x�λpð Þf xð Þ. Together with Proposition 1, we see that as n

increases, the roots of f
0
n xð Þ¼0 that are smaller than λp will move

monotonically toward and eventually converge to λi < λp, which can

also be obtained from the roots of F2 xð Þ¼0 (see Figure 9B). Similarly,

on any stage in the upper part of column section, all eigenvalues smaller

than λp are also roots of fn xð Þ¼0. As we move infinitely down from

the top of column section to the pinch zone, roots of fn xð Þ¼0 eventu-

ally become the same as all the roots of C xð Þ¼0 except for λp. Thus,

as n increases, the roots of fn xð Þ¼0 larger than λp move monotoni-

cally toward all λi > λp, which can also be obtained from the roots of

F1 xð Þ¼0 (see Figure 9C).

In other words, once v
0
0 and l0 are known, we can track the move-

ment of eigenvalues as n increases in both directions except the pinch

eigenvalue λp. For λp, without loss of generality, suppose that

dc, � � �, dkþ1 > 0 and dk , � � �, d1 < 0 in a column section. In this case, we

know that λp must lie in Vαk ,Vαkþ1ð Þ. On top of this, we can impose a

tighter bound on λp, as illustrated in Proposition 4 below.

Proposition 4. If the pinch eigenvalue λp (or root of

C xð Þ¼0) lies in Vαk ,Vαkþ1ð Þ, then it is further bounded

away from min ϕk ,φkf g, max ϕk ,φkf g½ �.

Proof. We know that there are two roots of C xð Þ¼0 in

Vαk ,Vαkþ1ð Þ. When λp is the larger root, let the other

root of C xð Þ¼0 be denoted as λp�1. From Proposition 3,

ϕk ¼ λp�1 < λp. To show that λp >φk , we only need to

show the case when ϕk <φk , as the other case is trivially

satisfied. When ϕk <φk , recall from Proposition 3 that

ϕk ¼ x
0
k and φk ¼ x

0
k 0ð Þ as F1 xð Þ¼ x

V f
0
0 xð Þ, implying that

F1 xð Þ¼0 shares roots with f 00 xð Þ¼0. Since x0k < x
0
k 0ð Þ, by

Proposition 1, x
0
k nð Þ� 	

is a monotonically decreasing

sequence, and thus f
0
1 φkð Þ¼ f

0
1 x

0
k 0ð Þ� �

> f
0
1 x

0
k 1ð Þ� �¼0.

Since F1 xð Þ can also be expressed as αT l
0
1

V f
0
1 xð ÞþC xð Þ,

C φkð Þ¼�αT l
0
1

V f 01 φkð Þ<0. Thus, λp�1 <φk < λp, or λp >

max ϕk ,φkf g.When λp is the smaller root of C xð Þ¼0 in

Vαk ,Vαkþ1ð Þ, let the other root be denoted as λpþ1.

From Proposition 3, λp < λpþ1 ¼φk . We now show that

λp <ϕk as well. The statement is obvious if ϕk >φk . If

ϕk <φk , xk nð Þf g is a monotonically increasing sequence.

Thus, f1 xk 1ð Þð Þ¼0> f1 xk 0ð Þð Þ¼ f1 ϕkð Þ. Since

F2 ϕkð Þ¼ ϕk
V f1 ϕkð Þ�C ϕkð Þ¼0, C ϕkð Þ<0¼C λpð Þ. Thus,

λp <ϕk < λpþ1, or λp < min ϕk ,φkf g. □

Proposition 4 is also highlighted in Figure 9B. Essentially, in an

infinite column section with Zp as the pinch, all eigenvalues of A (or

all roots of C xð Þ¼0), λ1, � � �, λc, are determined once the streams enter-

ing the column section from top and bottom are known. Propositions 1

through 4 state that l0 determines all λi < λp, whereas v
0
0 determines all

λi > λp. And the pinch root λp is more tightly bounded.
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5 | STACKING OF ADJACENT COLUMN
SECTIONS

Up to this point, we have been focusing on modeling and understand-

ing a single column section, which is the basic module for an MFMP

column. Next, we will stack back and connect these individual sec-

tions to form the original MFMP column through liquid and vapor bal-

ances. Figure 10 presents a generalized illustration of how adjacent

sections are linked by a feed or sidedraw stream. Specifically, when a

feed stream F is introduced to the column, its vapor portion directly

enters section TOPF together with the vapor stream coming from the

top stage of section BOTF. The liquid portion of the feed is mixed

with the liquid coming from the bottom downcomer of section TOPF.

We would like to remark that such a feed arrangement differs slightly

from the one used by Underwood38,39 as well as Acrivos and

Amundson,53 where the feed stream enters the column onto a “feed
stage” that does not belong to either TOPF or BOTF. In the “feed

stage” model, the feed stream is perfectly mixed with the incoming

liquid and vapor streams on the feed stage, and the liquid and vapor

streams leaving the feed stage are in complete thermodynamic

equilibrium with each other. Despite such differences, Kolokolnikov

et al.56 showed that both feed arrangements would lead to the

same results in minimum reflux requirement for the case of a simple

column. And relying on Kolokolnikov et al.'s argument, we will split

the feed flow into vapor and liquid portions as described above to

introduce a feed stream into two general column sections stacked

on one another. Furthermore, compared to the “feed stage” model,

our model more realistically captures how a feed stream interacts

with internal liquid and vapor traffic in an actual column, as it

avoids the potential flooding issue.57 When it comes to sidedraw

stream W, the vapor portion is directly withdrawn as part of the vapor

stream from BOTW, whereas the liquid portion is taken out from the

liquid stream from TOPW by means of downcomer trapout or chimney

tray.57 Also, it is worth noting that, when we label a column section as

F IGURE 9 In this example, we consider an infinite column section separating n-octane (Component 1), n-heptane (Component 2), and n-
hexane (Component 3), with α1, α2, α3ð Þ¼ 1, 2:2500, 5:1168ð Þ, d1, d2, d3ð Þ¼ �0:7, �0:3, 0:5ð Þ, and V¼5. (A) The pinch simplex and liquid
composition profile for this column section. When the liquid pinch composition is Z2, the pinch eigenvalue λp ¼ λ2 � Vα2,Vα3ð Þ. The liquid stream
leaving (resp. entering) the column section from the bottom (resp. top) has a composition of x

0
1 (resp. x0). The liquid compositions in the lower

(resp. upper) part of column section satisfy z3 x
0
n

� �¼0 (resp. z1 xnð Þ¼0), which leads to λ3 ¼φ2 (resp. λ1 ¼ϕ1); (B) Movement of xk nð Þ roots of
fn xð Þ¼0 for the upper part of column section. It is clear that λ2 < min ϕ2,φ2f g for the upper part of column section; (C) Movement of f

0
n xð Þ for the

lower part.
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either the “top” or “bottom” section, such labeling is with respect to

the specific feed or sidedraw stream being considered. For example,

in the two-feed, three-product column drawn in Figure 2, column

Section 3 can be viewed as the top section with respect to feed

stream BCD or the bottom section with respect to sidedraw

stream BC.

Under the simplifying assumption that these components

form an ideal mixture, and assuming that complete thermody-

namic equilibrium is achieved on every stage, we have the follow-

ing liquid and vapor balance equations around the feed or

sidedraw stream:

For feedF : vBOTF
1 þvF ¼ v

0TOPF
0 l

0TOPF
1 þ lF ¼ lBOTF

0 vFþ lF ¼ fF

v
0TOPF
0 � l

0TOPF
1 ¼ dTOPF vBOTF

1 � lBOTF
0 ¼ dBOTF ,

For sidedrawW : v
0TOPW
0 þvW ¼ vBOTW

1 lBOTW
0 þ lW ¼ l

0TOPW
1 vWþ lW ¼ fW

v
0TOPW
0 � l

0TOPW
1 ¼ dTOPW vBOTW

1 � lBOTW
0 ¼dBOTW :

ð29Þ

5.1 | Identifying eigenvalue relationships for
adjacent column sections connected by a feed stream

When two column sections are connected by a feed stream, depend-

ing on the value of section vapor flow VTOPF (or VBOTF ), exactly one of

the following three scenarios will occur:

1. Column sections are pinched, in which case the target separation

goal can only be achieved with an infinite number of stages.

2. Target separation can be achieved in the column sections using a

finite number of stages.

3. Target separation cannot be achieved even with an infinite number

of stages.

Note that only the first two scenarios indicate that the target sep-

aration goal is feasible in the column sections considered. Next, we

will derive conditions describing each of the scenarios, from which

algebraic constraints for a feasible separation in an MFMP column can

be obtained. Note that the minimum reflux operation is simply the

extreme case of feasible separation in the column. We will also pro-

vide geometric interpretations of these algebraic constraints in terms

of pinch simplex.

In Scenario 1, since the column sections are pinched, let us

denote the actual pinch zone liquid compositions in TOPF and BOTF

as ZTOPF
p and ZBOTF

p , respectively. The corresponding pinch eigenvalues

are denoted as λTOPF
p and λBOTF

p , respectively. Clearly, since a feed

stream introduces materials into the column, dTOPF �dBOTF ¼
vFþ lF >0, which implies that the indices of pinch eigenvalues satisfy

pTOPF ≤ pBOTF . In addition, Proposition 3 states that FTOPF
1 λTOPF

i

� �
¼0

for every λTOPF
i VTOPF � αi�1, αi½ � that is greater than λTOPF

p VTOPF , and

(A)

(B)

F IGURE 10 Two column sections
connected by (A) a feed stream and (B) a
sidedraw stream. Note that v

0TOPF
0 and

lBOTF
0 are generally not in equilibrium with
each other. As shown in (A), in the
presence of a two-phase feed stream, lF
and vF are in equilibrium. For sidedrawW,
vW, vBOTW

1 , and v
0TOPW
0 all have the same

composition, so do lW, l
0TOPW
1 , and lBOTW

0 .

14 of 21 JIANG ET AL.
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FBOTF
2 λBOTF

i

� �
¼0 for every λBOTF

i VBOTF � αi, αiþ1½ � that is less than

λBOTF
p VBOTF . Therefore, we can define an index set IF as:

IF ¼ i�CjλTOPF
i > λTOPF

p , λBOTF
i�1 < λBOTF

p

n o
¼ pTOPF þ1, � � �, pBOTF
� 	

, ð30Þ

with dTOPF
i >0 and dBOTF

i�1 < 0 simultaneously satisfied for all i� IF. For

example, consider a five-component system. Suppose dTOPF
1 < 0 and

dTOPF
2 , � � �, dTOPF

5 > 0, whereas dBOTF
1 , � � �, dBOTF

3 < 0 and dBOTF
4 , dBOTF

5 > 0.

From Equation (25), the pinch index pTOPF ¼2 and pBOTF ¼4. Thus,

λTOPF
3 , λTOPF

4 , λTOPF
5 > λTOPF

p , and λBOTF
1 , λBOTF

2 , λBOTF
3 < λBOTF

p . And the index

set IF ¼ 3, 4f g.
Once this index set is defined, let us consider the general case in

which feed F is a two-phase stream. Given lF >0, vF >0, and dTOPF , we

can first determine the section vapor flow VTOPF that will enable roots

γTOPF
i obtained from Equation (10) to satisfy:

Xc
j¼1

αj lj,F
αj� γTOPF

i

¼0, ð31Þ

for all i� IF. In other words, when section TOPF has this specific vapor

flow VTOPF , the pinch simplex for section TOPF satisfies zTOPF
i lFð Þ¼0

from Equation (18) for all i� IF.

Also, since vF and lF are in thermodynamic equilibrium,Pc
j¼1

vj,F

αj�γ
TOPF
i

¼0 for every i� IF due to Equation (2). This leads to two

additional relationships for these γTOPF
i roots for all i� IF use this par-

ticular vapor flow VTOPF :

Xc
j¼1

αjvj,F
αj� γTOPF

i

¼
Xc
j¼1

αj� γTOPF
i

� �
vj,Fþ γTOPF

i �vj,F
αj� γTOPF

i

¼VFþ0¼VF,

Xc
j¼1

αjf j,F
αj� γTOPF

i

¼
Xc
j¼1

αj lj,Fþvj,F
� �
αj� γTOPF

i

¼VF:

ð32Þ

Now, substituting Equations (31) and (32) into Equations (10) and

(29), we can see that VTOPF �VF ¼VBOTF ¼Pc
j¼1

αj d
TOPF
j

�fj,F
� �
αj�γ

TOPF
i

¼

Pc
j¼1

αjd
BOTF
j

αj�γ
TOPF
i

for every i� IF. This implies that roots γTOPF
i actually

match with roots γBOTF
i�1 for i� IF for this particular section vapor flow,

as both γTOPF
i and γBOTF

i�1 lie in the same interval αi�1, αi½ �. Let us denote
this set of common roots as ρi�1,F ¼ γTOPF

i ¼ γBOTF
i�1 � αi�1, αi½ � for all

i� IF. Thus, zTOPF
i lFð Þ¼ zBOTF

i�1 lFð Þ¼0, or zTOPF
i xFð Þ¼ zBOTF

i�1 xFð Þ¼0,

meaning that (1) xF lies on the boundary of pinch simplex for sections

TOPF and BOTF, and (2) both pinch simplices share the same bound-

aries. This will lead to the eigenvalue relationship for adjacent pinched

column sections connected by a feed stream.

Now, let us consider Scenario 2, where the target separation goal

can be achieved in the column sections using just a finite number of

stages. This happens when VTOPF increases above its minimum thresh-

old (i.e., Scenario 1), and thus γTOPF
i > ρi�1,F > γ

BOTF
i�1 for every i� IF due

to the monotonicity of Equation (10) with respect to γ � αi�1, αi½ �.

Recall that the scaling factor ri in Equations (15) and (16) has the same

sign as di. Thus, for every i� IF, r
TOPF
i is positive and rBOTF

i is negative.

Therefore, with an increased VTOPF value, both

zTOPF
i xFð Þ¼ rTOPF

i ωT
� �TOPF

i xF and zBOTF
i�1 xFð Þ¼ rBOTF

i�1 ωT
� �BOTF

i�1 xF would

increase and become positive. Likewise, in Scenario 3, where the tar-

get separation goal cannot be achieved even with infinite stages in

the column sections, VTOPF decreases to less than its value in Scenario

1. One can show that γTOPF
i < ρi�1,F < γ

BOTF
i�1 for every i� IF, and both

zTOPF
i xFð Þ and zBOTF

i�1 xFð Þ would decrease and become negative.

A similar analysis can be drawn for liquid-only feed stream as well.

To summarize, given a two-phase or a liquid-only feed stream F, for

all i� IF determined from Equation (30), its liquid flow composition xF

satisfies one of the following three scenarios:

Scenario1 : zTOPF
i xFð Þ¼ zBOTF

i�1 xFð Þ¼0,

Scenario2 : zTOPF
i xFð Þ>0, zBOTF

i�1 xFð Þ>0,
Scenario3 : zTOPF

i xFð Þ<0, zBOTF
i�1 xFð Þ<0:

ð33Þ

Figure 11 illustrates Equation (33) from a geometric perspective for

the case of a simple column performing ternary separation. Essentially,

the hyperplane zTOPF
i xð Þ¼0 (resp. zBOTF

i�1 xð Þ¼0), which contains one of

the facets of pinch simplex for section TOPF (resp. BOTF), divides

ℝc�1 into two half-spaces, one of which contains the entire pinch sim-

plex. If xF lies in the closed half-space containing (resp. not containing)

TOPF pinch simplex, it must also lie in the closed half-space containing

(resp. not containing) BOTF pinch simplex, and vice versa. In particular,

if xF lies on the hyperplane zTOPF
i xð Þ¼0, it must also lie on the hyper-

plane zBOTF
i�1 xð Þ¼0 for all i� IF, and vice versa. In essence, this is the

geometric interpretation of the classic Underwood method.54

For a vapor-only feed stream F, it can be shown that the hypo-

thetical liquid composition, exF, which would be in thermodynamic

equilibrium with the vapor feed vF via Equation (2), satisfies one of

the following three scenarios:

Scenario1 : zTOPF
i

exFð Þ¼ zBOTF
i�1

exFð Þ¼0,

Scenario2 : zTOPF
i

exFð Þ>0, zBOTF
i�1

exFð Þ>0,
Scenario3 : zTOPF

i
exFð Þ<0, zBOTF

i�1
exFð Þ<0:

ð34Þ

Furthermore, we conclude that, in order for sections TOPF and

BOTF to successfully perform the target separation task, which corre-

sponds to Scenarios 1 and 2, the section γ roots obtained by solving

Equation (10) must satisfy the following feasibility condition:

γTOPF
i ≥ ρi�1,F ≥ γ

BOTF
i�1 8i� IF, ð35Þ

where the equality holds when the two column sections are pinched.

This is a key result that ensures feasibility of a given separation task in

adjacent column sections connected by a feed stream. We note that all

possible ρi roots for i� 1, � � �, c�1f g typically can be determined a

priori by solving Equation (31) or (32), as the feed specifications are

generally known to us. Also, we want to point out that Equations (31)

and (32) become the classic Underwood feed equations when consid-

ering simple columns (see Figure 11).39 And these ρ roots are
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essentially the Underwood roots. As a result, the well-known Under-

wood method is just a special case of Equation (35), where the

inequality constraints (Scenarios 1 and 2) reduce to equalities

(Scenario 1).

5.2 | Identifying eigenvalue relationships for
adjacent column sections connected by a sidedraw
stream

When two infinite column sections are connected by a sidedraw

stream, the analysis approach follows similarly as before. Here, we

summarize the key results. Suppose the actual pinch zone liquid com-

positions in TOPW and BOTW correspond to ZTOPW
p and ZBOTW

p ,

respectively. Then the associated pinch eigenvalues are respectively

denoted as λTOPW
p and λBOTW

p . Since a sidedraw stream takes materials

out of the column, dTOPW �dBOTW ¼ vWþ lW <0, and thus

pTOPW ≥ pBOTW . With this, we define an index set IW based on Proposi-

tion 3 as:

IW ¼ i�C, λBOTW
i > λBOTW

p jλTOPW
i�1 < λTOPW

p

n o
¼ pBOTW þ1, � � �, pTOPW
� 	

:

ð36Þ

with dBOTW
i >0 and dTOPW

i�1 < 0 simultaneously satisfied for all i� IW.

Again, depending on the value of section vapor flow VTOPW (or VBOTW ),

exactly one of the following three scenarios will occur: (1) column sec-

tions are pinched, which requires an infinite number of stages in the

sections to achieve the target separation goal; (2) target separation

can be achieved in the column sections using a finite number of

stages; (3) target separation cannot be achieved even with an infinite

number of stages. In addition, as shown in Figure 10B, vW, vBOTW
1 , and

v
0TOPW
0 all have the same composition, so do lW, l

0TOPW
1 , and lBOTW

0 . It

can be shown that the sidedraw composition presents a similar result

as in Equations (33) and (34). Specifically, if sidedraw W is a two-

phase or a liquid-only stream, for all i� IW determined from Equa-

tion (36), its liquid flow composition xW will fall in with one of the fol-

lowing three scenarios:

Scenario1: zTOPW
i�1 xWð Þ¼ zBOTW

i xWð Þ¼0,

Scenario2: zTOPW
i�1 xWð Þ>0, zBOTW

i xWð Þ>0,
Scenario3: zTOPW

i�1 xWð Þ<0, zBOTW
i xWð Þ<0:

ð37Þ

On the other hand, if sidedraw W is a vapor-only stream, the

hypothetical liquid composition, exW, which would be in thermody-

namic equilibrium with vW, will fall in with one of the three scenarios

below, for every i� IW:

Scenario1: zTOPW
i�1

exWð Þ¼ zBOTW
i

exWð Þ¼0,

Scenario2: zTOPW
i�1

exWð Þ>0, zBOTW
i

exWð Þ>0,
Scenario3: zTOPW

i�1
exWð Þ<0, zBOTW

i
exWð Þ<0:

ð38Þ

Furthermore, we conclude that, in order for sections TOPW and

BOTW to successfully carry out the target separation (Scenarios 1 and

2), the γ roots obtained by solving Equation (10) must satisfy the fol-

lowing feasibility condition:

γTOPW
i�1 ≤ ρi�1,W ≤ γBOTW

i 8i� IW, ð39Þ

where ρi�1,W � αi�1, αi½ � for every i� IW is defined for the sidedraw

stream W as the solution of the following equations analogous to

Equations (31) and (32):

F IGURE 11 In this example, we consider a ternary mixture distillation in a simple column with α1, α2, α3ð Þ¼ 1, 2:25, 3ð Þ. The saturated liquid
feed flow rate is f1,F, f2,F, f3,Fð Þ¼ 0:2, 0:4, 0:4ð Þ, and the distillate flow rate is dTOPF

1 , dTOPF
2 , dTOPF

3

� �
¼ 0, 0:04, 0:36ð Þ. Since pTOPF ¼2 and pBOTF ¼3

in this case, IF ¼ 3f g. (A) Scenario 2 of Equation (33): When VTOPF ¼VBOTF ¼2:7>2:2972, the liquid composition of the feed stream xF ¼ lF=LF lies
in the interior in the pinch simplex of both rectifying (TOPF) and stripping (BOTF) sections; (B) Scenario 1: When VTOPF ¼VBOTF ¼2:2972, xF lies
on the facet of both pinch complices; (C) Scenario 3: When VTOPF ¼VBOTF ¼2:0<2:2972, xF is outside of both pinch simplices, the separation is
infeasible.
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Xc
j¼1

αj lj,W
αj�ρi�1,W

¼0,
Xc
j¼1

αjvj,W
αj�ρi�1,W

¼VW,
Xc
j¼1

αjf j,W
αj�ρi�1,W

¼VW: ð40Þ

Similar to Equations (35), Equation (39) is a key result that

ensures feasibility of a given separation task in two neighboring

column sections connected by a sidedraw. Furthermore, to the

best of our knowledge, despite its similarity with Equation (31)

and (32) defined for feed stream, Equation (40), which is related

to sidedraw W, has not been explored or reported in the literature. In

this way, our shortcut model greatly extends the classic Underwood

method by discovering new constraints needed for characterizing

sidedraw streams. Note that analogous to Equation (35), the inequal-

ities in Equation (39) reduce to equalities when the two column sec-

tions are pinched in order to carry out the target separation task

(Scenario 1).

6 | MINIMUM REFLUX CONDITION

In earlier sections, we developed understanding of composition

profile in a single column section based on pinch simplex. We also

derived algebraic constraints describing the feasibility of target

separation task in adjacent column sections connected by either a

feed or sidedraw stream. Generalizing these findings to derive

minimum reflux conditions for an MFMP column is as easy as

stacking back each individual column sections and checking the

eigenvalue relationship (Equations 35 or 39) for every column

section pair to ensure that the section vapor flow leads to feasi-

ble separation for every column section. Suppose an MFMP col-

umn has NSEC sections, then the minimum reboiler duty requirement

(resp. minimum reflux ratio) of the MFMP column is then the lowest

reboiler vapor duty (resp. lowest reflux ratio) satisfying all NSEC�1

such eigenvalue relationships, one for each column section pair. Given

feed and product stream specifications (flow rate, composition, ther-

mal quality), the determination of minimum reboiler vapor duty or

minimum reflux ratio can be implemented as an algorithmic procedure

as follows:

1. From the given feed and product specifications, calculate dSecki for

every component i�C and every column section k¼1, � � �,NSEC.

2. From Equation (25) and Proposition 3, determine pinch index pSeck

for every section k¼1, � � �,NSEC. Then, for each feed stream

j¼1, � � �,NF and sidedraw stream s¼0, � � �,NW involved, determine

the corresponding index set IFj or IWs using Equation (30) or (36).

3. For every feed stream j¼1, � � �,NF, solve Equation (31) or (32) to

obtain roots ρi�1,Fj for every i� IFj (provided that IFj ≠ ;). Similarly,

for every sidedraw stream s¼0, � � �,NW present, obtain ρi�1,Ws

roots from Equation (40) for every i� IWs (provided that IWs ≠ ;).
4. For every ρi�1,Fj (resp. ρi�1,Ws

) obtained, let γ
TOPFj

i ¼ ρi�1,Fj (resp.

γ
TOPWj

i�1 ¼ ρi�1,Wj
) and calculate section vapor flow VTOPFj (resp.

VTOPWj ) using Equation (10). Then, substitute this VTOPFj (resp.

VTOPWj ) value into Equation (29) to obtain section vapor flow VSeck

for all k¼1, � � �,NSEC.

5. For every adjacent column section pair (k¼1, � � �,NSEC�1), using

the corresponding section vapor flows VSeck and VSeckþ1 obtained

from the previous step, determine section γ roots from Equa-

tion (10), and verify if the feasibility conditions of Equations (35)

and (39) are satisfied. If the feasibility conditions are satisfied for

all adjacent column section pairs in the MFMP column, store the

bottommost section vapor flow VSecNSEC and the reflux

ratio R¼ VSec1

D �1.

6. The true minimum reboiler vapor duty requirement and minimum

reflux ratio of the MFMP column correspond to the lowest VSecNSEC

and R values stored, respectively.

It is worth mentioning again that the algorithmic procedure above

applies when the feed and product specifications are provided. Some-

times, however, some of the specifications may not be known to users

a priori. For example, users may only require certain components to

be within a specific purity limit in a product stream. In this case, deter-

mining the minimum reboiler vapor duty or minimum reflux ratio actu-

ally becomes an optimization problem. When it is correctly formulated

and solved, the optimization program will determine the remaining

stream specifications such that the reboiler vapor duty or reflux ratio

is minimized globally. In Part 2 of this series, we will present the

detailed optimization formulation and solution strategies that imple-

ment the new shortcut method developed here. Next, we would like

to shed some light on the accuracy and attractiveness of our new

shortcut method by walking through a simple illustrative example.

6.1 | An illustrative example

We consider a two-feed distillation column shown in Figure 12A

separating mixtures of n-octane (Component 1), n-heptane

(Component 2), and n-hexane (Component 3), where

α1, α2, α3ð Þ¼ 1, 2:2500, 5:1168ð Þ. Both feed streams enter the column

in saturated liquid state. The composition and flow rate for all streams

are listed in Table 2. After calculating the net material upward flow

rate for each column section, we determine from Equation (25) and

Proposition 3 that the pinch indices are pSec1 ¼ pSec2 ¼2 and pSec3 ¼3

for all three sections. Therefore, from Equation (30), we get IF1 ¼;
and IF2 ¼ 3f g. This means that Sections 2 and 3 are pinched during

minimum reflux operation. To obtain the minimum reflux ratio, we

simply calculate ρ2,F2 ¼3:6186� α2, α3½ � from Equation (31), and let

γSec23 ¼ ρ2,F2 ¼ γSec32 due to Equation (35). The corresponding minimum

reboiler vapor duty requirement is determined to be 140.81mol/s by

substituting γSec23 ¼ γSec32 ¼3:6186 into Equations (10) and (29). The

corresponding minimum reflux ratio calculated is 1.683. Figure 12B

shows the pinch simplices at minimum reflux.

Rigorous Aspen Plus simulation result predicts the minimum

reflux ratio to be 1.735, which is only less than 3% different from that

calculated using our shortcut method. While this result itself already

shows the accuracy of our shortcut method, what makes this new

method more powerful is that, when we instead rely on the commonly

used column decomposition method (Figure 2), we would have chosen
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the largest minimum reflux ratio value obtained by the classic Under-

wood method applied to the decomposed columns to be our “minimum

reflux ratio” of the column. It turns out that the “minimum reflux ratio”
determined from column decomposition approach is as high as 19.66,

which is more than 11 times higher than the true minimum reflux! One

can imagine the enormous scale of waste in energy consumption and

capital expenditure if the column is designed and operated based on the

column decomposition method. This simple example clearly illustrates

the accuracy and attractiveness of this new shortcut approach. In Part

2 of the series, we will offer detailed discussions on why some of the

commonly used modeling assumptions and heuristics, such as the col-

umn decomposition method, would fail for MFMP columns.

7 | CONCLUSION

Multi-feed, multi-product distillation columns are commonly used in

many industrial separations. The minimum reflux ratio of a distillation

column is related to its energy consumption and capital cost, and thus

is a key parameter in distillation design. To solve this lingering prob-

lem of determining the minimum reflux ratio of a general MFMP

column in an accurate and computationally efficient manner, we

follow a bottom-up modeling approach and develop a first-of-its-

kind mathematical model for a general MFMP column based on

ideal-VLE, CRV, and CMO assumptions. First, we focus on model-

ing a general column section, the basic module in a general MFMP

column. To account for the nonlinearities caused by the ideal-VLE

relations in the model, we propose a linearization technique that

requires a variable transformation. By studying the eigenvalue

problem resulting from the linear system, we find the analytical

expression for the composition profile within the column

section without the need to perform tedious tray-by-tray calculations.

We relate the eigenvalues and eigenvectors with potential pinch condi-

tions within the column section. We also explore the geometric inter-

pretations of the eigenvalue problem after we introduce the concept of

pinch simplex. Next, we explore several properties of the model as the

column section becomes pinched, followed by analyzing how eigen-

values and pinch simplices characterizing any two adjacent column sec-

tions are related as the sections are stacked and connected by feed or

sidedraw stream. Finally, we derive algebraic constraints for feasible

separation and minimum reflux operation of an MFMP column, fol-

lowed by explaining their geometric meaning. In the case of a simple

column, the shortcut method developed in this work reduces to the

classic Underwood method.38

As we have mentioned, this method uses the same underlying

assumptions as the Underwood method.39 We remark that the con-

stant molar overflow (CMO) assumption implies that all components

have similar latent heat of vaporization. However, it turns out that this

assumption can be relaxed to account for cases in which components

have very distinct latent heats, which can be quite common in prac-

tice. With only slight modification of Underwood's classic model,38

this extension has been independently developed by Nandakumar and

Andres58 as well as Rev59 for simple columns. The final expression,

despite its great similarity compared to the Underwood equation,

F IGURE 12 An illustrative example considering ternary mixture separation in a two-feed column. Note that in (B), minimum reflux is
achieved when the pinch simplex of intermediate column section (Section 2) share the common edge with the pinch simplex of the bottommost
section (Section 3). Therefore, at minimum reflux, Sections 2 and 3 are pinched, and the lower feed composition xF2 lies on this common edge (i.
e., zSec23 xF2ð Þ¼ zSec32 xF2ð Þ¼0). The blue dots in (B) are the actual liquid composition profile of this two-feed column simulated in Aspen Plus V12.1
as a RadFrac column. (A) A two-feed distillation column; (B) Pinch simplices at true minimum reflux.

TABLE 2 Feed and product specifications for the two-feed
column of Figure 12A

Flow rate Molar composition
Streams (mol/s) x3 , x2 , x1ð Þ
D 52.476 (0.95, 0.05, trace)

F1 100 (0.2, 0.1, 0.7)

F2 100 (0.3, 0.6, 0.1)

B 147.524 (0.001, 0.4567, 0.5423)

Note: Hexane composition in the bottoms product stream is small (0.001)

but not in trace amount.
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directly calculates the heat duty requirement rather than vapor duty.

We believe that the shortcut method developed in this article can also

be extended in a similar manner to determine the minimum heat duty

requirement of an MFMP column with unequal component latent

heats of vaporization. Using a simple transformation of variables as

introduced by Nandakumar and Andres59 as well as Rev,59 all the

mathematical relationships and properties developed in this article still

apply to the extended model. We leave the discussion of this exten-

sion to future work.

In Part 2 of the series, we will incorporate our new shortcut

method into a global optimization framework. We will also analyze a

number of case studies involving different MFMP column configura-

tions that address the common misconceptions and doubts in multi-

component distillation systems design. Through these case studies,

we will provide readers with answers to the questions raised at the

beginning of this article.

PARAMETERS AND VARIABLES

c total number of components present in the distillation

column

αi relative volatility of component i with respect to the

heaviest component

n stage number following the convention of Figure 4

v
0
i,n

(resp. vi,n)

component i vapor flow leaving stage n in the lower

(resp. upper) part of section

l
0
i,n (resp. li,n) component i liquid flow leaving stage n in the lower

(resp. upper) part of section

di component i net material upward flow defined in

Equation (1)

V total vapor flow in the column section,

V¼ eTv
0
n ¼ eTvnþ1 for every n�ℕ

L total liquid flow in the column section,

L¼ eT l
0
nþ1 ¼ eT ln for every n�ℕ

D total net material upward flow,

D¼V�L¼ eTd

A matrix A defined in Equation (6)

L0
i,n new variable defined in Equation (5) for the lower part

of column section

λi the ith eigenvalue of matrix A defined in Equa-

tions (9): λc > � � �> λ1
γi the ith root of Equation (10), γi ¼ λi=V

νi the eigenvector of A associated with eigenvalue λi

defined in Equation (12)

Q the eigenvector matrix of

A, Q¼ ν1,…, νc½ �
Q�1 the inverse matrix of eigenvector matrix Q,

with QQ�1 ¼A

ωT
i a row vector defined in Equations (15) and (16) that is

related to Q�1

ri the scaling factor defined in

Equations (15) and (16)

Λ the diagonal matrix whose diagonal elements contain

all eigenvalues of A

x
0
n (resp. y

0
n) the liquid (resp. vapor) composition vector in the

lower part of column section

xn (resp. yn) the liquid (resp. vapor) composition vector in the

upper part of column section

z xð Þ a linear transformation defined in Equation (18)

zi xð Þ¼0 the hyperplane equation associated with λi for con-

structing the pinch simplex

ei a column unit vector in ℝc with its ith element being 1

and the rest being 0

e an all-ones column vector with c elements in

ℝc

Xi the composition of pure component i in x- or z-space

Zi liquid pinch composition corresponding to

νi in x- or z-space

Cx,Cz composition simplices drawn in x- space and z-space,

respectively

Px,Pz pinch simplices drawn in x- space and z-space,

respectively

f0n xð Þ, fn xð Þ functions in Equation (22) respectively for the lower

and upper part of column section

x0k nð Þ, xk nð Þ the kth root of f 0n xð Þ¼0 and fn xð Þ¼0 respectively for

stage n

x0k , xk the kth root of f 0n xð Þ¼0 and fn xð Þ¼0 resp. as n!∞

in both parts of section

C xð Þ a function defined in

Equation (24)

v, l the actual pinch zone vapor and liquid component

flows, respectively

F1 xð Þ, F2 xð Þ functions defined in Equations (27) and (28),

respectively

φi,ϕi the ith root of F1 xð Þ¼0 and F2 xð Þ¼0, respectively

λp the eigenvalue of matrix A associated with the actual

pinch component liquid flow

vF, lF component vapor and liquid flow rate of the feed stream

vW, lW component vapor and liquid flow rate of the sidedraw

stream

ρi,F, ρi,W the ith common root defined in Equations (31) (or 32)

and (40), respectively

NSEC,NF,NW total number of column sections, feed, and sidedraw

streams, respectively

SETS AND NOTATIONS

C 1,…, cf g
ℕ,ℕþ 0, 1, 2,…f g and 1, 2,…f g, respectively
IF the index set defined in Equation (30) for identifying com-

mon roots θi,F

IW the index set defined in Equation (36) for identifying com-

mon roots θi,W

TOPF column section above a feed stream F

BOTF column section below a feed stream F

TOPW column section above a sidedraw stream W
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BOTW column section below a sidedraw stream W

F,W feed and sidedraw stream, respectively
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