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Abstract 
The global agrochemical market is highly consolidated, with large multinational 
companies accounting for a major share of the market. Thus, even for a single 
agrochemical product, its supply chain typically involves many possible paths connecting 
the raw material sources of active ingredients to final customers. In addition to structural 
complexity, agrochemical supply chains are also subject to seasonality and various unique 
uncertainties, thereby demanding high system resilience and implementation of risk 
management strategies in the face of these uncertainties and disruptions. In this study, we 
formulate and optimize the supply chain of an agrochemical active ingredient by 
formulating a stochastic mixed-integer nonlinear programming (MINLP) model. This 
MINLP formulation is scenario-based with demand uncertainty addressed by Value-at-
Risk (VaR) and Conditional Value-at-Risk (CVaR). For the first time, we propose to 
reformulate these nonlinear CVaR constraints using perspective reformulation 
techniques. We show that these perspective cuts give a tight approximation of the original 
MINLP model. Through an illustrative case study, we compare the results and 
performance of the original MINLP and the reformulated MILP. 
 
Keywords: Agrochemical supply chain, Value-at-Risk (VaR), Conditional Value-at-Risk 
(CVaR), perspective cuts, mixed-integer nonlinear programming. 

1. Introduction 
In 2050, the global population is expected to increase by 2 billion people to 9.7 billion, 
which puts unprecedented stress on food, energy, and water resources as the global food 
production must increase by at least 70% (Searchinger et al., 2018). Therefore, the 
manufacturing and supply chain of agrochemicals, including pesticides, herbicides, 
fungicides, and insecticides, are critical to ensuring food production and security. The 
global agrochemical market is highly consolidated, with 60-70% of the global market 
share dominated by four agrochemical companies alone (IEPS-Food, 2017). Each of these 
leading companies has a diversified product line, and its supply chains are multistage 
networks involving many possible paths connecting the raw material sources to active 
ingredients to final products. In addition, agrochemical supply chains are further 
complicated by seasonality and various uncertainties due to climate change, more 
frequent black swan events (e.g., COVID-19 pandemic), and increasingly complex 
geopolitical landscape (e.g., the Russia-Ukraine war). In particular, seasonal demand is a 
unique characteristic for agrochemical supply chains. To design cost-effective, resilient, 
and well-managed agrochemical supply chains, in this work, we develop an optimization 
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framework to effectively model the risks associated with these seasonality and 
uncertainties and propose a reformulation strategy to solve the optimization problem. 

Among numerous recent works on supply chain optimization (Garcia and You, 2015), 
Bassett and Gardner (2009) presented one of the first mixed-integer linear programming 
(MILP) formulations for global agrochemical supply chain optimization considering 
seasonality and uncertainties in customer demand. Liu and Papageorgiou (2012) extended 
the agrochemical supply chain optimization framework by modeling and comparing 
different plant expansion strategies. To further ensure continuous use and inactivity of 
warehouses for continuous periods of time, Brunaud et al. (2017) developed dynamic 
contract policy constraints for warehouses and incorporated them to the agrochemical 
supply chain model. In terms of quantifying uncertainties and risks, You et al. (2009) 
proposed a scenario-based two-stage stochastic linear programming framework and 
decomposition strategies for mid-term planning of multi-product supply chain under 
demand and freight rate uncertainties. Later, Carneiro et al. (2010) focused on the oil 
supply chain optimization problem, in which they incorporated Conditional Value-at-
Risk (CVaR) as a risk assessment measure that quantifies the tail risk in their investment 
portfolio. In this work, we develop a scenario-based two-stage mixed-integer nonlinear 
programming (MINLP) model for global agrochemical supply chain optimization and 
adopt the concepts of Value-at-Risk (VaR) and CVaR to quantify and control the risks 
associated with demand unfulfillment. Note that these risk measures are highly nonlinear. 
Therefore, we introduce perspective cuts to linearize the CVaR constraint and reformulate 
the MINLP model. Perspective cuts were first introduced by Frangioni and Gentile 
(2006), who showed that the convex envelope of the objective function containing 
semicontinuous variables in a general mixed-integer program (MIP) is the perspective 
function of MIP’s continuous part. More recently, Bestuzheva et al. (2021) extended 
perspective cuts to nonlinear constraints in MINLPs. Consider a MINLP with a linear 
objective function 𝑓𝑓: min 𝑓𝑓(𝑥𝑥,𝑦𝑦, 𝑧𝑧) subject to nonlinear constraints 𝑔𝑔(𝑥𝑥) ≤ 0, in which 
𝑦𝑦 ∈ Ω, 𝑧𝑧 ∈ {0,1}𝑛𝑛, and 𝑥𝑥 ∈ ℝ𝑛𝑛 are semi-continuous variables (for every 𝑖𝑖 = 1,⋯ ,𝑛𝑛, 𝑥𝑥𝑖𝑖 =
0 when 𝑧𝑧𝑖𝑖 = 0 and 𝑥𝑥𝑖𝑖 ∈ [𝑙𝑙,𝑢𝑢] when 𝑧𝑧𝑖𝑖 = 1). The perspective cuts for linearizing nonlinear 
constraints 𝑔𝑔(𝑥𝑥) ≤ 0 are given by:  

⟨∇𝑔𝑔(�̅�𝑥), 𝑥𝑥⟩ + [𝑔𝑔(�̅�𝑥) − ⟨∇𝑔𝑔(�̅�𝑥), �̅�𝑥⟩]𝑧𝑧 ≤ 0 (1) 

where �̅�𝑥 ∈ [𝑙𝑙,𝑢𝑢] is an arbitrary parameter. After replacing 𝑔𝑔(𝑥𝑥) ≤ 0 with these 
perspective cuts, the MINLP is reformulated to a MILP, which can be solved iteratively. 
Specifically, starting from the second iteration, �̅�𝑥 is chosen to be the solution of the MILP 
from the previous iteration. Bestuzheva et al. (2021) also conducted a detailed 
computational study of perspective reformulation for MINLPs with convex and 
nonconvex nonlinear constraints. They showed that the perspective reformulation of 
convex MINLPs provides much tighter approximation of the original problems compared 
to conventional branch-and-cut approaches, thereby leading to significant computational 
time reduction. Nevertheless, they also reported that adding perspective cuts for 
nonconvex MINLPs had less impact on computational time, although it reduces the size 
of branch-and-cut trees and strengthens the root node relaxation. 

2. Problem Statement and Model Formulation 
In this illustrative case study, we consider the three-echelon supply chain of one active 
ingredient (AI) produced in an agrochemical company involving five AI production 
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plants, four warehouses/distribution centers, and three market regions. We are interested 
in midterm planning (1 year) divided into 52 periods (i.e., 1 week per period). AI 
production plants and warehouses are connected by one or more transportation links, and 
so are warehouses and market regions. We allow different types of transportation modes 
for each transportation link. AI production plants can either be active or inactive during 
each time period. The manufacturing capacity of an AI production plant can be expanded 
at most once in a year. During the expansion period, AI production must be inactive. The 
AI produced can either be transported to warehouses or stored as inventory. The inventory 
level must be larger than or equal to the safety stock. As shown in Figure 1, the yearly 
demand of an agrochemical product typically follows a bimodal distribution (Bassett, 
2018). For this case study, we consider three scenarios in customer demand. Also, we 
consider the risk of demand loss or unsatisfaction due to uncertainties related to 
production planning and warehouse capacity limitations. We are given the safety stock of 
an inventory, initial inventory, as well as unit costs associated with inventory holding, AI 
manufacturing and expansion, material transportation, warehouse storage and expansion, 
and demand loss or unsatisfaction (see Table 1). The objective function is to minimize 
the total cost of the supply chain. Due to space limitations, we only highlight some of the 
key points in our MINLP model: 

1. Following You et al. (2009), decision variables of the first time period (Week 1) are 
first-stage variables and are independent of scenarios. Second-stage variables and 
scenario-based stochasticity begins at the second time period (Week 2). 

2. We adopt the dynamic contract policy formulation from Brunaud et al. (2018) and 
extend it to AI production plants – Each AI production plant must remain in 
production for at least 𝑈𝑈 time periods, after which it might undergo cleanup for 𝐹𝐹 
time periods, during which no production activities would take place: 

−𝛼𝛼𝑖𝑖 + 𝛼𝛼𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 0, ∀𝑖𝑖 ∈ 𝐼𝐼 
𝛼𝛼𝑖𝑖,𝑠𝑠−1𝑠𝑠 − 𝛼𝛼𝑖𝑖,𝑠𝑠𝑠𝑠 + 𝛼𝛼𝑖𝑖,𝑠𝑠

𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ≥ 0, ∀𝑖𝑖 ∈ 𝐼𝐼, 𝑠𝑠 ∈ 𝑆𝑆, 𝑡𝑡 ∈ 𝑇𝑇(𝑡𝑡 > 1) 

𝛼𝛼𝑖𝑖 + �𝛼𝛼𝑖𝑖,𝜏𝜏𝑠𝑠 ≥ 𝑈𝑈𝛼𝛼𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠
𝑅𝑅

𝜏𝜏=2

, ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑠𝑠 ∈ 𝑆𝑆 

� 𝛼𝛼𝑖𝑖,𝜏𝜏𝑠𝑠 ≥ 𝑈𝑈𝛼𝛼𝑖𝑖,𝑠𝑠
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑠𝑠+𝑅𝑅−1

𝜏𝜏=𝑠𝑠

, ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑠𝑠 ∈ 𝑆𝑆,   𝑡𝑡 ∈ 𝑇𝑇(𝑡𝑡 > 1, 𝑡𝑡 + 𝑅𝑅 − 1 ≤ |𝑇𝑇|) 

𝛼𝛼𝑖𝑖,𝑠𝑠+1𝑠𝑠 − 𝛼𝛼𝑖𝑖,𝑠𝑠𝑠𝑠 + 𝛼𝛼𝑖𝑖,𝑠𝑠
𝑠𝑠,𝑓𝑓𝑖𝑖𝑛𝑛𝑠𝑠𝑓𝑓 ≥ 0, ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑠𝑠 ∈ 𝑆𝑆,   𝑡𝑡 ∈ 𝑇𝑇 

� 𝛼𝛼𝑖𝑖,𝜏𝜏𝑠𝑠 + 𝐹𝐹𝛼𝛼𝑖𝑖,𝑠𝑠
𝑠𝑠,𝑓𝑓𝑖𝑖𝑛𝑛𝑠𝑠𝑓𝑓 ≤ 𝐹𝐹

𝑠𝑠+𝐹𝐹

𝜏𝜏=𝑠𝑠+1

, ∀𝑖𝑖 ∈ 𝐼𝐼,   𝑠𝑠 ∈ 𝑆𝑆,   𝑡𝑡 ∈ 𝑇𝑇(𝑡𝑡 + 𝐹𝐹 ≤ |𝑇𝑇|) 

(2) 

where 𝛼𝛼𝑖𝑖, 𝛼𝛼𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝛼𝛼𝑖𝑖,𝑠𝑠𝑠𝑠 , 𝛼𝛼𝑖𝑖,𝑠𝑠
𝑠𝑠,𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠, 𝛼𝛼𝑖𝑖,𝑠𝑠

𝑠𝑠,𝑓𝑓𝑖𝑖𝑛𝑛𝑠𝑠𝑓𝑓 are binary variables indicating whether the AI 
production plant 𝑖𝑖 ∈ 𝐼𝐼 is in production (1) or not (0) at time period 1, starting at time 
period 1, at time period 𝑡𝑡 under scenario 𝑠𝑠, starting at time 𝑡𝑡 under scenario 𝑠𝑠, and ending 
at time 𝑡𝑡 under scenario 𝑠𝑠 respectively. |𝑇𝑇| is the total number of time periods. 

3. The total demand loss 𝜒𝜒𝑠𝑠𝑠𝑠 for time period 𝑡𝑡 under scenario 𝑠𝑠 is the sum of demand 
loss from all market regions. To quantify the risks due to demand loss, we introduce 
the CVaR constraint in the model. We assume that the demand loss follows a normal 
distribution, which enables us to express VaR in terms of 𝜒𝜒𝑠𝑠𝑠𝑠: VaR𝑠𝑠 =

𝜎𝜎𝑠𝑠𝑧𝑧𝛽𝛽
�|𝑇𝑇|

, where 𝑧𝑧𝛽𝛽 
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is z-score at confidence interval 𝛽𝛽, |𝑇𝑇| is the total number of time periods (i.e., 52), 

and 𝜎𝜎𝑠𝑠 = � 1
|𝑇𝑇|−1

(∑ 𝜒𝜒𝑠𝑠𝑠𝑠
2 − (∑ 𝜒𝜒𝑡𝑡

𝑠𝑠
𝑡𝑡∈𝑇𝑇 )2

|𝑇𝑇|𝑠𝑠∈𝑇𝑇 )   is the standard deviation of the total 

demand loss as for scenario 𝑠𝑠. From VaR, we calculate CVaR as 1
1−𝛽𝛽

∑ 𝑝𝑝𝑠𝑠VaR𝑠𝑠
𝑠𝑠∈𝑆𝑆  

following Carneiro et al. (2010), where 𝑝𝑝𝑠𝑠 is the probability of scenario 𝑠𝑠. By 
specifying a lower bound 𝑃𝑃 on CVaR (e.g., 30 mass units), we obtain the following 
CVaR constraint and add it into the formulation: 

CVaR =
𝑧𝑧𝛽𝛽

(1 − 𝛽𝛽)�|𝑇𝑇|(|𝑇𝑇| − 1)
�𝑝𝑝𝑠𝑠
𝑠𝑠∈𝑆𝑆

���𝜒𝜒𝑠𝑠𝑠𝑠
2 −

(∑ 𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠∈𝑇𝑇 )2

|𝑇𝑇|
𝑠𝑠∈𝑇𝑇

� ≥ 𝑃𝑃       ∀𝑠𝑠 ∈ 𝑆𝑆, (2) 

4. Since Equation (2) is nonconvex and nonlinear, we introduce perspective cuts and 
reformulate the original MINLP into a MILP by substituting Equation (2) to Equation 
(1): 

�𝑃𝑃 − 𝑅𝑅�𝑝𝑝𝑠𝑠𝑄𝑄𝑠𝑠
𝑠𝑠∈𝑆𝑆

− 𝑅𝑅�𝑝𝑝𝑠𝑠
𝑠𝑠∈𝑆𝑆

�̅�𝜒𝑠𝑠𝑠𝑠(�̅�𝜒𝑠𝑠𝑠𝑠 −
∑ �̅�𝜒𝑠𝑠𝑠𝑠𝑠𝑠∈𝑇𝑇

|𝑇𝑇| )

𝑄𝑄𝑠𝑠
�𝑧𝑧𝑠𝑠 − 𝑅𝑅�𝑝𝑝𝑠𝑠

𝜒𝜒𝑠𝑠𝑠𝑠 ��̅�𝜒𝑠𝑠𝑠𝑠 −
∑ �̅�𝜒𝑠𝑠𝑠𝑠𝑠𝑠∈𝑇𝑇

|𝑇𝑇| �

𝑄𝑄𝑠𝑠𝑠𝑠∈𝑆𝑆

≤ 0       ∀𝑡𝑡 ∈ 𝑇𝑇, 

(3) 

where 𝑅𝑅 ≔
𝑧𝑧𝛽𝛽

(1−𝛽𝛽)�|𝑇𝑇|(|𝑇𝑇|−1)
, 𝑄𝑄𝑠𝑠 ≔ ��∑ (�̅�𝜒𝑠𝑠𝑠𝑠)2 − �∑ 𝜒𝜒�𝑡𝑡

𝑠𝑠
𝑡𝑡∈𝑇𝑇 �2

|𝑇𝑇|𝑠𝑠∈𝑇𝑇 �, 𝑧𝑧𝑠𝑠 ∈ {0,1}, and �̅�𝜒𝑠𝑠𝑠𝑠 is the 

optimal demand loss from the previous iteration of introducing perspective cuts. 

5. We point out that this is the first linearization of CVaR constraint reported in the 
literature. Both problems are solved using SCIP v8.0 in GAMS 40.2.0 in a Dell 
Precision 7920 workstation with Intel Xeon Gold 6226R CPU @ 2.90 GHz and 96 
GB of RAM, and the results are compared. 

 
Figure 1. Bimodal demand curve for each market region under different scenarios. 
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Table 1. List of model parameters used in the illustrative case study. 
Model parameters Values 
Initial capacity in each of the 5 AI production plants (mu) 100, 115, 100, 120, 110 
Safety stock in each AI production plant (mu) 5, 5, 10, 10 ,5 
Initial inventory level in each AI production plant (mu) 5, 5, 15, 0, 15 
Transportation capacity from AI production plant to warehouse 
(mu) 

400 for mode 1 
350 for mode 2 

Transportation capacity from warehouse to market region (mu) 100 for mode 3 
200 for mode 4 

Storage capacity in each of the 4 warehouses (mu) 550, 650, 500, 450 
Initial inventory level in each warehouse (mu) 25, 20, 30, 10 
Probability of the three possible scenarios 0.25, 0.45, 0.30 
Fixed cost in each of the 5 AI production plants (× 103 $) 75, 100, 150, 100, 75 
Variable cost in each of the 5 AI production plants ($) 10, 15, 10, 5, 20 
Expansion cost in each of the 5 AI production plants (× 103 $) 10, 50, 25, 35, 15 
Fixed transportation cost from AI production plant to warehouse ($) 25 for mode 1  

30 for mode 2 
Fixed transportation cost from warehouse to market region ($) 15 for mode 3 

30 for mode 4 
Variable transportation cost from AI production plant to warehouse 
($/mu) 

2 for mode 1 
2.5 for mode 2 

Variable transportation cost from warehouse to market region 
($/mu) 

1.5 for mode 3 
2.5 for mode 4 

Maximum total demand loss in each time period (mu) 15 
Variable cost on demand loss ($/mu) for each of the 3 market 
regions 

50, 55, 70 

 

3. Discussion 
The original MINLP model, which contains 9255 continuous variables and 1874 binary 
variables, has 14499 linear constraints and 2 nonlinear constraints of Equation (2) (one 
equality constraint and one inequality constraint). After the first iteration of adding 
perspective cuts, the reformulated MILP contains 14551 linear constraints (14499 linear 
constraints and 52 perspective cuts, each corresponding to one time period), 1874 binary 
variables, and 9254 continuous variables. We specify a solving time of 150 seconds, at 
which the original MINLP model has an objective function value of $1.509 × 106 and a 
gap of 2.39%, whereas the reformulated model shows an objective function value of 
$1.498 × 106 and a closer gap of 1.64%. We emphasize that the reformulated model 
always yields a feasible solution in the original formulation, suggesting that it provides a 
better optimal solution. This is due to the fact that the reformulated model is able to 
identify a solution with less overall demand loss ∑ ∑ 𝜒𝜒𝑠𝑠𝑠𝑠𝑠𝑠∈𝑇𝑇𝑠𝑠∈𝑆𝑆  compared to the solution 
obtained from the original MINLP. This suggests that the reformulated model produces 
a more efficient supply chain compared to the original model. 

In a separate numerical study, we analyze the impact of problem size on the computational 
benefits of introducing perspective cuts. When we consider only 13 time periods 
(monthly) in the model, no significant computational speed improvement is observed in 
the reformulated model compared to the original MINLP. However, when considering 26 
time periods (biweekly) in the model, the reformulated model solves to 1% gap in 29 
seconds, whereas the original MINLP solves to the same objective function value as well 
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as the same 1% gap in 41 seconds. This observation is consistent with that made by 
Bestuzheva et al. (2021), in the sense that the computational benefits of perspective cuts 
depend on the size of the problem. Perspective cuts should be accompanied by other 
reformulation strategies and bound-tightening constraints to maximize their benefits. 

4. Conclusion 
In this work, we optimize the supply chain of an agrochemical active ingredient by 
formulating and solving a scenario-based stochastic MINLP problem. The nonlinearity 
of the model comes from the CVaR constraint used to quantify risks associated with 
unforeseen demand loss. For the first time, we propose to reformulate the CVaR 
constraints using perspective reformulation techniques. The reformulated model, which 
is a MILP, always gives a feasible solution to the original MINLP model. Using a simple 
case study, we demonstrate the effectiveness of perspective cuts in fostering convergence 
and reducing computation time. In particular, we show that the reformulated model 
typically produces optimal solutions with less overall demand loss compared to the 
solution obtained from the original MINLP. Thus, adopting perspective reformulation 
could help identify a more efficient supply chain network and production/distribution 
plans with lower costs and carbon emissions. On the other hand, we point out that, 
depending on the problem size, adding perspective cuts for nonconvex MINLPs may not 
lead to significant computational time improvements. In this case, perspective cuts should 
be accompanied by other reformulation strategies and bound-tightening constraints to 
synergistically facilitate the solution of nonconvex MINLPs. 
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