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ABSTRACT

Olefins are essential precursors in producing a wide range of chemical products, including plastics,
detergents, adhesives, rubber, and food packaging. Ethylene and propylene are the most ubiqui-
tous olefin components and are predominantly produced through steam cracking. However, steam
cracking is highly energy- and carbon-intensive, making its decarbonization a priority as the en-
ergy sector shifts toward clean, renewable electricity. Electrifying the steam cracking process is a
promising pathway to reduce carbon emissions. However, this is challenged by the intrinsic con-
flict between the continuous operational nature of ethylene plants and the intermittent nature of
renewable energy sources (e.g., solar and wind) in modern power systems. Massive energy stor-
age systems or full plant reconfigurations to meet the power demand of electrified crackers are
shown to be economically and practically infeasible. Thus, a more viable solution is to pursue a
gradual electrification pathway and operate an ethylene plant as a microgrid that adopts diverse
energy sources. To optimize the operational strategy of such a microgrid considering uncertainties
in renewable energy generation and market prices, in this work, we introduce a stochastic multi-
objective optimization approach that minimizes operating costs and carbon emissions of steam
cracking. Results from a case study not only elucidate the trade-offs between economic and en-
vironmental objectives, but also provide insights into the optimal operating scheme in sustainable
ethylene production.
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INTRODUCTION

The U.S. energy landscape is undergoing a funda-
mental transition as the proportion of clean, renewable
electricity in total U.S. electricity generation will double to
44% between now and 2050 [1]. Thus, electrification is a
promising pathway to decarbonize various energy-inten-
sive chemical processes, including the steam cracking
process for olefins production. Recently, there have been
significant advancements in electrified cracking technol-
ogy [2]. While conventional cracking furnaces transfer
only 40-45% of firing energy to process fluids, electrified
furnaces achieve efficiencies of at least 95% [2-4]. Most
U.S. ethylene plants are large-scale, continuously oper-
ating facilities with capacities exceeding 1 million tons
annually. Due to the intermittent nature of variable re-
newable electricity (VRE), energy storage solutions must
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be in place. However, the intermittent nature and sea-
sonal variation in VAE generation will lead to a 1~2-order
increase in battery storage requirements compared to
the storage requirement based on the average daily
power supply, making energy storage purely using bat-
tery an expensive option [5,6]. On the other hand, the use
of byproduct hydrogen (Hz) as energy storage substan-
tially reduces battery size. The combined use of solar and
wind energy can significantly reduce storage require-
ments [5]. And low but continuing use of fossil fuels and
a gradual transition from conventional crackers to elec-
trified ones are feasible intermediate solutions toward
long-term complete decarbonization [7].

In Figure 1, we propose a novel process scheme for
steam cracking decarbonization that incorporate these
important aspects. The envisioned process is a microgrid
- a localized electric grid capable of independent
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operation. Both electrified and conventional crackers are
considered in this superstructure. Diverse energy
sources, including on-site VRE, battery storage, electro-
lyzers, H2 fuel cells as well as conventional natural gas
and liquid fuel, can be adopted. Operating the cracking
plant as a microgrid offers several advantages, including
enhanced resilience, efficiency, and flexibility [8]. For ex-
ample, a microgrid can operate in grid-connected mode
to benefit from low electricity prices or in islanded mode
to ensure continuous operation during grid outages or
price spikes.

This study builds on our previous work [7] and ex-
plores the optimization of microgrid scheduling for clean
ethylene production based on the superstructure shown
in Figure 1. A hypothetical ethylene plant located on the
Texas Gulf Coast is used as a case study, with ethane
selected as the primary feedstock due to its prevalence
in U.S. crackers [1]. A deterministic, steady-state, multi-
objective MILP model will be developed to determine the
optimal electrification level for our hypothetical plant, and
uncertainties in VRE generation and market price predic-
tions will be considered as different scenarios.
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Figure 1. Our envisioned framework for using electricity
to supply process heat for steam cracking [7]. Based on
the context, the connections shown in the superstructure
can represent either energy or mass flows.
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MULTI-OBJECTIVE SCENARIO-BASED
OPTIMAL SCHEDULING FORMULATION

Before formulating the microgrid scheduling prob-
lem, a preliminary calculation [6] demonstrates the im-
portance of incorporating diverse energy sources and
energy storage systems for electrified cracking. In the
case of a plant with an ethylene production capacity of 1
million tons/year, even if one ignores seasonal variation,
since VRE is accessible for only 30% of the day on aver-
age, around 70% of the daily energy demand - equivalent
to 3,356 MWh - must be stored to ensure uninterrupted
operation of electrified crackers. Relying solely on bat-
tery would require an excessive amount of battery
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storage units. For example, if all the electricity is stored
using Tesla Megapack, each with 3.9 MWh of energy ca-
pacity and 40.7 m3 of storage volume [12], the resulting
battery volume would occupy a massive structure of 32.7
m x 32.7 m x 32.7 m. Furthermore, this storage require-
ment could increase by one to two orders of magnitude
due to variations in daily and seasonal weather patterns
[5]. These findings highlight the need for a hybrid energy
landscape, as illustrated in Figure 1, which integrates
both dispatchable and non-dispatchable generators. Dis-
patchable generators, powered by fossil fuel (e.g., diesel)
and controlled by microgrid master controllers, are sub-
ject to operational constraints such as generation limits,
ramping rates, and minimum on/off times [13]. In con-
trast, non-dispatchable generators are driven solely by
the availability and capacity of VRE sources and operate
independently. Motivated by these results, we develop a
multi-objective scenario-based mixed-integer linear pro-
gramming (MILP) model to identify the optimal schedule
for the microgrid and the optimal degree of electrification
for ethane cracking.

Mathematical Formulation

In this section, we describe MILP model in detail.
First, the objective function (1) minimizes the expected
daily operating cost, which includes fuel costs (cN¢),
electricity costs from the main grid (c¢), local energy gen-
eration costs by dispatch units (cP) and fuel cell units
(cF€), startup (c;) and shutdown costs (c&y), and H2 gen-
eration(cf%) and storage (c/S) costs across all scenarios
w € Q. The maximization function in the startup and shut-
down costs in the objective function can be easily linear-
ized. Constraint (2) adopts the e-constraint approach for
modeling the trade-off between operating costs and en-
vironmental impacts by ensuring that the expected total
released CO2-equivalent emissions in every hour gener-
ated by all cracker units do not exceed a specified level.
Note that burning one ton of natural gas in conventional
cracker releases approximately 2.95 (EN%) tons of COz-
equivalent emissions [14]. Meanwhile, based on current
power generation technologies, each MWh of electricity
from the power grid is associated with 0.434 (E®) tons of
CO2-equivalent emissions [15]. Equations (3) and (4) are
energy balance equations with respect to the amount of
ethylene produced by conventional crackers (CC) and
electrified (EC) ones, respectively. In our previous work
[71, we developed a differential-algebraic equation (DAE)
numerical model for ethane cracking based on detailed
kinetics model [16] and solved the resulting dynamic op-
timization problem in pyomo.dae [17] to obtain that the
minimum energy required to produce one ton of ethylene
in a conventional cracker (P¢¢) and electrified cracker
(PE€) are 4.27 MWh and 1.75 MWh, respectively (due to
different thermal efficiencies). The RHS of Equations (3)
and (4) uses the lower heating values of natural gas

Syst Control Trans 4:837-843 (2025) 838



(LHVNG) (13.826 MWh/ton) and H, (LHVHz2) (33.320
MWh/ton). Assuming year-round continuous and steady-
state operation of CCs and ECs, Equation (5) ensures that
the hourly production rate of ethylene (FC¢H+) of all CCs
and ECs must be 114.155 ton/h to achieve an annual pro-
duction target of 1 million tons. After steam cracking, the
product stream undergoes a series of downstream pro-
cessing steps to obtain individual product streams, in-
cluding C2Ha, CsHe, H2, and other value-added hydrocar-
bons. For CHa4 produced by ECs and CCs, it will be di-
rectly recycled to power the CCs, as shown in Equation
(6). For byproduct Hz, it can either be stored in H2 storage
(HS) units, or be used to power the CCs or produce elec-
tricity in fuel cell (FC) units [18], as described in Equation
(7). The mole fractions of CHa (RM&*CHs) gng H, (RMixHz)
in the product mixture are 0.469 and 0.531, respectively
[7]. Furthermore, we assume CH4 and H2 recovery rates
in downstream separation units to be 99.7% (rH+) and
99% (rHz), respectively [7]. Next, given that the ratio of
product flow rates between H, and C2Ha4 (RHz) is 0.149 as
determined from the DAE model [7], equations (8-9) in-
dicate that not all CH4 and H2 produced have to be recy-
cled. Equation (10) limits the amount of H2 in a HS unit to
its storage capacity (HSC) which is 15 tons. Equations (11-
12) are hydrogen balances around the HS unit and elec-
trolyzer (EL). The energy balance for the electrolyzer is
shown in Equation (13) using the NREL-validated PEM
stack efficiency (nF-) of 73.6% [19] and the theoretical
electrolysis energy requirement (QHz) of 40 MWh/ton.
Equation (14) indicates the current Hz production capac-
ity (FEHLZ) from the electrolyzer (0.6 ton/h). The fuel cell
energy balance, generation limit, and power distribution
constraints are formulated in Equations (15-17), where
we assume a 65% fuel cell efficiency (nf¢) and a power
generation capacity (PF¢) of 1 MW. Equations (18-22)
show power distribution associated with the local non-
dispatchable, dispatchable, energy storage system (both
charging and discharging), and main grid. In Equation
(23), we set the allowable power withdrawal from the
main grid to the microgrid to be at most 50 MW (P¢). Ad-
ditional constraints related to local dispatchable genera-
tion, ramping, up/downtime, energy storage charg-
ing/discharging, and power storage are described in [9]
and also included in the model [7].
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In this section, we illustrate the proposed multi-ob-
jective scenario-based MILP model in a case study of a
hypothetical plant designed with an ethylene production
capacity of 1 million tons per year. Each cracking furnace
in the U.S. typically can produce 100,000 to 250,000 tons
of ethylene per year. Based on this, we assume the plant
operates with five ethane crackers, each with a produc-
tion capacity of 200,000 tons of C2Hs per year. The mi-
crogrid is equipped with 20 natural gas-powered local
generators with minimum (resp. maximum) capacity of 1
(resp. 5) MW, a minimum up/downtime of 3 hr, a ramp-
up/down rate of 2.5 MW/h, and an operating cost of
$33.4/MWh. The battery storage units have a total ca-
pacity of 20 MWh with 5 hours of minimum charging/dis-
charging time. The minimum and maximum capacities of
charging/discharging power are 0.8 and 4 MW, respec-
tively. Our planning horizon is 24 hours.

Table 1: Probability of generated scenarios for LMP, wind
power, and PV.

Scenario num-  Probability of uncertain parameter

ber used in (%)

Table 2 LMP WP PV
1 64.50 14.48 4.86
2 2.92 1.52 60.31
3 3.26 64.91 15.81
4 1.29 6.18 32.96
5 28.03 13.91 16.06

Table 2: Probability of generated scenarios (after sce-
nario reduction) for the microgrid problem after scenario
reduction.

Com- Selected Se- Se- Probabil-
bined LMP lected lected ity (%)
sce- scenario WP PV sce-
nario sce- nario
nario
1 5 3 2 18.21
2 1 3 4 45.56
3 1 1 3 4.54
4 5 3 3 9.50
5 1 3 5 22.19

Electricity market prices, along with solar and wind
energy generation, are inherently intermittent. To ac-
count for these uncertainties in our model, we generate
five scenarios for each uncertain parameter using Monte
Carlo simulations based on a log-normal distribution, en-
suring that no negative parameter values are produced
[7]. These scenarios are derived using publicly available
data from the Texas grid (ERCOT) for August 2024. For
locational marginal pricing (LMP), we select Bus TC-KO
arbitrarily as a representative case without loss of gener-
ality. Table 1 summarizes the probabilities of scenarios
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for each uncertain parameter. Note that the combination
of these scenarios results in 53 = 125 possible outcomes.
To manage this complexity, we apply a scenario reduc-
tion technique to identify 5 representative combinations.
This is achieved using a probability distance algorithm
based on the Kantorovich distance [9] (see Table 2). Fig-
ures 2 through 4 illustrate the mean and average values
for electricity market prices, wind power, and solar power
across the 5 representative scenarios synthesized.

LMP (S'MWh)
&

Time (Hours)
Figure 2. The electricity market prices (in $/MWh) of the
five scenarios considered.

Wind Power (MW)

Time (Hours)

Figure 3. The generation output (in MW) of wind turbines
of the five scenarios considered.

Solar Power (MW)

Time (Hours)

Figure 4. The output power (in MW) of solar panels of the
five scenarios considered.

First, we solve the problem without incorporating
the € -constraint of Equation (2) to determine the
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minimum operating cost and the corresponding degree
of electrification (i.e., % of ethylene produced from ECs)
required. The minimum expected daily operating cost is
calculated to be $11,705.22, with 5.28% of the daily eth-
ylene production coming from electrified crackers. The
expected daily CO2-equivalent emissions amounted to
919.42 tons, with the maximum hourly emissions reach-
ing 39.43 tons (the first row in Table 3).

Next, we solve the problem for different values of
€ € [32,39] to evaluate the corresponding optimal operat-
ing and degree of electrification. It is important to note
that the problem becomes infeasible when e = 32, indi-
cating that reducing the hourly CO2-equivalent emissions
to less than 33 tons is not feasible with the current tech-
nology. The results, summarized in Table 3, show that
the highest degree of electrification achievable is 19.25%,
which corresponds to an operating cost of $33,884.81 -
a 189.5% increase compared to the case without the e-
constraint (the first row in Table 3). On the other hand,
the expected daily COz-equivalent emissions are re-
duced by 13.86% (almost 130 tons).

Table 3: Summary of expected operating costs, degrees
of electrification, and CO2-equivalent emissions for dif-
ferent values of €, highlighting the trade-offs between
emissions reduction and associated costs.

# € Expected Degree of Expected
(tons) CO2-equiv electrifi- operating
emissions cation (%) cost ($)
(tons)
1 39 918.70 5.46 11,755.57
2 38 910.08 7.65 12,172.48
3 37 887.99 12.06 14,225.26
4 36 863.99 14.59 17,556.30
5 35 840.00 16.77 21,792.20
6 34 815.99 18.49 27,436.60
7 33 792.00 19.25 33,884.81

Here, we discuss some of the key findings and re-
sults. First, Figures 5 and 6 illustrate the Pareto front and
the operating cost-degree of the electrification relation-
ship, respectively, providing quantitative insights into the
trade-off between the two important measures. Mean-
while, Figure 7 and 8 illustrate changes in the expected
transferred power from the main grid to the microgrid and
the charge/discharge status of local energy storage sys-
tem (batteries). As one would expect, these fluctuations
are partly driven by hourly variations in electricity market
prices (as shown in Figure 2). During peak hours, there
will be less power transferred from the main grid to the
microgrid, thereby prompting the chemical plant to prior-
itize local power generation or stored energy to maintain
continuous operation. During off-peak hours, the mi-
crogrid can rely more on the main grid power to reduce
operating costs. Additionally, this figure highlights the
environmental considerations affecting grid power
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usage. As stricter CO,-equivalent emission constraint (e)
is enforced, the microgrid reduces its reliance on the
main grid and favors cleaner, locally generated energy
sources. This is due to the relatively high carbon footprint
associated with main grid electricity given the existing
energy landscape. Therefore, decarbonization of chemi-
cal manufacturing should not be considered in silo. In-
stead, it must be synergistically coupled with decarboni-
zation in power systems to achieve holistic decarboniza-
tion that is economically favorable.

=39 Pareto Front: Cost vs. Emissions

900

860

840

Expected Total GHG Emis

800 |-

780 L m
10000 15000 20000 25000 10000 35000
Expected Total Cost ($)

Figure 5. Pareto front showing the trade-off between
expected daily operating cost and expected daily CO2-
equivalent emissions for different values of e. Each point
represents an optimal solution for a specific e-value.

Cost vs. Electrification Rate
1 1 I €=33

Electrification Rate (%)

4 L L L
10000 15000 20000 25000 30000 35000
Expected Total Cost ($)

Figure 6. A concave relationship between expected
operating cost and degree of electrification for different
values of €. The plot highlights how the tightness of
emission constraint affects of optimal degree of
electrification and cost.

Syst Control Trans 4:837-843 (2025) 841



15 Expected Transferred Power from Main Grid to Chemical Plant for Each e
L T T I

*~—e =3}

0

10

Expected Transferred Power (MW)

0

Hour

Figure 7. Expected transferred power from the main grid
to the chemical plant.
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Figure 8. Expected charge/discharge power from ESS to
ECs.

CONCLUSION

This work presents an optimization framework for
operating the microgrid that integrates electrified and
conventional steam crackers along with renewable en-
ergy sources and diverse energy sources and storage
systems. The proposed multi-objective scenario-based
MILP model illustrates the feasibility of reducing CO2-
equivalent emissions and the resulting process econom-
ics trade-off. The results suggest that, while higher de-
gree of electrification leads to lower emissions, there is a
lower limit to which electrification and decarbonization of
steam cracking process can reach given 1) the limited ca-
pacities of energy storage systems and technology read-
iness of fuel cells and electrolyzers, and 2) the resulting
increase in operating cost. Overall, operating the eth-
ylene plant as a microgrid offers flexibility and resilience
as it can better cope with the ongoing industrial decar-
bonization initiatives and the evolving U.S. energy land-
scape. Our proposed microgrid superstructure provides
a viable solution for energy-intensive steam cracking
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process to transition toward being sustainable while eco-
nomically competitive. Looking ahead, further research
should explore the integration of emerging energy stor-
age technologies, such as advanced batteries and ther-
mal storage, to enhance the stability of electrified steam
cracking. Additionally, policy incentives and carbon pric-
ing mechanisms could play a critical role in making sus-
tainable production pathways more economically viable.
Future studies should also investigate the electrification
of other key process units, such as distillation systems
using heat pumps, and assess the feasibility of fully elec-
trified cracking plant. Addressing these aspects will un-
lock the full decarbonization potential of clean olefins
production while ensuring operational reliability and eco-
nomic feasibility.
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