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1 | INTRODUCTION

Mohit Tawarmalani® |

Rakesh Agrawal?

Abstract

Multi-feed, multi-product distillation columns are ubiquitous in multicomponent
distillation systems. The minimum reflux ratio of a distillation column is directly
related to its energy consumption and capital cost. Thus, it is a key parameter for
distillation systems design, operation, and comparison. In this series, we present the
first accurate shortcut based algorithmic method to determine the minimum reflux
condition for any general multi-feed, multi-product (MFMP) distillation column
separating any ideal multicomponent mixture. The classic McCabe-Thiele or Under-
wood method is a special case of this general approach. Compared with existing
techniques, this method does not involve any rigorous tray-by-tray calculation, nor
does it require guessing of key components. In this first part of the series, we present
the mathematical model for a general MFMP column, derive constraints for feasible
separation and minimum reflux condition, discuss their geometric interpretations, and

present an illustrative example to demonstrate the effectiveness of our approach.

KEYWORDS
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shows two of the 152 distinct distillation configurations for separating

a four-component mixture derived from Shah and Agrawal's method.”

Distillation is an important separation process that accounts for 90%-
95% of all liquid separations and consumes more than 40% of energy
in the chemical and refining industries.?> While alternative separation
technologies are under development and testing, the predominance
of distillation is unlikely to change at least in the near future for a
number of industrial applications due to its inimitable technical advan-
tages and economic attractiveness.>® To separate a multicomponent
mixture that contains n components into n pure products by distilla-
tion, a sequence of distillation columns known as a distillation configu-
ration is generally required. Shah and Agrawal” successfully generated
the complete search space of distillation configurations that use

exactly (n—1) columns for n-component mixture separation. Figure 1

It turns out that most configurations in this search space contain at
least one distillation column with multiple feed streams and/or one or
more side-stream withdrawals.? In addition, compared to configura-
tions that use only simple columns each with exactly one feed and two
product streams (e.g., Figure 1A), it has been shown that configura-
tions involving one or more multi-feed, multi-product (MFMP) col-
umns (e.g., Figure 1B) often lead to significant energy and capital cost
savings.” These MFMP columns have been widely used in industrial
applications such as crude oil fractionation, air separation, extractive
distillation, multi-effect distillation, and so on. To design these distilla-
tion systems effectively, process engineers need to fundamentally

understand how the internal liquid and vapor traffic within an MFMP
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FIGURE 1 (A) A four-component configuration containing only
simple columns; (B) the well-known fully thermally coupled
configuration® in which columns 2 and 3 are both MFMP columns.
Here and thereafter, letters A, B, C, and so on represent pure
components with their volatilities decreasing in alphabetical order.
Also, we indicate reboilers by open circles and condensers by filled
circles.

column affects product quality, including the column's minimum reflux
condition.

The minimum reflux ratio of a distillation column, which directly
translates to its reboiler vapor duty requirement at minimum reflux
condition, is an important parameter that provides key information on
the column's optimal design and operation. With the knowledge of
minimum reflux ratio, process engineers can estimate the actual heat
duty requirement of the distillation column in operation.'®** The min-
imum reflux ratio also serves as a direct indicator for the capital cost
of a distillation column, as it is closely related to the number of stages,
column diameter and height, as well as reboiler and condenser
sizes.’>71* Because of these reasons, the minimum reflux ratio has
been commonly chosen as the objective function for optimizing, com-
paring, and ranklisting different distillation column designs.”*>"1? As a
result, a fast and accurate determination of the minimum reflux ratio
or minimum reboiler vapor duty requirement is crucial for synthesizing
and designing attractive multicomponent distillation systems, and fail-
ing to do so often leads to inefficient and unnecessarily large columns
being built and operated.

Over the past decades, a number of attempts have been made to
identify the true minimum reflux condition for MFMP columns that
carry out ideal/near ideal, nonideal, or even azeotropic mixture sepa-
rations. These attempts led to the development of various shortcut,
geometric, or rigorous methods. Most rigorous methods involve
detailed tray-by-tray calculations by simultaneously solving the so-
called MESH equations which incorporate mass and energy balances
as well as phase equilibrium relations.2°-2* These methods are now
embedded in process simulation tools such as Aspen Plus. However,
as the number of components involved increases, these tray-by-tray
calculations quickly become too computationally expensive to be per-
formed in a global optimization framework, in which optimal operating
conditions are to be identified for either one or the entire search
space of configurations where each configuration consists of multiple
columns.

In addition to rigorous methods, several geometric based

approaches have also been proposed to address the minimum reflux

.25 conducted a comprehen-

problem in an iterative manner. Lucia et a
sive literature survey summarizing these geometric methods. Among
them, Levy and Doherty?® made one of the earliest and most influen-
tial contributions by introducing first-order finite difference approxi-
mation followed by numerical integration to calculate the liquid
composition profile for each column section in a multi-feed column
separating ternary mixtures. In order for a separation to be feasible,
composition profiles associated with any two adjacent column sec-
tions must be connected. In the extreme case of minimum reflux,
composition profiles inside the pinched column sections barely touch
each other. A column section is said to be pinched when there exists a
region in which the liquid or vapor composition stays unchanged from
tray to tray. Therefore, a pinched column section will require an infi-
nite number of stages for separation. Subsequently, Koehler et al.?”
suggested a “minimum angle” criterion for minimum reflux condition
in a simple column separating binary and ternary mixtures. This
method is based on the observation that, when the column is oper-
ated under minimum reflux, the angle between the vector connecting
feed composition and rectifying section pinch zone composition and
the vector connecting feed composition and stripping section pinch
zone composition is minimized. Later, Koehler et al.?® extended this
criterion to characterize the minimum reflux behavior for multi-
product columns separating ternary mixtures. Nevertheless, the
minimum angle criterion, which is generally formulated as a complex
nonlinear programming (NLP) problem,?” is computationally challeng-
ing to solve and lacks solid physical basis. Other geometric based
approaches (e.g., “zero-volume” method, “separation driving force”
method, and “rectification body” method) have also been proposed to
calculate the minimum reflux ratio for nonideal or azeotropic multi-
component distillation in a simple column.??~3* Although some of
these methods have been extended to MFMP columns,®>~%7 they still
suffer from computational inefficiency and convergence issues due to
model complexity and numerical instability. Moreover, while some of
these methods work well for three- or four-component mixture sepa-
rations where composition profiles can be visualized, generalizing
them to separations involving higher number of components is tricky,
and a clear generalization does not exist. To address these difficulties,
there is a need to develop an accurate, robust shortcut based
approach that does not require rigorous tray-by-tray calculations or
tedious iterative procedures.

Most existing shortcut methods for estimating the minimum
reflux ratio for multicomponent distillation in MFMP columns general-
ize the well-known Underwood method,®®%° which was originally
developed for simple columns. The Underwood method avoids the
need for rigorous tray-by-tray calculations by making three major
underlying assumptions: ideal liquid-vapor equilibrium (ideal-VLE), con-
stant relative volatility (CRV), and constant molar overflow (CMO). As
corollaries of these assumptions, all components have constant and
equal latent heat of vaporization, and there is no enthalpy of mixing.
Despite these simplifications, the minimum reflux ratio can be esti-
mated with reasonable accuracy even for many nonideal“ or azeotro-
pic systems*! that cover a wide range of industrially important

separations.
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FIGURE 2 According to column decomposition, this two-feed,
three-product column can be decomposed into two simple columns.
Let V522 and V354 be the minimum reboiler vapor duties determined
by the Underwood method for the upper and lower simple columns,
respectively. Then, column decomposition postulates that the

minimum reboiler vapor duty of this MFMP column is given by

max q V32 _ Vpep, aneiff}, where Vpgcp is the vapor portion flow rate
of feed BCD.

One of the first generalizations of the Underwood method was
derived by Barnes et al.*? to study the minimum reflux behavior for
multi-feed columns. Unfortunately, their solution procedure still
requires extensive iterative calculations. Wachter et al.*®> modified the
Underwood method to estimate the minimum reflux ratio for MFMP
columns. However, the success of their method relies on correct iden-
tification of key components in the separation. In general, identifying
the right key components is not a straightforward task for MFMP col-
umns. Sugie and Lu** extended the Underwood method to multi-
product columns with only saturated liquid sidedraws. They claimed
that, at minimum reflux, such multi-product columns must be pinched
at the feed location. Later, Glinos and Malone*® derived shortcut
design equations for columns with exactly one feed and one sidedraw
stream. Nikolaides and Malone*® further extended the work of Glinos
and Malone*® to general MFMP columns. They argued that an MFMP
column could always be decomposed into a series of simple columns,
each containing exactly one feed or sidedraw stream sandwiched by
two column sections (see Figure 2). The classic Underwood method
can then be applied to determine the minimum reflux ratio for each
simple column generated. Finally, they postulated that the minimum
reflux ratio of the original MFMP column corresponds to the largest
minimum reflux ratio value among all decomposed simple columns.
Thereafter, this assumption has been widely accepted and adopted by
a number of articles, including some of the recent ones such as Cabal-
lero and Grossmann,** Ruiz-Marin et al.,*” Adiche and Vogelpohl,48
Gémez-Castro et al.,*’ Adiche and Aissa,”® Nallasivam et al.,*® Jiang

et aI.,13'51'52 |.19

and Tumbalam Gooty et a

As we can see, in order to generalize the Underwood method to
MFMP columns, existing shortcut methods incorporate several addi-
tional assumptions and constraints which cause the resulting models
to only be valid under restricted settings. This work is the first to
develop an accurate and easy-to-use shortcut based method to esti-
mate the minimum reflux ratio for a general MFMP column without
needing extensive simplifying assumptions. Specifically, unlike existing

approaches, our method is meant to be generally applicable and does
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FIGURE 3 A general MFMP column. The topmost and
bottommost column sections are present in both simple columns and
MFMP columns. However, the intermediate sections are unique to
MFMP columns. Note that by considering a general column section as
the smallest module of an MFMP column, our modeling framework is
fundamentally different from the column decomposition method
proposed by others.

not pose any restriction on the number of feed or sidedraw streams, the
relative locations and physical properties (e.g., thermal quality) of these
streams, or the number of components involved in the separation. Fur-
thermore, it is designed to be computationally efficient so that it can be
incorporated into a global optimization framework. In this series, in addi-
tion to presenting how this first-of-its-kind shortcut based method is
derived and formulated, we will also use our method to revisit some of
the well-accepted design heuristics and modeling assumptions men-
tioned before. In particular, we would like to address the following key

questions that distillation/separations community is concerned about:

1. What are the fundamental physical and mathematical interpreta-
tions behind the well-known Underwood method?

2. What is the optimal strategy to arrange the relative locations of
feed and/or sidedraw streams in order to minimize the energy con-
sumption. Is it always more energy efficient to place these streams
based on their temperature levels?

3. Is it true that an MFMP column can always be decomposed into
individual simple columns, so that its true minimum reflux ratio is
given by the largest minimum reflux ratio value among all decom-

posed simple columns?

We will answer the first question in this article, while the remain-
ing two will be addressed in the second article of the series. We will
show that, despite widely held beliefs regarding the answers to some
of the above questions, the real answers are surprising and often

counterintuitive.

2 | OVERVIEW OF SOLUTION STRATEGY

We propose a bottom-up approach to solve this longstanding problem

in chemical engineering. First, we recognize that the basic module or
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FIGURE 4 A general column section modeled as a countercurrent
mass exchanger. The molar flow rate of component i in the vapor and
liquid traffic leaving stage n in the lower (resp. upper) part of column
section are respectively given by V;,n (resp. vi,) and I;’n (resp. lin). These
component flow rates are always nonnegative following the direction
shown here.

building block of a general MFMP column is a column section,
which can be modeled as a countercurrent mass exchange unit. As
shown in Figure 3, even though the topmost and bottommost col-
umn sections in an MFMP column are respectively equivalent to
the rectifying and stripping sections in a simple column, it is the
presence of other intermediate column sections that really differ-
entiates the MFMP column from a simple column. In a simple col-
umn, the net material flow of any component that is not
withdrawn as a product from a column section is zero. For exam-
ple, in the rectifying section of column 1 of Figure 1B, components
A, B, and C have net material flows pointing upward, whereas the
least volatile component D has zero net material flow. In the strip-
ping section, components B, C, and D have net material flows
pointing downward, whereas the most volatile component A has
zero net material flow. However, when considering an intermedi-
ate column section in Figure 3 as highlighted by a red box, it is
very likely to have some components with net material flows
pointing upward and others pointing downward based on compo-
nent mass balances. Due to the simultaneous presence of compo-
nents with net upward and downward flows, these intermediate
sections require a special mathematical treatment. Thus, rather
than decomposing an MFMP column into a series of simple col-
umns, here we construct a shortcut model for a general column
section assuming ideal-VLE, CRV, and CMO as in Underwood

method.?’

Also, by default, the composition, flow rate, and ther-
mal quality of all feed and product streams are specified. These
are the only assumptions we make throughout the model develop-
ment. Each general column section exhibits a set of physical and
mathematical properties, some of which can be interpreted geo-
metrically and easily visualized. We will explore these properties
and use them to derive the minimum reflux condition of an MFMP

column as a set of algebraic constraints.

3 | MODELING COLUMN SECTION AS
COUNTERCURRENT MASS EXCHANGE UNIT

We consider a general column section drawn in Figure 4 that involves
a total of c components. As a result of the CMO assumption, the total
vapor and liquid flow rate, respectively denoted as V and L, do not
change from stage to stage within this section. The total net material
upward flow D=V —L stays constant as well. When the column
section of interest corresponds to the topmost section of an MFMP
or a simple column, D is just the total distillate flow rate. On the other
hand, considering the column section to be the bottommost
section of an MFMP column or the stripping section of a simple col-
umn, D is always negative and equals bottoms flow rate in magnitude.
In terms of each individual component ic C={1,---,c}, its net mate-
rial upward flow rate d;, which is given by d; :v‘f‘m1 712,,, =Vip—lin-1
in any stage n € N, also remains unchanged within the section. Here,
v,fyn (resp. vi,) and l;-',, (resp. I;n) stand for the vapor and liquid flow rates
of component i leaving stage n in the lower (resp. upper) part of col-
umn section, respectively. Notice that by convention, the component

]

vapor (v,fyn or vi,) and liquid flows (., or ;,) are always nonnegative

in
and follow the direction shown in Figure 4. The direction of d;, on the
contrary, is not necessarily the same for every component in the same
column section. When d; < 0 for some component i in the section, the
net material flow direction for component i is pointing downward. Fol-
lowing the notations and conventions defined so far, next we will model
the lower and upper part of a general column section. Subsequently, we
will analyze the pinch condition in the column section as the number of
stages n in both upper and lower parts approaches infinity.

In this section, our goal is to derive all relevant equations that
enable calculation of stage-to-stage liquid and vapor compositions as
well as potential pinch zone compositions. We first discuss the trans-
formation of liquid component flow rates on each stage n to a new
variable which encapsulates the nonlinearity associated with the
ideal-VLE relation and thereby allows the solution of mass balance
equations to be determined in the transformed variable space. Once
the eigenvalues and eigenvectors of the transformed variable space
become available, rather than immediately deriving the expressions for
liquid and vapor compositions on any given stage, we take the following
detour. First, we explore the connection between potential pinch zone
compositions and eigenvectors in the transformed space. Next, we dis-
cuss tray-by-tray evolution of liquid composition profile in the trans-
formed variable space. The resulting ¢ —1 dimensional pinch simplex
obtained from this transformation has interesting features as each of
its vertices matches exactly with a potential pinch zone liquid compo-
sition. Finally, we go back to the original problem and derive expres-

sions for liquid and vapor compositions in the column section.
3.1 | Mass balance equations, eigenvalues, and
eigenvectors

To model a general column section, we first write down the compo-

nent mass balance equation:
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Lowerpart:f;, .y =v;,—d; VieCnen. (1)
Upper part: iy =Vini1 —di

Note that the mass balances for the lower and upper part of a col-
umn section differ due to the way stages are numbered (see Figure 4),
which is necessary especially when the column section is pinched
(which implies an infinite number of stages in the section). Neverthe-
less, the modeling procedure is the same for both the upper and lower
parts of column section. For now, we focus on the lower part to dem-
onstrate the modeling procedure. The nonlinearity of the model origi-
nates from the ideal-VLE relation which says that, on any stage n:

‘LV” - C”"’"*"/ VieCneN, 2)
> ak’k,n
k=1

in which «; stands for the relative volatility of component i with
respect to the heaviest component, which is Component 1. By con-
vention, the relative volatility of each component follows
ac>ac_1>--->a;=1. Let us consider two adjacent stages, namely
(n+1) and n, and substitute Equation (2) into (1):

/1,n+1 (11”1),] dl
/ . v
n1 = : <, N
oyl
2,n+1 g “r aC’/c,n dc
a1(Vfd1) 7a2d1 *acdl ’ll,n
1 —a1ds az(V*dz) —acds I,2,n (3)
=— ; .
Z ak’k,n : ’
k=1 4
—ayd. —ad, ac(vfdc) Icn

1 H T\p
=—_7(Vdiag(a) —da’ )1,
a’l, ( ) n

where a = (a1, ac)", d=(dy,---,d.)", and diag(a) is a ¢ x c diagonal
matrix whose entries are the elements of a. Therefore, we can define

a ¢ x ¢ matrix A as:

a1 (V—di) —azdr s —aedy
) ; —aqdy  ap(V—d2) - —adr
A:=Vdiag(a) —da’ = : : N : . (4)
—aqd, —apd, ac(V—dc)

Since a and d are independent of the stage number, matrix A is
independent of the stage number as well. Now, let us multiply both

sides of Equation (3) by H;’;liaTI} and rearrange to get:

n-1
T/
Halj.

" _
oo [Ja'l=Al,
j=1 j=1

Therefore, the nonlinearity associated with Equation (2) can be

encapsulated by defining a new variable ﬁ’,, as:

AI?BIFJ R NALJE’;f21

n-1
c,| o | =L]]et vnent, (5)
j=1

from which we obtain a linear system in terms of the new variable:
L,,1=AL, VYneN". (6)

This newly introduced variable ﬁ’n not only leads to a linear sys-
tem of Equation (6), but also preserves the liquid composition infor-
mation and the ideal-VLE relation, as x;,, the liquid composition on
stage n, and y;q, the vapor composition in equilibrium with x',,, can be
determined as:

N
"ol €L,
. diag(a)l, diag(a)L),
Yn = eTdiagla),  e'diag(a)L,

X

VneN*. (7)

Together, these two facts enable us to directly compute the
composition profile in a column section without explicit tray-by-
tray calculations. To show this, we first need to understand matrix
A in Equation (4), which contains all the information about the compo-
sition profile and pinch conditions in a column section. In particular,
we are interested in the fixed point solution of the linear system asso-
ciated with Equation (6), which is given by the eigenvalues and
eigenvectors of A. To obtain the eigenvalues, notice that
det(A —Al) =det [(Vdiag(a) —A) —daT]. Applying the matrix determi-
nant lemma, we can determine the characteristic polynomial of A as:

det(A—Al) =det(Vdiag(e) — Al) — a' adj(Vdiag(a) — Al)d

- Q(erj —2)- i(l:‘di ﬁ (Vaj—2)

i—1 j#Ei (8)

- <1 - ; VZ:di/1> [T (Ve -,

i=

where adj(M) stands for the adjoint of matrix M. From Equation (8),

we can easily see that the eigenvalues of A are:

4 =Va; Visuchthatd;=0

B . ?)
4 =Vy; Visuchthatd; #0,
where y; represents the it" root of the following equation:
¢ .(]:
od; _ v, (10)
i

and by convention, y, > -+ >y4.
Equation (10) looks familiar. In fact, when considering the rectify-
ing (resp. stripping) section of a simple column, this equation is identi-

cal to the Underwood distillate (resp. bottoms) equation.*® In this
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FIGURE 5 The root behavior of Equation (10) as the component net material upward flow d, ---,dy;1 >0 and dy, - --,d1 <O.

special case, we readily recognize that the Underwood roots y; are
nothing but the eigenvalues of A divided by the rectifying (resp. strip-
ping) section vapor flow V.2 Furthermore, in this case, each Under-
wood root is bounded by: y; € (aj_1, %) (resp. y; € (aj, aj+1)) for ie C
(assuming ag = —oo and a1 = +oo). For a general column section, the
root behavior may be slightly different. Suppose d., ---,dx,1 are posi-
tive and dy,---,d; are negative, Equation (10) is plotted in Figure 5.
Note that there exists two distinct roots, namely 7, and y,.4, in the
interval (ax, ax+1). We will later show that these roots are indeed dis-
tinct and real when the column section has enough vapor flow V to
ensure physically feasible separation in the section.

Next, for each eigenvalue 4; determined from Equation (9), the
corresponding eigenvector n; can be obtained by standard procedure

(i.e., solving (A —Zil)y; =0) as:

_ 1 Aidq Aidi_1 Ai < (ljdj
=T Vai — 4" " Va1 — 1 a; 17;Vaj7/1,‘ ’ (11

;
i1 Aide
Va1 —%4" " Vac— 4

Specifically, depending on whether d; =0 or not, we have:

1( adi  aidig ad;  aidipq

Vi= 3y s V- ’ ’
L\ar—a" "ai1—aq Zi i a1 —a
T
_aide_ ifd; =0,
Ac — Qi (12)
. 1/ Adq Aid; ade \T
'_L V(Ii—/l," ’V(l,'—/l,', ’V(lc—l,'

Lty e ) ifd; # 0
L\ar—y" Tac—y; T

Since all eigenvalues will be shown to be distinct and real, these

eigenvectors are linearly independent. Thus, £; can be expressed as

the linear combination of these eigenvectors, and C;] can subse-
quently be determined by recursively applying Equation (6):
E; :A”’lﬁll. Nevertheless, before going through these derivations,
let us further examine the connection between eigenvector »; and
pinch zone composition.

3.2 | Relationship between liquid pinch
compositions and eigenvectors

To establish the relationship between liquid pinch zone compositions
and eigenvectors of A, recall that a pinch zone is a region in which the
liquid or vapor composition remains unchanged from one stage to
another. When the column section is pinched, the equilibrium curve
(i.e., Equation 2) intersects the operating line (i.e., Equation 1), result-
ing in zero dividing force for mass transfer. The concept of pinch has

d®83? as well as Franklin and

been extensively discussed by Underwoo
Forsyth®* for the case of simple column operating at minimum reflux.
They found that each Underwood root is related to a unique possible
pinch composition. They also pointed out that, even though some of
the pinch compositions calculated might not be physically feasible in
an actual distillation column, they play an equally important role in
constructing the composition profile inside the column section and
also in deriving the minimum reflux condition. Analogously, for a gen-
eral column section, each eigenvalue of Equation (9) is associated with
a unique pinch composition. In fact, each v; exactly gives a pinch zone
liquid composition associated with eigenvalue J;. To show this, sup-

pose [

bincn S the component liquid flow rate in the pinch zone and

remains unchanged from stage to stage. Then, by Equation (3), we
have Al/pmch = (anpinch>/pinch, which indicates that 'l i, must be
an eigenvalue and fpinch must be an eigenvector. Thus, I’pinch:ﬁv;
where f is a scalar. To determine $, for any component i with nonzero
d;, recall that Vy; =4 =a™l yineh = fa’vi, which equals to pVy;/L from
Equations (10) and (12). This implies that g=L. For any component i
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with a zero dj, Va; = 4 = pa’;, which can be shown to equal to svay;.
Again, this implies that g =L. Since the argument above holds for every
i€C, there are as many pinch compositions as components involved
in the multicomponent system. Therefore, the pinch zone component

vapor and liquid flows associated with 4; are respectively given by:
V'pineh = i+ il inen =Ly VieC. (13)

In summary, for a c-component system, there are c possible liquid
pinch compositions, which are essentially the ¢ eigenvectors v4, -+, v,
From Equations (9)-(11), all possible pinch zone liquid and vapor com-
positions (or pinch zone component liquid and vapor flows) will be
determined once d and either V or L in the column section are known.
Thus, these pinch compositions are intrinsic characteristics of a col-
umn section and are independent of which part of the column

section is being considered.

3.3 | Calculation of composition profile

To calculate the composition profile within a general column section,
we first diagonalize matrix A as QAQ ™! using eigendecomposition, in
which the columns of Q contain all the -eigenvectors (i.e.,
Q=v1,-,¥]) and A is a diagonal matrix whose diagonal elements
are all the eigenvalues. To determine Q1, we first introduce a very
useful relation obtained by substituting two distinct eigenvalues,
Ai=Vy; and 4 =Vy (assuming d;, d; # 0), into Equation (10), followed

by subtracting one expression from the other:

C
d
Yoo A ——0 vizjeC (14)
= (a—71) (“k - Vi)

Using Equation (14), one can verify that, for any i such that
d; # 0, the i™ row of Q1 is given by the product of a row vector w;T

and a scaling factor r; that depends on 4;:

ol — Vay Va, _ o ac
P Va4 Vac—4) \ai—v ac—r)’

1 VA ade v~ akdk
fi L Va—-4)? Lk (a—n)?

(15)

It can be shown that the scaling factor r; and d; have the same
sign. For 4; = Va; when d; =0, the i" row of Q1 is simply the ith prin-
cipal vector eiT multiplied by a scaling factor r;:

T T

:ei,

w,
1
ri La, V

Now that matrix A is diagonalized, let us now solve for the com-

) Vv 1 ad (16

position profile in the lower part of column section. Substituting
QAQ ! into Equation (6), and noticing that £/1 :l’1 for the boundary

case, gives L’,,:A”’lﬁ/leA”’lQ’ll/l. Using Equation (7), we can

AI?BIFJ R NALJ7;f21

write down the liquid and vapor composition profile in the lower part

of column section compactly as:

, QA'Qll;,  QA"Qix;
¥l T A M, erQa'Q
1
y = diag(a)QA" Q71 _ diag(a)QA"'Q'x;

n - a'rQAn—lq—l,’1 (/ln)T/Lq—l

vneN, (17)

in which we denote A as (/11,---,/16)T, a column vector containing all
the eigenvalues of A. In deriving Equation (17), we apply Equa-
tions (10) and (12) and use the fact that &’ Q= A" /L. In summary, given
the set of relative volatilities (&), component material upward flows
(d), component liquid flows leaving the bottom of column section (fi),
and the total vapor flow (V), the column section composition profile
can be calculated without explicit tray-by-tray calculation by first solv-
ing Equation (8) for 4;, followed by substituting these eigenvalues to
obtain Q, A, and QL. If we are interested in expanding the matrix
representation in Equation (17), the liquid and vapor composition pro-
files, assuming that none of the components has a zero net material
upward flow, are explicitly written as:

n+1
4 a}yl

VieC,neN,

where the quantity ajf is determined to be:

,
d rjz ak’m r S akXy g vieC
7% — }’, =10y

It follows from Equation (15) that (aj,---a.)" =Q 'X;. Since
e'Q=e’ from Equation (12), we also have e’Q ' =e" and there-
fore, Y7 ja;=e’Q 'x; = 1.

Similarly, when d;=0, we can show from Equation (12) that
eTy; = 1. This again implies that e’Q=e"Q ' =e'. With this, one can
also write down the explicit vapor or liquid composition profile
expressions for cases when some components have zero net material
upward flows.

To generalize, we can define the following linear transformation
that maps the original composition space in R¢, denoted as the

X-space, to a new space in R¢, which we refer to as the z-space:

71(X) rawlx

Zc(x) rewlx

By substituting Equation (18) to Equation (17), we can now
express the liquid composition profile in z-space as:
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(A)

(B)

FIGURE 6 Anillustrative example of composition simplex and pinch simplex drawn in x-space and z-space for
(a1, a2,a3) = (1,1.5,2), (d1,do,d3) = (0.03,0.06,0.21),andV = 1.4552. Thus, (71, 7,,73) = (0.9659,1.3928,1.7702) from Equation (10).
(A) Composition simplex and pinch simplex in x-space; (B) Composition simplex and pinch simplex in z-space.

; A"z,
Zh1 = n,/
" eTA"Z)

vheN, (19)
where we denote 7, to be z(x;) = (aj, -+, a,)" and Z, as z(x,). Equa-
tion (19) looks familiar. Indeed, as we will discuss shortly, it resembles
the well-known Fenske equation®® that characterizes the liquid com-
position profile in a simple column operated at total reflux. Such

resemblance sheds light on the geometric significance of z-space.

3.4 | Composition profile and pinch compositions
in z-space

So far, we have shown that the liquid or vapor composition profile
in the lower part of a column section can be characterized either
in x-space or in z-space. Specifically, the set of liquid composition pro-
files calculated using Equation (17) (resp. 19) with various starting
compositions x (resp. zj) that satisfy eTx/1 =1 (resp. eTz’1 =1), also
known as the liquid composition trajectory bundle, can be described
by a (c — 1)-dimensional simplex called the composition simplex (resp.
pinch simplex). Both the composition and pinch simplices can be
drawn in x-space as well as in z-space. For illustration, let us consider
a ternary mixture distillation example. As shown in Figure 6A, the
composition simplex drawn in x-space (Cy) is an equilateral triangle
bounded by x 20 and e"x=1. Thus, it contains all feasible composi-
tions. The extreme points of C,, which are denoted as X;=e; for
i=1,2,3, correspond to the pure components in the ternary system.
The facets of C, are given by x; =0 for i=1, 2, 3. On the other hand,

TABLE 1 Construction of composition simplex and pinch simplex
in x-space and z-space.

Composition simplex Pinch simplex
X-space

Cy={xeR‘|x20,e"x=1} PX={xeRC|Q’1x20,eTx:1}

Extreme points: columns of | Extreme points: columns of Q
z-space
C,={zeR|Qz20,e"z=1} P,={zeR‘zz0,e"z=1}

Extreme points: columns of Q! Extreme points: columns of |

the pinch simplex, Py, is bounded by Q x =0 and e"x=1 in x-space.
The extreme points of P, in x-space, Z; =v; for i=1,2,3, are essen-
tially liquid pinch compositions according to Equation (13). The facets
of P are given by z(x)=0 for i=1,2,3. Of course, as shown in
Figure 6B, both simplices can also be represented in the z-space.
Table 1 summarizes how both simplices are constructed in both
spaces.

As summarized in Table 1, when a distillation column is operated
at total reflux (i.e., di=0 for every i € C), o] =€ and r;=1 from Equa-
tion (16) for every ie C, implying that Q ! =I. Therefore, the pinch
simplex for total reflux operation is characterized by
P, = {x€R|Ix 20,e"x =1}, which matches with the composition sim-
plex Cy exactly. Similarly, P, and C, are identical in z-space as well
when the column is operated at total reflux. Furthermore, from

Figure 7B, it is also clear why Equation (19) resembles the Fenske
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(A)

FIGURE 7

AI?BIFJ R NALJ9;f21

(B)

Liquid composition trajectory bundle for the illustrative example of Figure 6. The arrow indicates the direction of liquid

composition evolution as we move upward from the bottom of the column section. The stage is numbered following the convention of Figure 4.
(A) Liquid composition trajectory bundle drawn in x-space; (B) Liquid composition trajectory bundle drawn in z-space.

equation in z-space. Specifically, the eigenvalue matrix A and z;,, in
z-space are respectively analogous to the relative volatility matrix and
liquid composition x’n in x-space.

An important question related to these liquid pinch compositions
is: “Given the starting composition x'1 (or z'i), which pinch will be
reached from the bottom of column section?” To reach a specific lig-
uid pinch composition, say Z;, from the bottom of the column section,
Z; must first be physically feasible. From Figure 6, it can be seen that
some pinch compositions (Z, and Z3) are located outside of the feasi-
ble region bounded by the composition simplex. Suppose dc, ---,dx >0
and d,---,dy <0 for some component I<k, then Z; being physically
feasible means that v; is real and nonnegative, which implies that
indexie{l,---, k} (i.e., Vay < 4; < Vai or o <y; < a) from Equation (11).

In addition to the requirement that Z; must be physically feasi-
ble, the starting composition x; (or Z;) at the bottom of the column
section must satisfy certain criteria in order for x',,—>Z,- (or v;) as
n— oo. To see this, let us examine the liquid composition trajectory
bundle drawn in Figure 7. Clearly, depending on where x'1 (resp. z'l)
lies with respect to Py (resp. P,), the liquid composition profile follows
different trajectories. From Equations (18) and (19), we can see that Z;
can only be reached as we move upward from the bottom of column
section if the starting composition x/1 lies in a subspace of pinch sim-
plex satisfying zj(x; ) = rjw] X, =0 for all j > i.

Before moving on, we remark that the actual pinch zone liquid
composition, Z;, is physically feasible if and only if all ¢ eigenvalues of
matrix A are real. To show this, suppose Z; is physically feasible, then

’

d . . .
vpinchJ:% is nonnegative for every component jeC from Equa-
i

tion (}3). This implies that there is a single real root of equation
ZfﬂM:O between o and agyq for every ke{l,.-,c—1}.

aj—x

Furthermore, comparing this equation with Equation (14), we find that
these ¢ — 1 distinct and real roots are essentially y; with je C+ {i}. On
the other hand, if all eigenvalues are real, then for o <y; < (recall
that di > 0 and d; < 0), the corresponding pinch composition Z; must be
real and nonnegative, making it physically feasible.

3.5 | The upper part of column section

Once we successfully build the mathematical model to character-
ize the lower part of column section, the model for the upper part
is similar. The key difference is that the numbering of stages is
now reversed as indicated in Figure 4 and Equation (1). Similar to
Equation (17), we can directly write down the liquid and vapor

composition profile in the upper part of column section:

_QAa"Qllh . QA"Q'xg
“eTQAT"Q Uy eTQAT"Q xo

_ diag(@)QA"*Q "y _ diag(a)QA"1Q "o
n+l = aQa"tqQl, (fn)r/LQAXO

n

vneN,

(20)

in which x, can also be expressed in z-space based on the definition
of Equation (18):
A"z

=———— VneN, 21
eTA "z (21)

Zn

where z, =z(x,). Of course, the composition and pinch simplices in
x-space and z-space (Table 1) hold true irrespective of which part of
column section is considered. However, the conditions for reaching a
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particular pinch zone liquid composition Z, from the top of column
section as n — oo are slightly different. This time, Z, can be reached
from the top if the starting composition xg lies in a subspace of pinch
simplex satisfying zj(xo) :r]-ijxo =0 for all j<p. Clearly, a pinch zone
can be reached from both the top and bottom of the column section.
To summarize, in this section, we develop a shortcut mathemati-
cal model that calculates the composition profile in a general column
section without requiring explicit tray-by-tray calculations. We also
derive possible pinch zone compositions and relate them with compo-

sition simplex and pinch simplex in x-space and z-space.

4 | SOME PROPERTIES OF THE MODEL

In this section, we would like to explore some of the mathematical
properties of this new shortcut model, which will allow us to derive
the feasible separation and minimum reflux conditions for MFMP

columns.

4.1 | Existence and uniqueness of pinch zone in a
general column section

Here, we would like to show that an infinite column section contains
one and only one pinch zone. This is done by verifying that the same
pinch zone is reached as we move into the column section from both
top and bottom ends. In other words, we will show that, as n
approaches infinity, v, and v, converge to the same limit, which we
later denote as v= (v1,~~,vc)T. To illustrate the existence of pinch
zone in an infinite column section, we first construct two functions
f;,(x) and f,(x) for stage n in the lower and upper part of the column
section, respectively:
, <V
Lower part: f,(x) = Z Vai"'l -

i=1 (22)

Upper part: fn(x

1

These two functions, which have not been proposed or studied
before, turn out to be quite useful. Here, we focus on the lower part
of column section and explore properties for f’,,(x). These properties
are also valid for the upper part. Since v;, is nonnegative on any stage
n, there is a single real root x;((n) between Vi and Va4 for every
ke{1,---,c—1} such that f;] (x;((n)) =0. In fact, one can show that

component vapor flow v;,, is related to x, (n) via:

= H —X(n /v/H —a) VieC. (23)

k=i

Furthermore, for every ke {1,---,c—1}, x;((n) forms a monotonic

sequence with respect to the stage number n:

Proposition 1. The roots of f/,,(x) =0 form a monotonic
sequence  {x(n)}  with respect to n for
everyke{1,--,c—1}.

Proof. We take the fractional part of the characteristic
polynomial of A and define a function C(x) as

—1, (24)

and observe that C(x) is independent of stage number

n. Substituting the mass balance equation v,, 71/,,“ =d,

diag(1/a)v, Ty —1;
the ideal-VLE relation [ L_W' and e'y, =1 into

Equation (24), we obtain C(x) =& [xf,,(x) —a'l, +1f’nﬂ(x)].

n

Thus, — C(x,() = =0y, afy.y () =", (6, (),
implying f,.. (X (n)) -fo_1 (X (n)) <O. Since v, 20, f,(x)
monotonically increases with x between Vay and Vo 1.
Therefore, x,(n) lies within x,(n—1) and x (n+1). If
X (n+1) 2x,(n—1), {x,(n)

ing sequence. Otherwise, it is monotonically decreasing.

} is a monotonically increas-

In either case, {x,(n)} is monotonic. O

Since {x,(n)} is bounded and monotonic, it is a convergent
sequence. Let us denote x(n)—x, as n—o for every
ke {1,---,c—1}. Figure 8 shows convergence of sequence {xL(n)} for
the lower part of the rectifying section of a simple column simulated
in Aspen HYSYS V11 using actual column vapor composition profile
data. Note that it follows from Equation (23) and Figure 8 that

;<, —0 when and only when x,(n) — Ve (i.e, x,=Va). In other
cases when v, »0, it can be shown that xk( ) is bounded away from

both Vay and Vay, 1. We can also bound df ) at the root xk( )ina

stage-independent manner. Specifically, dfg =3 1y f‘" >, whose

denominator is bounded away from zero at x;((n). Therefore, dfgf(x) can

be upper bounded by V/5?, where 0<§< min {x=Vaoy,Vay1 —x}. A

valid lower bound for dfgix)

is zero. Using these bounds, for

limp_eVj, 7 O, we can show that C(x,(n)) — 0 as n— co:

Proposition 2. {C(x,(n))} is a convergent sequence and
C(x,) =0 when lim,_qV, , #O0.

n+1 (Xk(n))

an b ower bounded

Proof. Recall that C(x,(n))=-— Z

and note that the term ——Lt——c¢
Z, 1 1n+1/“!

by % Lo According to the mean value theorem, for x/k(n)

sufficiently close to X, (n+1):

0x C(xL(n)) < % [f;,ﬂ (XL(” + 1)) ~foa (XL(”))]
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FIGURE 8 Convergence of monotonically decreasing sequence {x'l(n)} and monotonically increasing sequence {x'z(n)} for the rectifying
section of a simple column separating an equimolar saturated liquid feed of n-octane (Component 1), n-heptane (Component 2), and n-hexane
(Component 3), where (a1, a2, a3) = (1,2.2500,5.1168). The reflux ratio is set to be 2.0, and the distillate flow rate is half of the feed flow rate

and contains 66.67 mol% n-hexane and 33.33 mol% n-heptane.

Lay V|, )
ﬂa_zﬂxk(”‘*‘l) =X (n)]|

IA

:5%Hx'k(n+1)—x;<(n)|}.

Since ||x (n+1)—x(n)|| >0 as n— oo, it follows
from the continuity of C(x) within xe& (Vay, Vak 1)
that IimnﬂwC(x;((n)) :C(x;() =0. O

Summarizing the findings above, especially from Equation (23)
and Propositions 1 and 2, we conclude that, with component vapor
flows always staying nonnegative, v;, eventually converges to a limit
denoted as v = Iimr,ﬂwv;:(v'i,.,.,v'c)T. Similarly, component liquid
flow l;q also converges to a limit I =v' —d>0. In other words, a pinch
zone forms in an infinite column section. Let the limiting function of

’

the sequence {f:,(x)} be f(x)Zfﬂ%, which also has ¢ —1 distinct
real roots, namely X; <x, <---<x._; with X, € [Vax, Vak,1]. Inside the
pinch zone, f,(x)=f,.4(x)=f(x), and thus C(x)=1 (x—aTl’)f(x).
Note that the roots of C(x) =0, which are x,,---,x._;,a'l, are solu-
tions of a c-degree polynomial with real coefficients. Therefore, if
complex roots exist, there must be at least two of them forming com-
plex conjugate. However, since all c—1 roots of f(x) =0 are distinct
and real, it follows that all roots of C(x) =0 must be real in pinch zone
as h— oo. Furthermore, these roots are consistent with the eigen-
values of A determined from its characteristic polynomial. Therefore,
although we do not yet have a rigorous proof, given d,--,dy >0,
dk_1,--+,di1 =0, and d},---,d1 <0 for some I<k in a column section,
based on Equation (9), Figure 5, as well as numerical simulation results
obtained from numerous case studies, we have sufficient evidence
and confidence to relate all roots of f(x) =0 with ¢ — 1 of the c roots
of C(x)=0:

forie{1,---,1}
forie {I+1,-- k—1} (25)
= Jis1=Vyiiq € (Vay, Vaiyq) forie {k,---,c—1}.

The remaining root of C(x) =0, o'l , corresponds to the remaining
eigenvalue of A denoted as A,. It turns out that a'l' or 4, is closely
related to the actual pinch zone composition and therefore will be
referred to as the pinch root or pinch eigenvalue. For the boundary
cases, when d; <0 for all i € C, which is the case in the bottommost

section of an MFMP column, we set [=c—1 and k=c so that

Equation (25) simply becomes x; =4=Vy;€ (Va;,Vaj1) for
ie{1,--,c—1}. In this case, 1p =4 =Vy,>Va.. When d; >0 for all
i€ C, which is the case in the topmost section of an MFMP column,
we set |=0 and k=1 and Equation (25) simply reduces to
X =Air1 =Viip1 € (Vay,Vaiyq1) for i€ {1,--,c—1}. And in this case,
Ap=241=Vyy;<Va;=V. On the other hand, when 1<l<ks<c-1,
it can be shown from (25) that
Ap=%x € (Vax_1,Vax) C (Vay, Vay).

Since there is only one set of eigenvalues A4, - -+, Ac for a particular

Equation

column section, the solutions to the limiting function for the sequence
{fn(x)} characterizing the upper part of column section are identical
to the solutions of C(x)=0 for the lower part. Therefore, from
Equation (23), both the upper and lower parts converge to the same pinch
zone as n — oo from both ends. The component vapor and liquid flows
in this unique pinch zone are denoted as v=Vv’ and I=I, respectively.

This means that a’l=a' (v — d) = 4, which can be rearranged to get:

yo(Ved  Veede N (et dpde )
Vayg —p Vac—y, Vag —2p Vac—7p
=Ly,

(26)

where the symbol o stands for the Hadamard product. Comparing
Equations (13) and (26) implies that the actual pinch zone liquid com-
position is Zp. Recall from the previous section that for d,---,di >0
and dj,---,d1 <0 for some I <k in an infinite column section, pinch Z, is
physically feasible if and only if V<4, <Va. In other words, the
pinch eigenvalue must lie in the interval where the sign change in
component net upward flow occurs. Furthermore, since a single pinch
zone is reached from the top and bottom of an infinite column sec-
tion, we remark that at most one sign change in the elements of d is
allowed for a physically feasible pinch zone to develop in an infinite

column section.

4.2 | Relating eigenvalues to the inlet stream
compositions in an infinite column section

Now we would like to study how the liquid (lp) and vapor streams (v’o)
entering an infinite column section (see Figure 4) are related to the
eigenvalues of A, provided that the pinch zone is Z,. We are inter-
ested in understanding this connection because Iy and v, come from

neighboring column sections as leaving streams. Thus, by building
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connections between the eigenvalues that characterize the internal flow
behavior of the column section of interest and boundary component lig-
uid and vapor flows, we can uncover relations that need to be satisfied
as different column sections are stacked back to form the original MFMP

column. To start, we define two functions F1(x) and F,(x) as follows:

0= @Vio g (27)
X) = 0 _1,
! =1 Va; —X
~ ajlio
Fz(X):Zm‘ (28)
i i

It can be shown that Fl(x):%fg(x):‘#f’l(x)—i-qx), and Fy(x)
can be rewritten as {f1(x) — C(x). The roots of F1(x) =0 and F2(x) =0
are denoted as 0= < g <---<@._1 and ¢ <--- <¢p._4, respectively.
Clearly, ¢, and ¢, roots lie in the interval between Vi and Va1 for

ke {1,---,c—1}. These roots are related to the eigenvalues of A.

Proposition 3. The eigenvalues of A are related to the

roots of F1(x) =0 and F(x) =0 as follows:
ﬂ; =@i_1 Vﬂ,‘ > lp;
Ai=¢; VA<l

Proof. f,,(4) in Equation (22) can be compactly written
as fr(4) = wdeiag(Va)"lv,’,,. We substitute Equation (17)

into this compact form and get:

T -1~—1y/
o QATTQ X
" 1- (a)iTI/1,~--,a),-TVC)A’1Z',

e'Q x}

fo(4i) =

where we use e’Q ! =e". Recall from Equation (14)
and the definition of Q and Q" that w/y; is O for any
jeC\{i} and equals 14 if and only if i=jeC, which
implies  that fg(z,»):(o,...,o,ﬁ,o,...,o)zg:#
=1Lalx;. So F1(k) =4fo(4) =w]x;/V. Since the actual
pinch zone liquid composition is Z,, oo,Tx’1 =0foralli>p,
because otherwise the eigenvector with a larger eigen-
value would survive with repeated applications of
Equation (6). This means A =¢;_ 4 €[Vaj_1,Va] for
every 4 > 4. O

Similarly, fn(4) in Equation (22) can be written as
f,,(/l,»):a),Tdiag(Va)’lvn. Substituting Equations (20) and (14) yields
f1(4) =0T QA~1Q xo = (o, ++,0,2,0,- .,o>z0 =10l xo. So
F2(%) =l xo/V — C(4) =] xo. Again, since Z, is the actual pinch
zone liquid composition, F2(4)=0 for all i<p. In other words,
Ai=¢; € [Va;, Vai, 1] for every 4 < ,.

Proposition 3 tells us that, on any stage in the lower part of col-
umn section (i.e., between the pinch zone Z, and the bottom of col-

umn section), all eigenvalues larger than the pinch eigenvalue 1, are

also roots of f;,(x) =0. Meanwhile, as we move infinitely up from the
bottom of column section into the pinch zone, all roots of f/,,(x) even-
tually match with all the eigenvalues (or roots of C(x)=0) besides 4,
as C(x) = (x—Ap)f(x). Together with Proposition 1, we see that as n
increases, the roots of f,(x) =0 that are smaller than 1, will move
monotonically toward and eventually converge to 1; < 1,, which can
also be obtained from the roots of F,(x) =0 (see Figure 9B). Similarly,
on any stage in the upper part of column section, all eigenvalues smaller
than 4, are also roots of f,(x) =0. As we move infinitely down from
the top of column section to the pinch zone, roots of f,(x) =0 eventu-
ally become the same as all the roots of C(x) =0 except for 4,. Thus,
as n increases, the roots of f,(x) =0 larger than 4, move monotoni-
cally toward all 4; > 4,, which can also be obtained from the roots of
F1(x) =0 (see Figure 9C).

In other words, once v'0 and lp are known, we can track the move-
ment of eigenvalues as n increases in both directions except the pinch
eigenvalue 1,. For 4, without loss of generality, suppose that
de, -+, dky1 >0 and dy,---,d1 <0 in a column section. In this case, we
know that 4, must lie in (Vay, Vaii1). On top of this, we can impose a

tighter bound on 4,, as illustrated in Proposition 4 below.

Proposition 4. If the pinch eigenvalue 4, (or root of
C(x)=0) lies in (Vak,Vax,1), then it is further bounded
away from [min{¢y, gy }, max{@y, ¢ic}]-

Proof. We know that there are two roots of C(x) =0 in
(Vag, Vags1). When 4, is the larger root, let the other
root of C(x) =0 be denoted as 4,_1. From Proposition 3,
¢ =2Ap—1<Ap. To show that A, >¢,, we only need to
show the case when ¢, < ¢y, as the other case is trivially
satisfied. When ¢, < ¢y, recall from Proposition 3 that
# =%, and @, =x,(0) as Fi(x)=%fo(x), implying that
F1(x) =0 shares roots with fy(x) =0. Since x; <x;(0), by
Proposition 1, {xL(n)} is a monotonically decreasing
sequence, and thus f;(¢) =f;(¥,(0)) >f; (X (1)) =0.
Since F1(x) can also be expressed as ‘%f’i(x)—kC(x),
Clp) = ~Sf1(@) <O Thus, A1 <gq<ip OF 2>
max{¢y, ¢ }-When 1, is the smaller root of C(x)=0 in
(Vag, Vagy1), let the other root be denoted as 4,.1.
From Proposition 3, 4, < 4,11 =¢,. We now show that
Ap < ¢y as well. The statement is obvious if ¢, >¢,. If
& < @i, {Xk(n)} is a monotonically increasing sequence.

Thus, f1(xk(1)) =0>f1(xk(0)) = f1(¢hy)- Since
Fa(h) = f1(d) —C(h) =0, Cldh) <0=C(4). Thus,
Ap < Py < Api1, OF Ap < min{y, @y }. Od

Proposition 4 is also highlighted in Figure 9B. Essentially, in an
infinite column section with Z, as the pinch, all eigenvalues of A (or
all roots of C(x) =0), A1, -+, 4, are determined once the streams enter-
ing the column section from top and bottom are known. Propositions 1
through 4 state that Iy determines all 4; < 4,, whereas v’0 determines all

i > 2. And the pinch root 4, is more tightly bounded.
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FIGURE 9 In this example, we consider an infinite column section separating n-octane (Component 1), n-heptane (Component 2), and n-

hexane (Component 3), with (a1, a2, a3) = (1,2.2500,5.1168), (d1,d2,d3) = (—0.7, —0.3,0.5), and V =5. (A) The pinch simplex and liquid
composition profile for this column section. When the liquid pinch composition is Z5, the pinch eigenvalue A, = 1, € (Vaz, Vasz). The liquid stream
leaving (resp. entering) the column section from the bottom (resp. top) has a composition of x; (resp. xo). The liquid compositions in the lower
(resp. upper) part of column section satisfy z3 (xn) =0 (resp. z1(x,) = 0), which leads to A3 = @, (resp. 11 = ¢;); (B) Movement of x,(n) roots of
fn(x) =0 for the upper part of column section. It is clear that 1, < min{¢,, ¢, } for the upper part of column section; (C) Movement of )‘,’1 (x) for the

lower part.

5 | STACKING OF ADJACENT COLUMN
SECTIONS

Up to this point, we have been focusing on modeling and understand-
ing a single column section, which is the basic module for an MFMP
column. Next, we will stack back and connect these individual sec-
tions to form the original MFMP column through liquid and vapor bal-
ances. Figure 10 presents a generalized illustration of how adjacent
sections are linked by a feed or sidedraw stream. Specifically, when a
feed stream F is introduced to the column, its vapor portion directly
enters section TOPg together with the vapor stream coming from the
top stage of section BOTg. The liquid portion of the feed is mixed
with the liquid coming from the bottom downcomer of section TOPE.
We would like to remark that such a feed arrangement differs slightly

d®83? as well as Acrivos and

from the one used by Underwoo
Amundson,”® where the feed stream enters the column onto a “feed

stage” that does not belong to either TOP or BOTE. In the “feed

stage” model, the feed stream is perfectly mixed with the incoming
liquid and vapor streams on the feed stage, and the liquid and vapor
streams leaving the feed stage are in complete thermodynamic
equilibrium with each other. Despite such differences, Kolokolnikov
et al.’® showed that both feed arrangements would lead to the
same results in minimum reflux requirement for the case of a simple
column. And relying on Kolokolnikov et al.'s argument, we will split
the feed flow into vapor and liquid portions as described above to
introduce a feed stream into two general column sections stacked
on one another. Furthermore, compared to the “feed stage” model,
our model more realistically captures how a feed stream interacts
with internal liquid and vapor traffic in an actual column, as it
avoids the potential flooding issue.’” When it comes to sidedraw
stream W, the vapor portion is directly withdrawn as part of the vapor
stream from BOTyy, whereas the liquid portion is taken out from the
liquid stream from TOPy, by means of downcomer trapout or chimney

tray.>” Also, it is worth noting that, when we label a column section as
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FIGURE 10 Two column sections

,Jv connected by (A) a feed stream and (B) a
sidedraw stream. Note that VJOPF and
ISOTF are generally not in equilibrium with
each other. As shown in (A), in the

presence of a two-phase feed stream, I¢
1 and v are in equilibrium. For sidedraw W,

)
Vw, V?OTW, and voTOPW all have the same
composition, so do Iy, flTOPW, and ISOTW.

(A)

TOPy
'TOPw l’TOPW
1 Dw
—

1
BOTw | | —— — ]
LY ll_ BOTW 1
2

(B)

either the “top” or “bottom” section, such labeling is with respect to
the specific feed or sidedraw stream being considered. For example,
in the two-feed, three-product column drawn in Figure 2, column
Section 3 can be viewed as the top section with respect to feed
stream BCD or the bottom section with respect to sidedraw
stream BC.

Under the simplifying assumption that these components
form an ideal mixture, and assuming that complete thermody-
namic equilibrium is achieved on every stage, we have the follow-
ing liquid and vapor balance equations around the feed or
sidedraw stream:

For feedF: V?OTF +VE= ngPF I;TOPF +Ir= lgOTF VE+IE=f¢

v 0TOPF -~ flTOP‘ — 4P Vi;OTF _ ,gou — d®OTr

For sidedraw W : vy O vy, =vEOTw  [BOTw 1, — [TOPW vy 4y =fw
"TOPw _ [TOPw _ 4TOPy  BOTw _ BOTw _ 4BOTw
Voo W —=1ly =d v W=l =d .

(29)

5.1 | Identifying eigenvalue relationships for
adjacent column sections connected by a feed stream

When two column sections are connected by a feed stream, depend-
ing on the value of section vapor flow VTP (or VBOTF), exactly one of

the following three scenarios will occur:

T

L

erTOPW l’_____;;TLW 2 TOPW T
(4

T

1. Column sections are pinched, in which case the target separation
goal can only be achieved with an infinite number of stages.

2. Target separation can be achieved in the column sections using a
finite number of stages.

3. Target separation cannot be achieved even with an infinite number

of stages.

Note that only the first two scenarios indicate that the target sep-
aration goal is feasible in the column sections considered. Next, we
will derive conditions describing each of the scenarios, from which
algebraic constraints for a feasible separation in an MFMP column can
be obtained. Note that the minimum reflux operation is simply the
extreme case of feasible separation in the column. We will also pro-
vide geometric interpretations of these algebraic constraints in terms
of pinch simplex.

In Scenario 1, since the column sections are pinched, let us
denote the actual pinch zone liquid compositions in TOPr and BOTg
as Z;OPF and ZEOTF, respectively. The corresponding pinch eigenvalues
are denoted as 2]°% and A5°TF, respectively. Clearly, since a feed
stream introduces materials into the column, d™OPr _ gBOTr —

Ve +Ir >0, which implies that the indices of pinch eigenvalues satisfy
pTOPr <pBOTr In addition, Proposition 3 states that F]°FF (ﬂiTOPF) -0

for every /%" VTO% € [g;_1,aj] that is greater than 2197 V™% and

35UBD| 7 SUOWILLIOD AR 3|ceal [dde ayy Aq pausenob afe sajoie O ‘3sn Jo sanJ 10} AriqiTauluQ 8|1 UO (SUO R IPUOD-PUR-SLLLIBYW0D AS [IM"ARed 1 BU 1 [UO//:SANY) SUORIPUOD pue SW.S | 8Yl 89S *[2202/TT/2T] uo Ariqiauliuo A8|IAA ‘'suoienunuoD g1 ‘ssAfeuy % boy Aisiealun aeis euoziiy AQ 62621 0/200T 0T/I0p/0d A8 1m Aeiqpuluo-ayde//sdny Wolj papeojumoqd ‘2T ‘2202 ‘SO6S.YST



JIANG ET AL.

FEOTr (AiBOTF> =0 for every 2P°TFVEOTF ¢ (g ¢,4] that is less than

/IEOTF VEBOTE Therefore, we can define an index set I as:

Ie = {i € CIATOP > 210%F 1PGTe < Z80Te | — {pTOPF 1, pOTF}, - (30)

with df%% >0 and d®3" <0 simultaneously satisfied for all i € Ir. For
example, consider a five-component system. Suppose dIOPF <0 and
d;OPF,-n,d;OPF >0, whereas d?OTF,---,ngTF <0 and dEOTF,dEOTF >0.
From Equation (25), the pinch index p™P* =2 and pB°Tr =4. Thus,
A50PF, 2307, 250%F > ATOP¢ and A3OTF, 25977, 25°TF < 25°TF . And the index
set Ir ={3,4}.

Once this index set is defined, let us consider the general case in
which feed F is a two-phase stream. Given Ir >0, v¢ >0, and dTOPF, we
can first determine the section vapor flow VTP that will enable roots
yiTOPF obtained from Equation (10) to satisfy:

< (lIF
> o =0 (31)

=1 % Y

for all i € Ir. In other words, when section TOPg has this specific vapor
flow VTOPF, the pinch simplex for section TOPk satisfies zTOPF (l))=0
from Equation (18) for all i € If.

Also since vg and I are in thermodynamic equilibrium,
Zl 1= TOPF =0 for every i € Ir due to Equation (2). This leads to two
additional relationships for these 7/ °% roots for all i € Ir use this par-

ticular vapor flow VTP*:

TOP, TOP,
S avir c ( -7 F>Vj,F+}’y "LV oy
Za‘_yTOPF :Z a‘_yTOPF =VE+0=V§,
1:61 /) i /:C1 ] i (32)
afie  _ > ] (’J FEVIE)
TOP: TOP: .
iy (A = S Rl TR

Now, substituting Equations (31) and (32) into Equations (10) and

PF,.
(29), we can see that VTOPF _vp —VBOTF = i ( f/F)f

o
TOP or every i€lf. is implies at roots actually
,1 e Ir. This implies that root yTOPF tuall

match with roots y2™ for i € Ir for this particular section vapor flow,
as both yiTOPF and y?ﬂTF lie in the same interval [a;_1, o] Let us denote
this set of common roots as p,_r =7 F =729 €
icle. Thus, z°% ()= =0, or 2% (xp)=2’T"(x) =0,
meaning that (1) x¢ lies on the boundary of pinch simplex for sections
TOPE and BOTE, and (2) both pinch simplices share the same bound-
aries. This will lead to the eigenvalue relationship for adjacent pinched

0{,’,1,(1,‘] for all
BOTF( £)

column sections connected by a feed stream.

Now, let us consider Scenario 2, where the target separation goal
can be achieved in the column sections using just a finite number of
stages. This happens when VTP increases above its minimum thresh-
old (i.e., Scenario 1), and thus y,.TOPF >piaf >;/,B701TF for every i€l due

to the monotonicity of Equation (10) with respect to y € [ai_1, ai.

AICBE R AL 15012t

Recall that the scaling factor r; in Equations (15) and (16) has the same
sign as d;. Thus, for every i€ I, r,.TOPF is positive and r,BOTF is negative.
Therefore, with an increased \/TOPe value, both
z,.TOPF (Xg) :r,.TOPF (wT),.TOPFxF and 2,501TF (Xg) = r,BciTF (wT),BC;TFxF would
increase and become positive. Likewise, in Scenario 3, where the tar-
get separation goal cannot be achieved even with infinite stages in
the column sections, VTP decreases to less than its value in Scenario
1. One can show that yTOP‘ <pi1F <7Yi OTF for every i€, and both

279% (xg) BOTF (x¢) would decrease and become negative.

and z;
A similar analysis can be drawn for liquid-only feed stream as well.

To summarize, given a two-phase or a liquid-only feed stream F, for

all i € Ir determined from Equation (30), its liquid flow composition x¢

satisfies one of the following three scenarios:

Scenario 1: 2] % (x¢) =229 (x¢) =0,

Scenario 2:: 2] O (x¢) > 0, zBOTF( x¢) >0, (33)

Scenario 3: ZTOPF( BOTF( xr) <0

xr) <0,z
Figure 11 illustrates Equation (33) from a geometric perspective for
the case of a simple column performing ternary separation. Essentially,

the hyperplane zTOPF( BOTF(

x) =0 (resp. z x) =0), which contains one of
the facets of pinch simplex for section TOPg (resp. BOTE), divides
R~! into two half-spaces, one of which contains the entire pinch sim-
plex. If xg lies in the closed half-space containing (resp. not containing)
TOPE pinch simplex, it must also lie in the closed half-space containing

(resp. not containing) BOT pinch simplex, and vice versa. In particular,

if x¢ lies on the hyperplane zTOPF (x) =0, it must also lie on the hyper-
plane zBoiTF( x) =0 for all i €lg, and vice versa. In essence, this is the

geometric interpretation of the classic Underwood method.>*

For a vapor-only feed stream F, it can be shown that the hypo-
thetical liquid composition, Xg, which would be in thermodynamic
equilibrium with the vapor feed vg via Equation (2), satisfies one of
the following three scenarios:

TOPF( F) Z‘BOITF (XF) _ 0’

BOTF (X

Scenariol:z

X1

Scenario2: zTOPF (xe) >0,z (34)

F)>
TOP: ( BOTF ( )

Scenario3:z;~ " (Xg) <0,z

Furthermore, we conclude that, in order for sections TOPg and
BOTE to successfully perform the target separation task, which corre-
sponds to Scenarios 1 and 2, the section y roots obtained by solving
Equation (10) must satisfy the following feasibility condition:

TOP BOT ;
vio o zpiiapzrig’ Vi€l (35)

where the equality holds when the two column sections are pinched.
This is a key result that ensures feasibility of a given separation task in
adjacent column sections connected by a feed stream. We note that all
possible p; roots for ic{1,---,c—1} typically can be determined a
priori by solving Equation (31) or (32), as the feed specifications are
generally known to us. Also, we want to point out that Equations (31)
and (32) become the classic Underwood feed equations when consid-

ering simple columns (see Figure 11).3? And these p roots are
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(A) z3TOPF (zF), zQBOTF (zg) >0

FIGURE 11

(B) 23 7% (p) = 23" F (xr) = 0

©) z;POPF (zF), ZEOTF (zr) <0

In this example, we consider a ternary mixture distillation in a simple column with (a1, a2, az) = (1,2.25, 3). The saturated liquid

feed flow rate is (f1r, f2r, far) = (0.2,0.4,0.4), and the distillate flow rate is (d]°%, d]°PF, d1°PF ) = (0,0.04,0.36). Since p™PF =2 and pB°TF =3
in this case, Ir = {3}. (A) Scenario 2 of Equation (33): When VTOPF = vBOTr — 2 752 2972, the liquid composition of the feed stream xr = I /L lies
in the interior in the pinch simplex of both rectifying (TOPg) and stripping (BOTE) sections; (B) Scenario 1: When VTOPF = VBOTF =2 2972 x; lies

on the facet of both pinch complices; (C) Scenario 3: When VO
infeasible.

essentially the Underwood roots. As a result, the well-known Under-
wood method is just a special case of Equation (35), where the
inequality constraints (Scenarios 1 and 2) reduce to equalities

(Scenario 1).

5.2 | Identifying eigenvalue relationships for
adjacent column sections connected by a sidedraw
stream

When two infinite column sections are connected by a sidedraw
stream, the analysis approach follows similarly as before. Here, we
summarize the key results. Suppose the actual pinch zone liquid com-
positions in TOPy and BOTw correspond to Z;°™ and ZF°™,
respectively. Then the associated pinch eigenvalues are respectively
denoted as 4]°° and 45°™. Since a sidedraw stream takes materials

d™OPw @B — v\, +Iw <0, and thus

out of the column,
pTOPw > pBOTw \With this, we define an index set Iy based on Proposi-

tion 3 as:

I = {i cC, AFBOTW >/150TW|/1L<)1PW < l;opw} = {pBO™w 1 1,... pTOPw Y.

(3¢6)

with dFOTW >0 and dBPW <0 simultaneously satisfied for all i€ lw.
Again, depending on the value of section vapor flow VTP (or VBOTw),
exactly one of the following three scenarios will occur: (1) column sec-
tions are pinched, which requires an infinite number of stages in the
sections to achieve the target separation goal; (2) target separation
can be achieved in the column sections using a finite number of

stages; (3) target separation cannot be achieved even with an infinite

— \/BOTE

=2.0<2.2972, x¢ is outside of both pinch simplices, the separation is

number of stages. In addition, as shown in Figure 10B, vy, v29™, and
v’oTOPW all have the same composition, so do hy, IllTOPW, and ISOTW, It
can be shown that the sidedraw composition presents a similar result
as in Equations (33) and (34). Specifically, if sidedraw W is a two-
phase or a liquid-only stream, for all i€y determined from Equa-
tion (36), its liquid flow composition xy will fall in with one of the fol-

lowing three scenarios:

Scenario 1. ziTPiPW (xw) = zIBOTW (xw) =0,
Scenario 2. ziTPiPW (xw) > O,ziBOTW (xw) >0, (37)

Scenario 3.2/ (xw) < 0,2°°™ (xw) <O.

On the other hand, if sidedraw W is a vapor-only stream, the
hypothetical liquid composition, Xy, which would be in thermody-
namic equilibrium with vy, will fall in with one of the three scenarios
below, for every i € ly:

Scenario 1.2 (Xw) = 2°°™ (Xw) =0,
Scenario 2. ziTPlPW (xw) >0, z?OTW (xw) >0, (38)
Scenario 3. z?ﬂpw (Xw) <0, Z?OTW (Xw) <0.

Furthermore, we conclude that, in order for sections TOPw and
BOTw to successfully carry out the target separation (Scenarios 1 and
2), the y roots obtained by solving Equation (10) must satisfy the fol-
lowing feasibility condition:

7P <y aw 7™ Vichw, (39)
where p; 4\ € [aj_1, 0] for every icly is defined for the sidedraw
stream W as the solution of the following equations analogous to
Equations (31) and (32):
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c c
3 glw o a4Viw
- £

=% Pi-w 1 % T Piciw

¢ o
—Vw, ZM:VW. (40)

=1 % Piiaw

Similar to Equations (35), Equation (39) is a key result that
ensures feasibility of a given separation task in two neighboring
column sections connected by a sidedraw. Furthermore, to the
best of our knowledge, despite its similarity with Equation (31)
and (32) defined for feed stream, Equation (40), which is related
to sidedraw W, has not been explored or reported in the literature. In
this way, our shortcut model greatly extends the classic Underwood
method by discovering new constraints needed for characterizing
sidedraw streams. Note that analogous to Equation (35), the inequal-
ities in Equation (39) reduce to equalities when the two column sec-
tions are pinched in order to carry out the target separation task

(Scenario 1).

6 | MINIMUM REFLUX CONDITION

In earlier sections, we developed understanding of composition
profile in a single column section based on pinch simplex. We also
derived algebraic constraints describing the feasibility of target
separation task in adjacent column sections connected by either a
feed or sidedraw stream. Generalizing these findings to derive
minimum reflux conditions for an MFMP column is as easy as
stacking back each individual column sections and checking the
eigenvalue relationship (Equations 35 or 39) for every column
section pair to ensure that the section vapor flow leads to feasi-
ble separation for every column section. Suppose an MFMP col-
umn has Nsgc sections, then the minimum reboiler duty requirement
(resp. minimum reflux ratio) of the MFMP column is then the lowest
reboiler vapor duty (resp. lowest reflux ratio) satisfying all Nsgc —1
such eigenvalue relationships, one for each column section pair. Given
feed and product stream specifications (flow rate, composition, ther-
mal quality), the determination of minimum reboiler vapor duty or
minimum reflux ratio can be implemented as an algorithmic procedure

as follows:

1. From the given feed and product specifications, calculate d?“k for
every component i € C and every column section k=1, -+, Nsgc.

2. From Equation (25) and Proposition 3, determine pinch index pSec
for every section k=1,---,Nsgc. Then, for each feed stream
j=1,---,Nr and sidedraw stream s=0,---, Ny involved, determine
the corresponding index set If, or lw, using Equation (30) or (36).

3. For every feed stream j=1,---,Nf, solve Equation (31) or (32) to
obtain roots Pi-1F, for every i€ I, (provided that Ig, # ()). Similarly,
for every sidedraw stream s=0,---,Nw present, obtain p;_;,
roots from Equation (40) for every i € lw, (provided that Iy, # 0).

4. For every p;_yf (resp. pi_jw,) obtained, let y,.TOPF" =pi1F, (resp.

yz)lpw":p,-,lywi) and calculate section vapor flow V'O (resp.
VTOPw) using Equation (10). Then, substitute this VTOP% (resp.

VTOPw) value into Equation (29) to obtain section vapor flow V5

for all k= 1, crey NSEC-

AICBE R AL 7012t

5. For every adjacent column section pair (k=1,---,Nsgc — 1), using
the corresponding section vapor flows V5 and V5¢%+! obtained
from the previous step, determine section y roots from Equa-
tion (10), and verify if the feasibility conditions of Equations (35)
and (39) are satisfied. If the feasibility conditions are satisfied for
all adjacent column section pairs in the MFMP column, store the
bottommost section vapor flow VSe™MNsec  and the reflux
ratioR= Vs,;d -1

6. The true minimum reboiler vapor duty requirement and minimum

reflux ratio of the MFMP column correspond to the lowest V/5eNsec

and R values stored, respectively.

It is worth mentioning again that the algorithmic procedure above
applies when the feed and product specifications are provided. Some-
times, however, some of the specifications may not be known to users
a priori. For example, users may only require certain components to
be within a specific purity limit in a product stream. In this case, deter-
mining the minimum reboiler vapor duty or minimum reflux ratio actu-
ally becomes an optimization problem. When it is correctly formulated
and solved, the optimization program will determine the remaining
stream specifications such that the reboiler vapor duty or reflux ratio
is minimized globally. In Part 2 of this series, we will present the
detailed optimization formulation and solution strategies that imple-
ment the new shortcut method developed here. Next, we would like
to shed some light on the accuracy and attractiveness of our new
shortcut method by walking through a simple illustrative example.

6.1 | Anillustrative example

We consider a two-feed distillation column shown in Figure 12A
separating mixtures of n-octane (Component 1), n-heptane
(Component 2), and n-hexane (Component 3), where
(a1,a2,a3) =(1,2.2500,5.1168). Both feed streams enter the column
in saturated liquid state. The composition and flow rate for all streams
are listed in Table 2. After calculating the net material upward flow
rate for each column section, we determine from Equation (25) and
Proposition 3 that the pinch indices are p%¢t =p%¢2 =2 and p%¢ =3
for all three sections. Therefore, from Equation (30), we get I, =0
and I, ={3}. This means that Sections 2 and 3 are pinched during
minimum reflux operation. To obtain the minimum reflux ratio, we
simply calculate pyp, =3.6186 € [az, 3] from Equation (31), and let
7352 = pyg, =752 due to Equation (35). The corresponding minimum
reboiler vapor duty requirement is determined to be 140.81 mol/s by
substituting 322 =y3¢< =3.6186 into Equations (10) and (29). The
corresponding minimum reflux ratio calculated is 1.683. Figure 12B
shows the pinch simplices at minimum reflux.

Rigorous Aspen Plus simulation result predicts the minimum
reflux ratio to be 1.735, which is only less than 3% different from that
calculated using our shortcut method. While this result itself already
shows the accuracy of our shortcut method, what makes this new
method more powerful is that, when we instead rely on the commonly

used column decomposition method (Figure 2), we would have chosen
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(A)

FIGURE 12 Anillustrative example considering ternary mixture separation in a two-feed column. Note that in (B), minimum reflux is
achieved when the pinch simplex of intermediate column section (Section 2) share the common edge with the pinch simplex of the bottommost
section (Section 3). Therefore, at minimum reflux, Sections 2 and 3 are pinched, and the lower feed composition xr, lies on this common edge (.
e, 322 (xr,) = 255 (x,) = 0). The blue dots in (B) are the actual liquid composition profile of this two-feed column simulated in Aspen Plus V12.1
as a RadFrac column. (A) A two-feed distillation column; (B) Pinch simplices at true minimum reflux.

TABLE 2 Feed and product specifications for the two-feed
column of Figure 12A

Flow rate Molar composition
Streams (mol/s) (X3,X2,X1)
D 52476 (0.95, 0.05, trace)
F1 100 (0.2,0.1,0.7)
F, 100 (0.3,0.6,0.1)
B 147.524 (0.001, 0.4567, 0.5423)

Note: Hexane composition in the bottoms product stream is small (0.001)
but not in trace amount.

the largest minimum reflux ratio value obtained by the classic Under-
wood method applied to the decomposed columns to be our “minimum
reflux ratio” of the column. It turns out that the “minimum reflux ratio”
determined from column decomposition approach is as high as 19.66,
which is more than 11 times higher than the true minimum reflux! One
can imagine the enormous scale of waste in energy consumption and
capital expenditure if the column is designed and operated based on the
column decomposition method. This simple example clearly illustrates
the accuracy and attractiveness of this new shortcut approach. In Part
2 of the series, we will offer detailed discussions on why some of the
commonly used modeling assumptions and heuristics, such as the col-

umn decomposition method, would fail for MFMP columns.

7 | CONCLUSION

Multi-feed, multi-product distillation columns are commonly used in
many industrial separations. The minimum reflux ratio of a distillation
column is related to its energy consumption and capital cost, and thus
is a key parameter in distillation design. To solve this lingering prob-

lem of determining the minimum reflux ratio of a general MFMP

column in an accurate and computationally efficient manner, we
follow a bottom-up modeling approach and develop a first-of-its-
kind mathematical model for a general MFMP column based on
ideal-VLE, CRV, and CMO assumptions. First, we focus on model-
ing a general column section, the basic module in a general MFMP
column. To account for the nonlinearities caused by the ideal-VLE
relations in the model, we propose a linearization technique that
requires a variable transformation. By studying the eigenvalue
problem resulting from the linear system, we find the analytical
expression for the composition profile within the column
section without the need to perform tedious tray-by-tray calculations.
We relate the eigenvalues and eigenvectors with potential pinch condi-
tions within the column section. We also explore the geometric inter-
pretations of the eigenvalue problem after we introduce the concept of
pinch simplex. Next, we explore several properties of the model as the
column section becomes pinched, followed by analyzing how eigen-
values and pinch simplices characterizing any two adjacent column sec-
tions are related as the sections are stacked and connected by feed or
sidedraw stream. Finally, we derive algebraic constraints for feasible
separation and minimum reflux operation of an MFMP column, fol-
lowed by explaining their geometric meaning. In the case of a simple
column, the shortcut method developed in this work reduces to the
classic Underwood method.>®

As we have mentioned, this method uses the same underlying
assumptions as the Underwood method.3’ We remark that the con-
stant molar overflow (CMO) assumption implies that all components
have similar latent heat of vaporization. However, it turns out that this
assumption can be relaxed to account for cases in which components
have very distinct latent heats, which can be quite common in prac-
tice. With only slight modification of Underwood's classic model,®®
this extension has been independently developed by Nandakumar and
Andres®® as well as Rev®? for simple columns. The final expression,

despite its great similarity compared to the Underwood equation,
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directly calculates the heat duty requirement rather than vapor duty.
We believe that the shortcut method developed in this article can also
be extended in a similar manner to determine the minimum heat duty
requirement of an MFMP column with unequal component latent
heats of vaporization. Using a simple transformation of variables as
introduced by Nandakumar and Andres®’ as well as Rev,”? all the
mathematical relationships and properties developed in this article still
apply to the extended model. We leave the discussion of this exten-
sion to future work.

In Part 2 of the series, we will incorporate our new shortcut
method into a global optimization framework. We will also analyze a
number of case studies involving different MFMP column configura-
tions that address the common misconceptions and doubts in multi-
component distillation systems design. Through these case studies,
we will provide readers with answers to the questions raised at the

beginning of this article.

PARAMETERS AND VARIABLES

c total number of components present in the distillation
column
a; relative volatility of component i with respect to the

heaviest component

n stage number following the convention of Figure 4

V;',n component i vapor flow leaving stage n in the lower

(resp. Vin) (resp. upper) part of section

I;»,n (resp. I;p) component i liquid flow leaving stage n in the lower
(resp. upper) part of section

d; component i net material upward flow defined in
Equation (1)

\% total vapor flow in the column section,
V=e'v,=ev,,1 foreveryneN

L total liquid flow in the column section,
L=e'l, ,=eTl, foreveryneN

D total net material upward flow,
D=V-L=e'd

A matrix A defined in Equation (6)

[Z,Qn new variable defined in Equation (5) for the lower part
of column section

A the i eigenvalue of matrix A defined in Equa-
tions (9): Ac>---> 14

Vi the i root of Equation (10), y; =4;/V

Vi the eigenvector of A associated with eigenvalue 4;
defined in Equation (12)

Q the eigenvector matrix of
A Q=r1,...v(

Q_1 the inverse matrix of eigenvector matrix Q,
withQQ1=A

w,-T a row vector defined in Equations (15) and (16) that is
related to Q!

ri the scaling factor defined in
Equations (15) and (16)

A the diagonal matrix whose diagonal elements contain

all eigenvalues of A

AICBE RN AL 12012t

X, (resp.y,)  the liquid (resp. vapor) composition vector in the
lower part of column section

X, (resp. y,) the liquid (resp. vapor) composition vector in the
upper part of column section

z(x) a linear transformation defined in Equation (18)

the hyperplane equation associated with J; for con-
structing the pinch simplex

e; a column unit vector in R¢ with its i element being 1

and the rest being 0

e an all-ones column vector with ¢ elements in

RC
Xi the composition of pure component i in x- or z-space
Z; liquid pinch composition corresponding to

v;j in x- or z-space

Cy, C, composition simplices drawn in x- space and z-space,
respectively

Py, P, pinch simplices drawn in x- space and z-space,
respectively

fr,(X), fn(X) functions in Equation (22) respectively for the lower

and upper part of column section

X (), Xk (n) the k" root of f1,(x) =0 and fn(x) =0 respectively for

stagen

Xy Xk the k™ root of f/,(x) =0 and f,(x) =0 resp. as n — o
in both parts of section

C(x) a function defined in
Equation (24)

v, the actual pinch zone vapor and liquid component

flows, respectively
functions defined in Equations (27) and (28),
respectively

F1(x), F2(x)

@i, di the i root of F1(x) =0 and F3(x) =0, respectively
Ap the eigenvalue of matrix A associated with the actual

pinch component liquid flow

Ve, e component vapor and liquid flow rate of the feed stream

vw, lw component vapor and liquid flow rate of the sidedraw
stream

PiFsPiw the i™ common root defined in Equations (31) (or 32)

and (40), respectively
Nsec, Ng,Nw  total number of column sections, feed, and sidedraw

streams, respectively

SETS AND NOTATIONS

C {1,...c}
N, NT {0,1,2,...} and {1, 2, ...}, respectively
Ie the index set defined in Equation (30) for identifying com-

mon roots 6;¢

Iw the index set defined in Equation (36) for identifying com-
mon roots 6;w

TOPE column section above a feed stream F

BOTr column section below a feed stream F

TOPyw  column section above a sidedraw stream W

35UBD| 7 SUOWILLIOD AR 3|ceal [dde ayy Aq pausenob afe sajoie O ‘3sn Jo sanJ 10} AriqiTauluQ 8|1 UO (SUO R IPUOD-PUR-SLLLIBYW0D AS [IM"ARed 1 BU 1 [UO//:SANY) SUORIPUOD pue SW.S | 8Yl 89S *[2202/TT/2T] uo Ariqiauliuo A8|IAA ‘'suoienunuoD g1 ‘ssAfeuy % boy Aisiealun aeis euoziiy AQ 62621 0/200T 0T/I0p/0d A8 1m Aeiqpuluo-ayde//sdny Wolj papeojumoqd ‘2T ‘2202 ‘SO6S.YST



JIANG ET AL.

20 of 21 AI?BIEI RNAL

BOTw

F,W feed and sidedraw stream, respectively

column section below a sidedraw stream W

AUTHOR CONTRIBUTIONS

Zheyu Jiang: Conceptualization (equal); data curation (lead); formal
analysis (lead); investigation (lead); methodology (lead); resources
(lead); software (lead); validation (lead); visualization (lead); writing - origi-
nal draft (lead); writing - review and editing (lead). Mohit Tawarmalani:
Conceptualization (equal); formal analysis (supporting); investigation (sup-
porting); methodology (supporting); project administration (supporting);
resources (supporting); software (supporting); supervision (equal); valida-
tion (supporting); visualization (supporting); writing - original draft (sup-
porting); writing - review and editing (supporting). Rakesh Agrawal:
Conceptualization (equal); data curation (supporting); formal analysis
(supporting); funding acquisition (lead); investigation (supporting); meth-
odology (supporting); project administration (lead); resources (support-
ing); software (supporting); supervision (lead); validation (supporting);
visualization (supporting); writing - original draft (supporting); writing -
review and editing (supporting).

ACKNOWLEDGMENT

The information, data, or work presented herein was funded in part
by the Office of Energy Efficiency and Renewable Energy (EERE),
U.S. Department of Energy, under Award Number DE-EE0005768.

DATA AVAILABILITY STATEMENT
Data sharing not applicable to this article as no datasets were gener-

ated or analyzed during the current study.

ORCID

Zheyu Jiang "= https://orcid.org/0000-0003-4747-0539
Rakesh Agrawal "= https://orcid.org/0000-0002-6746-9829
REFERENCES

1. Humphrey JL. Separation technologies: an opportunity for energy
savings. Chem Eng Prog. 1992;88:32-42.

2. Gorak A, Oluji¢ Z. Distillation: Fundamentals and Principles. Elsevier;
2014.

3. Koehler J, Poellmann P, Blass E. A review on minimum energy calcula-
tions for ideal and nonideal distillations. Ind Eng Chem Res. 1995;
34(4):1003-1020.

4. Jiang Z, Agrawal R. Process intensification in multicomponent distilla-
tion: a review of recent advancements. Chem Eng Res Des. 2019;147:
122-145.

5. Jiang Z, Madenoor Ramapriya G, Tawarmalani M, Agrawal R. Process
intensification in multicomponent distillation. Chem Eng Trans. 2018;
69:841-846.

6. Agrawal R, Tumbalam GR. Misconceptions about efficiency and matu-
rity of distillation. AIChE J. 2020;66(8):16294.

7. Shah VH, Agrawal R. A matrix method for multicomponent distillation
sequences. AIChE J. 2010;56(7):1759-1775.

8. Petlyuk F, Platonov V, Slavinskii D. Thermodynamically optimal
method for separating multicomponent mixtures. Int Chem Eng. 1965;
5(3):555-561.

9. Giridhar A, Agrawal R. Synthesis of distillation configurations:
|. Characteristics of a good search space. Comput Chem Eng. 2010;
34(1):73-83.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31

32.

33.

Gilliland ER. Multicomponent rectification. Ind Eng Chem. 1940;32(8):
1101-1106.

Doherty MF. Conceptual Design of Distillation Systems. McGraw-Hill
Chemical Engineering Series. McGraw-Hill; 2001.

Turton R, Bailie RC, Whiting WB, Shaeiwitz JA, Bhattacharyya D.
Analysis, Synthesis, and Design of Chemical Processes. Prentice-Hall
International Series in the Physical and Chemical Engineering Sciences.
4th ed. Prentice Hall; 2012.

Jiang Z, Mathew TJ, Zhang H, et al. Global optimization of multicom-
ponent distillation configurations: global minimization of total cost for
multicomponent mixture separations. Comput Chem Eng. 2019;126:
249-262.

Caballero JA, Grossmann IE. Design of distillation sequences: from
conventional to fully thermally coupled distillation systems. Comput
Chem Eng. 2004;28(11):2307-2329.

Fidkowski Z, Krdélikowski L. Minimum energy requirements of ther-
mally coupled distillation systems. AIChE J. 1987;33(4):643-653.
Carlberg NA, Westerberg AW. Temperature-heat diagrams for com-
plex columns. 2. Underwood's method for side strippers and
enrichers. Ind Eng Chem Res. 1989;28(9):1379-1386.

Fidkowski ZT, Agrawal R. Multicomponent thermally coupled systems
of distillation columns at minimum reflux. AIChE J. 2001;47(12):2713-
2724.

Nallasivam U, Shah VH, Shenvi AA, Huff J, Tawarmalani M,
Agrawal R. Global optimization of multicomponent distillation config-
urations: 2. Enumeration based global minimization algorithm. AIChE
J.2016;62(6):2071-2086.

Tumbalam Gooty R, Agrawal R, Tawarmalani M. An MINLP formula-
tion for the optimization of multicomponent distillation configura-
tions. Comput Chem Eng. 2019;125:13-30.

Erbar RC, Maddox RN. Minimum reflux rate for multicomponent dis-
tillation systems by rigorous plate calculations. Can J Chem Eng. 1962;
40(1):25-30.

Chien HHY. A rigorous method for calculating minimum reflux rates
in distillation. AIChE J. 1978;24(4):606-613.

Tavana M, Hanson DN. The exact calculation of minimum flows in
distillation columns. Ind Eng Chem Process Des Dev. 1979;18(1):
154-156.

Holland CD. Fundamentals of Multicomponent Distillation. McGraw-Hill
Chemical Engineering Series. McGraw-Hill; 1981.

Taylor R, Krishna R, Kooijman H. Real-world modeling of distillation.
Chem Eng Prog. 2003;98:28-39.

Lucia A, Amale A, Taylor R. Distillation pinch points and more. Comput
Chem Eng. 2008;32(6):1342-1364.

Levy SG, Doherty MF. Design and synthesis of homogeneous azeo-
tropic distillations. 4. Minimum reflux calculations for multiple-feed
columns. Ind Eng Chem Fundam. 1986;25(2):269-279.

Koehler J, Aguirre P, Blass E. Minimum reflux calculations for nonideal
mixtures using the reversible distillation model. Chem Eng Sci. 1991;
46(12):3007-3021.

Koehler J, Kuen T, Blass E. Minimum energy demand for distillations
with distributed components and side-product withdrawals. Chem
Eng Sci. 1994;49(19):3325-3330.

Julka V, Doherty MF. Geometric behavior and minimum flows for noni-
deal multicomponent distillation. Chem Eng Sci. 1990;45(7):1801-1822.
Lucia A, Taylor R. The geometry of separation boundaries: I. Basic
theory and numerical support. AIChE J. 2005;52(2):582-594.

Gani R, Bek-Pedersen E. Simple new algorithm for distillation column
design. AIChE J. 2000;46(6):1271-1274.

Fidkowski ZT, Malone MF, Doherty MF. Nonideal multicomponent
distillation: use of bifurcation theory for design. AIChE J. 1991;37(12):
1761-1779.

Bausa J, Watzdorf RV, Marquardt W. Shortcut methods for nonideal
multicomponent distillation: I. Simple columns. AIChE J. 1998;44(10):
2181-2198.

35UBD| 7 SUOWILLIOD AR 3|ceal [dde ayy Aq pausenob afe sajoie O ‘3sn Jo sanJ 10} AriqiTauluQ 8|1 UO (SUO R IPUOD-PUR-SLLLIBYW0D AS [IM"ARed 1 BU 1 [UO//:SANY) SUORIPUOD pue SW.S | 8Yl 89S *[2202/TT/2T] uo Ariqiauliuo A8|IAA ‘'suoienunuoD g1 ‘ssAfeuy % boy Aisiealun aeis euoziiy AQ 62621 0/200T 0T/I0p/0d A8 1m Aeiqpuluo-ayde//sdny Wolj papeojumoqd ‘2T ‘2202 ‘SO6S.YST


https://orcid.org/0000-0003-4747-0539
https://orcid.org/0000-0003-4747-0539
https://orcid.org/0000-0002-6746-9829
https://orcid.org/0000-0002-6746-9829

AICBE R AL—L2or2t

Segovia-Hernandez JG,
Hernandez-Castro S, Gonzalez-Alatorre G, El-Halwagi MM. Simplified
methodology for the design and optimization of thermally coupled
reactive distillation systems. Ind Eng Chem Res. 2012;51(36):11717-

Adiche C, Aissa BA. A generalized approach for the conceptual design
of distillation columns with complex configurations. Chem Eng Res

Jiang Z, Zewei C, Huff J, Shenvi AA, Tawarmalani M, Agrawal R.
Global minimization of total exergy loss of multicomponent distilla-

Jiang MRG, Tawarmalani M, Agrawal R. Minimum energy of multi-
component distillation systems using minimum additional heat and

Acrivos A, Amundson NR. On the steady state fractionation of multi-
component and complex mixtures in an ideal cascade: Part 1—analytic
solution of the equations for general mixtures. Chem Eng Sci. 1955;
Franklin N, Forsyth J. The interpretation of minimum reflux conditions

in multi-component distillation. Trans Inst Chem Eng. 1953;31:556-S81.
Fenske MR. Fractionation of straight-run Pennsylvania gasoline. Ind

mum reflux independent of the feed input model in a two-section col-
Nandakumar K, Andres RP. Minimum reflux conditions, part I: theory.

Rev E. The constant heat transport model and design of distillation
columns with one single distributing component. Ind Eng Chem Res.

JIANG ET AL.

34. Danilov RY, Petlyuk FB, Serafimov LA. Minimum-reflux regime of sim- 49. Goémez-Castro Fl, Rico-Ramirez V,
ple distillation columns. Theor Found Chem Eng. 2007;41(4):371-383.

35. Rooks RE, Malone MF, Doherty MF. A geometric design method for
side-stream distillation columns. Ind Eng Chem Res. 1996;35(10):

3653-3664. 11730.

36. Von Watzdorf R, Bausa J, Marquardt W. Shortcut methods for noni- 50.
deal multicomponent distillation: 2. Complex columns. AIChE J. 1999;
45(8):1615-1628. Des. 2016;109:150-170.

37. Skiborowski M, Recker S, Marquardt W. Shortcut-based optimization 51.
of distillation-based processes by a novel reformulation of the feed
angle method. Chem Eng Res Des. 2018;132:135-148. tion configurations. AIChE J. 2019;65(11):e16737.

38. Underwood AJV. Fractional distillation of multicomponent mixtures. 52.

Chem Eng Prog. 1948;44:603-614.

39. Underwood AJV. Fractional distillation of multicomponent mixtures. mass integration sections. AIChE J. 2018;64(9):3229-3553.
Ind Eng Chem. 1949;41(12):2844-2847. 53.

40. Madenoor Ramapriya G, Selvarajah A, Jimenez Cucaita LE, Huff J,

Tawarmalani M, Agrawal R. Short-cut methods versus rigorous
methods for performance-evaluation of distillation configurations. Ind 4(1):29-38.
Eng Chem Res. 2018;57(22):7726-7731. 54,

41. Jiang Z. A shortcut minimum reflux calculation method for distillation
columns separating multicomponent homogeneous azeotropic mix- 55.
tures. Le Scientifique. 2020;2020(1):17-25. Eng Chem. 1932;24(5):482-485.

42. Barnes FJ, Hanson DN, King CJ. Calculation of minimum reflux for 56. Kolokolnikov AG, Zhvanetskii IB, Platonov VM, Slinko MG. Is mini-
distillation columns with multiple feeds. Ind Eng Chem Process Des
Dev. 1972;11(1):136-140. umn? Dokl Akad Nauk SSSR. 1982;264(3).656-660.

43. Wachter JA, Ko TKT, Andres RP. Minimum reflux behavior of com- 57. Kister H. Distillation Design. McGraw-Hill; 1992.
plex distillation columns. AIChE J. 1988;34(7):1164-1184. 58.

44, Sugie H, Lu B. On the determination of minimum reflux ratio for a AIChE J. 1981;27(3):450-460.
multicomponent distillation column with any number of side-cut 59.
streams. Chem Eng Sci. 1970;25(12):1837-1846.

45, Glinos KN, Malone MF. Design of sidestream distillation columns. Ind 1990;29(9):1935-1943.

Eng Chem Process Des Dev. 1985;24(3):822-828.

46. Nikolaides |, Malone M. Approximate design of multiple-feed/side-
stream distillation systems. Ind Eng Chem Res. 1987;26(9):1839-1845.

47. Ruiz-Marin LE, Ramirez-Corona N, Castro-Agiiero A, Jiménez-Gutiérrez A. How to cite this article: Jiang Z, Tawarmalani M, Agrawal R.
Shortcut design of fully thermally coupled distillation systems with post- Minimum reflux calculation for multicomponent distillation in
fractionator. Ind Eng Chem Res. 2011;50(10):6287-6296. multi-feed, multi-product columns: Mathematical model.

48. Adiche C, Vogelpohl A. Short-cut methods for the optimal design of

simple and complex distillation columns. Chem Eng Res Des. 2011;
89(8):1321-1332. Special Issue on Distillation & Absorption.

AIChE J. 2022;68(12):e17929. d0i:10.1002/aic.17929

35UBD| 7 SUOWILLIOD AR 3|ceal [dde ayy Aq pausenob afe sajoie O ‘3sn Jo sanJ 10} AriqiTauluQ 8|1 UO (SUO R IPUOD-PUR-SLLLIBYW0D AS [IM"ARed 1 BU 1 [UO//:SANY) SUORIPUOD pue SW.S | 8Yl 89S *[2202/TT/2T] uo Ariqiauliuo A8|IAA ‘'suoienunuoD g1 ‘ssAfeuy % boy Aisiealun aeis euoziiy AQ 62621 0/200T 0T/I0p/0d A8 1m Aeiqpuluo-ayde//sdny Wolj papeojumoqd ‘2T ‘2202 ‘SO6S.YST


info:doi/10.1002/aic.17929

	Minimum reflux calculation for multicomponent distillation in multi-feed, multi-product columns: Mathematical model
	1  INTRODUCTION
	2  OVERVIEW OF SOLUTION STRATEGY
	3  MODELING COLUMN SECTION AS COUNTERCURRENT MASS EXCHANGE UNIT
	3.1  Mass balance equations, eigenvalues, and eigenvectors
	3.2  Relationship between liquid pinch compositions and eigenvectors
	3.3  Calculation of composition profile
	3.4  Composition profile and pinch compositions in z-space
	3.5  The upper part of column section

	4  SOME PROPERTIES OF THE MODEL
	4.1  Existence and uniqueness of pinch zone in a general column section
	4.2  Relating eigenvalues to the inlet stream compositions in an infinite column section

	5  STACKING OF ADJACENT COLUMN SECTIONS
	5.1  Identifying eigenvalue relationships for adjacent column sections connected by a feed stream
	5.2  Identifying eigenvalue relationships for adjacent column sections connected by a sidedraw stream

	6  MINIMUM REFLUX CONDITION
	6.1  An illustrative example

	7  CONCLUSION
	AUTHOR CONTRIBUTIONS
	ACKNOWLEDGMENT
	DATA AVAILABILITY STATEMENT

	REFERENCES


