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ABSTRACT 
Olefins are essential precursors in producing a wide range of chemical products, including plastics, 
detergents, adhesives, rubber, and food packaging. Ethylene and propylene are the most ubiqui-
tous olefin components and are predominantly produced through steam cracking. However, steam 
cracking is highly energy- and carbon-intensive, making its decarbonization a priority as the en-
ergy sector shifts toward clean, renewable electricity. Electrifying the steam cracking process is a 
promising pathway to reduce carbon emissions. However, this is challenged by the intrinsic con-
flict between the continuous operational nature of ethylene plants and the intermittent nature of 
renewable energy sources (e.g., solar and wind) in modern power systems. Massive energy stor-
age systems or full plant reconfigurations to meet the power demand of electrified crackers are 
shown to be economically and practically infeasible. Thus, a more viable solution is to pursue a 
gradual electrification pathway and operate an ethylene plant as a microgrid that adopts diverse 
energy sources. To optimize the operational strategy of such a microgrid considering uncertainties 
in renewable energy generation and market prices, in this work, we introduce a stochastic multi-
objective optimization approach that minimizes operating costs and carbon emissions of steam 
cracking. Results from a case study not only elucidate the trade-offs between economic and en-
vironmental objectives, but also provide insights into the optimal operating scheme in sustainable 
ethylene production. 

Keywords: Steam cracking, Ethylene, Multi-objective Optimization, Renewable and Sustainable Energy, De-
carbonization 

INTRODUCTION 
The U.S. energy landscape is undergoing a funda-

mental transition as the proportion of clean, renewable 
electricity in total U.S. electricity generation will double to 
44% between now and 2050 [1]. Thus, electrification is a 
promising pathway to decarbonize various energy-inten-
sive chemical processes, including the steam cracking 
process for olefins production. Recently, there have been 
significant advancements in electrified cracking technol-
ogy [2]. While conventional cracking furnaces transfer 
only 40-45% of firing energy to process fluids, electrified 
furnaces achieve efficiencies of at least 95% [2-4]. Most 
U.S. ethylene plants are large-scale, continuously oper-
ating facilities with capacities exceeding 1 million tons 
annually. Due to the intermittent nature of variable re-
newable electricity (VRE), energy storage solutions must 

be in place. However, the intermittent nature and sea-
sonal variation in VAE generation will lead to a 1~2-order 
increase in battery storage requirements compared to 
the storage requirement based on the average daily 
power supply, making energy storage purely using bat-
tery an expensive option [5,6]. On the other hand, the use 
of byproduct hydrogen (H2) as energy storage substan-
tially reduces battery size. The combined use of solar and 
wind energy can significantly reduce storage require-
ments [5]. And low but continuing use of fossil fuels and 
a gradual transition from conventional crackers to elec-
trified ones are feasible intermediate solutions toward 
long-term complete decarbonization [7]. 

In Figure 1, we propose a novel process scheme for 
steam cracking decarbonization that incorporate these 
important aspects. The envisioned process is a microgrid 
– a localized electric grid capable of independent 
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operation. Both electrified and conventional crackers are 
considered in this superstructure. Diverse energy 
sources, including on-site VRE, battery storage, electro-
lyzers, H2 fuel cells as well as conventional natural gas 
and liquid fuel, can be adopted. Operating the cracking 
plant as a microgrid offers several advantages, including 
enhanced resilience, efficiency, and flexibility [8]. For ex-
ample, a microgrid can operate in grid-connected mode 
to benefit from low electricity prices or in islanded mode 
to ensure continuous operation during grid outages or 
price spikes. 

This study builds on our previous work [7] and ex-
plores the optimization of microgrid scheduling for clean 
ethylene production based on the superstructure shown 
in Figure 1. A hypothetical ethylene plant located on the 
Texas Gulf Coast is used as a case study, with ethane 
selected as the primary feedstock due to its prevalence 
in U.S. crackers [1]. A deterministic, steady-state, multi-
objective MILP model will be developed to determine the 
optimal electrification level for our hypothetical plant, and 
uncertainties in VRE generation and market price predic-
tions will be considered as different scenarios. 

 
Figure 1. Our envisioned framework for using electricity 
to supply process heat for steam cracking [7]. Based on 
the context, the connections shown in the superstructure 
can represent either energy or mass flows. 

MULTI-OBJECTIVE SCENARIO-BASED 
OPTIMAL SCHEDULING FORMULATION 

Before formulating the microgrid scheduling prob-
lem, a preliminary calculation [6] demonstrates the im-
portance of incorporating diverse energy sources and 
energy storage systems for electrified cracking. In the 
case of a plant with an ethylene production capacity of 1 
million tons/year, even if one ignores seasonal variation, 
since VRE is accessible for only 30% of the day on aver-
age, around 70% of the daily energy demand – equivalent 
to 3,356 MWh – must be stored to ensure uninterrupted 
operation of electrified crackers. Relying solely on bat-
tery would require an excessive amount of battery 

storage units. For example, if all the electricity is stored 
using Tesla Megapack, each with 3.9 MWh of energy ca-
pacity and 40.7 m3 of storage volume [12], the resulting 
battery volume would occupy a massive structure of 32.7 
m × 32.7 m × 32.7 m. Furthermore, this storage require-
ment could increase by one to two orders of magnitude 
due to variations in daily and seasonal weather patterns 
[5]. These findings highlight the need for a hybrid energy 
landscape, as illustrated in Figure 1, which integrates 
both dispatchable and non-dispatchable generators. Dis-
patchable generators, powered by fossil fuel (e.g., diesel) 
and controlled by microgrid master controllers, are sub-
ject to operational constraints such as generation limits, 
ramping rates, and minimum on/off times [13]. In con-
trast, non-dispatchable generators are driven solely by 
the availability and capacity of VRE sources and operate 
independently. Motivated by these results, we develop a 
multi-objective scenario-based mixed-integer linear pro-
gramming (MILP) model to identify the optimal schedule 
for the microgrid and the optimal degree of electrification 
for ethane cracking. 

Mathematical Formulation 
In this section, we describe MILP model in detail. 

First, the objective function (1) minimizes the expected 
daily operating cost, which includes fuel costs (𝑐𝑐𝑁𝑁𝑁𝑁  ), 
electricity costs from the main grid (𝑐𝑐𝐺𝐺), local energy gen-
eration costs by dispatch units (𝑐𝑐𝐷𝐷 ) and fuel cell units 
(𝑐𝑐𝐹𝐹𝐹𝐹), startup (𝑐𝑐𝑆𝑆𝑆𝑆𝐷𝐷 ) and shutdown costs (𝑐𝑐𝑆𝑆𝑆𝑆𝐷𝐷 ), and H2 gen-
eration(𝑐𝑐𝐸𝐸𝐸𝐸) and storage (𝑐𝑐𝐻𝐻𝐻𝐻) costs across all scenarios 
𝜔𝜔 ∈ Ω. The maximization function in the startup and shut-
down costs in the objective function can be easily linear-
ized. Constraint (2) adopts the 𝜖𝜖-constraint approach for 
modeling the trade-off between operating costs and en-
vironmental impacts by ensuring that the expected total 
released CO2-equivalent emissions in every hour gener-
ated by all cracker units do not exceed a specified level. 
Note that burning one ton of natural gas in conventional 
cracker releases approximately 2.95 (𝐸𝐸𝑁𝑁𝑁𝑁) tons of CO2-
equivalent emissions [14]. Meanwhile, based on current 
power generation technologies, each MWh of electricity 
from the power grid is associated with 0.434 (𝐸𝐸𝐺𝐺) tons of 
CO2-equivalent emissions [15]. Equations (3) and (4) are 
energy balance equations with respect to the amount of 
ethylene produced by conventional crackers (CC) and 
electrified (EC) ones, respectively. In our previous work 
[7], we developed a differential-algebraic equation (DAE) 
numerical model for ethane cracking based on detailed 
kinetics model [16] and solved the resulting dynamic op-
timization problem in pyomo.dae [17] to obtain that the 
minimum energy required to produce one ton of ethylene 
in a conventional cracker (𝑃𝑃𝐶𝐶𝐶𝐶 ) and electrified cracker 
(𝑃𝑃𝐸𝐸𝐸𝐸) are 4.27 MWh and 1.75 MWh, respectively (due to 
different thermal efficiencies). The RHS of Equations (3) 
and (4) uses the lower heating values of natural gas 
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( 𝐿𝐿𝐿𝐿𝑉𝑉𝑁𝑁𝑁𝑁 ) (13.826 MWh/ton) and H2 ( 𝐿𝐿𝐿𝐿𝑉𝑉H2 ) (33.320 
MWh/ton). Assuming year-round continuous and steady-
state operation of CCs and ECs, Equation (5) ensures that 
the hourly production rate of ethylene (𝐹𝐹C2H4) of all CCs 
and ECs must be 114.155 ton/h to achieve an annual pro-
duction target of 1 million tons. After steam cracking, the 
product stream undergoes a series of downstream pro-
cessing steps to obtain individual product streams, in-
cluding C2H4, C3H6, H2, and other value-added hydrocar-
bons. For CH4 produced by ECs and CCs, it will be di-
rectly recycled to power the CCs, as shown in Equation 
(6). For byproduct H2, it can either be stored in H2 storage 
(HS) units, or be used to power the CCs or produce elec-
tricity in fuel cell (FC) units [18], as described in Equation 
(7). The mole fractions of CH4 (𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀,CH4) and H2 (𝑅𝑅Mix,H2) 
in the product mixture are 0.469 and 0.531, respectively 
[7]. Furthermore, we assume CH4 and H2 recovery rates 
in downstream separation units to be 99.7% (𝑟𝑟CH4) and 
99% (𝑟𝑟H2), respectively [7]. Next, given that the ratio of 
product flow rates between H2 and C2H4 (𝑅𝑅H2) is 0.149 as 
determined from the DAE model [7], equations (8-9) in-
dicate that not all CH4 and H2 produced have to be recy-
cled. Equation (10) limits the amount of H2 in a HS unit to 
its storage capacity (𝐻𝐻𝐻𝐻𝐻𝐻) which is 15 tons. Equations (11-
12) are hydrogen balances around the HS unit and elec-
trolyzer (EL). The energy balance for the electrolyzer is 
shown in Equation (13) using the NREL-validated PEM 
stack efficiency (𝜂𝜂𝐸𝐸𝐸𝐸) of 73.6% [19] and the theoretical 
electrolysis energy requirement ( 𝑄̇𝑄H2 ) of 40 MWh/ton. 
Equation (14) indicates the current H2 production capac-
ity (𝐹𝐹𝐸𝐸𝐸𝐸

H2) from the electrolyzer (0.6 ton/h). The fuel cell 
energy balance, generation limit, and power distribution 
constraints are formulated in Equations (15-17), where 
we assume a 65% fuel cell efficiency (𝜂𝜂𝐹𝐹𝐹𝐹) and a power 
generation capacity (𝑃𝑃�𝐹𝐹𝐹𝐹 ) of 1 MW. Equations (18-22) 
show power distribution associated with the local non-
dispatchable, dispatchable, energy storage system (both 
charging and discharging), and main grid. In Equation 
(23), we set the allowable power withdrawal from the 
main grid to the microgrid to be at most 50 MW (𝑃𝑃�𝐺𝐺). Ad-
ditional constraints related to local dispatchable genera-
tion, ramping, up/downtime, energy storage charg-
ing/discharging, and power storage are described in [9] 
and also included in the model [7]. 

  min ∑ ∑ 𝜌𝜌𝜔𝜔[𝑐𝑐𝑁𝑁𝑁𝑁𝐹𝐹𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔
𝑁𝑁𝑁𝑁 Δ𝑡𝑡 + ∑ �𝑐𝑐𝑁𝑁𝑁𝑁𝐹𝐹𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷 Δ𝑡𝑡 +𝑔𝑔∈𝐺𝐺𝑡𝑡∈𝑇𝑇𝜔𝜔∈Ω

 𝑐𝑐𝐷𝐷𝑝𝑝𝑔𝑔,𝑡𝑡,𝜔𝜔
𝐷𝐷 + 𝑐𝑐𝑆𝑆𝑆𝑆𝐷𝐷 max�0,𝑥𝑥𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷 −   𝑥𝑥𝑔𝑔,𝑡𝑡−1,𝜔𝜔
𝐷𝐷 � +

  𝑐𝑐𝑆𝑆𝑆𝑆𝐷𝐷 max�0,𝑥𝑥𝑔𝑔,𝑡𝑡−1,𝜔𝜔
𝐷𝐷 −   𝑥𝑥𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷 �� + 𝑐𝑐𝑡𝑡,𝜔𝜔
𝐺𝐺 𝑃𝑃𝑡𝑡,𝜔𝜔

𝐺𝐺 + 𝑐𝑐𝐹𝐹𝐹𝐹𝑝𝑝𝑡𝑡,𝜔𝜔
𝐹𝐹𝐹𝐹 +

 𝑐𝑐𝐸𝐸𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐻𝐻2 Δ𝑡𝑡 + 𝑐𝑐𝐻𝐻𝐻𝐻𝑀𝑀𝐻𝐻𝐻𝐻,𝑡𝑡,𝜔𝜔

𝐻𝐻2  ], (1)  

� 𝜌𝜌𝑤𝑤Δ𝑡𝑡 �𝐸𝐸𝑁𝑁𝑁𝑁 �𝐹𝐹𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔
𝑁𝑁𝑁𝑁 + 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔

𝑁𝑁𝑁𝑁 + �𝐹𝐹𝑔𝑔,𝑡𝑡,𝜔𝜔
𝐷𝐷

𝑔𝑔∈𝐺𝐺

� + 𝐸𝐸𝐺𝐺𝑃𝑃𝑡𝑡,𝜔𝜔
𝐺𝐺 �

𝜔𝜔∈Ω

≤ 𝜖𝜖,∀𝑡𝑡 ∈ 𝑇𝑇,  (2) 

𝑃𝑃𝐶𝐶𝐶𝐶𝐹𝐹𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔
𝐶𝐶2𝐻𝐻4 = 𝐿𝐿𝐿𝐿𝑉𝑉𝑁𝑁𝑁𝑁�𝐹𝐹𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔

𝑁𝑁𝑁𝑁 + 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔
𝐶𝐶𝐻𝐻4 �

+ 𝐿𝐿𝐿𝐿𝑉𝑉H2�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔
𝐻𝐻2 + 𝐹𝐹𝐸𝐸𝐸𝐸,CC,𝑡𝑡,𝜔𝜔

𝐻𝐻2

+ 𝐹𝐹𝐻𝐻𝐻𝐻,CC,𝑡𝑡,𝜔𝜔
𝐻𝐻2 �,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (3) 

𝑃𝑃𝐸𝐸𝐸𝐸𝐹𝐹𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐶𝐶2𝐻𝐻4 =  �𝑝𝑝𝐸𝐸𝐸𝐸,𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝑁𝑁𝑁𝑁 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐺𝐺

𝑔𝑔∈𝐺𝐺

+ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐸𝐸𝐸𝐸𝐸𝐸

+ 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐹𝐹𝐹𝐹 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (4) 

𝐹𝐹𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔
𝐶𝐶2𝐻𝐻4 + 𝐹𝐹𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐶𝐶2𝐻𝐻4 = 𝐹𝐹C2H4 , ∀ t ∈  T,ω ∈  Ω (5)  

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔
𝐶𝐶𝐻𝐻4 = 𝑟𝑟CH4𝑅𝑅𝑀𝑀𝑀𝑀𝑀𝑀,CH4�𝐹𝐹𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔

𝐶𝐶2𝐻𝐻4,𝐻𝐻2 + 𝐹𝐹𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔
𝐶𝐶2𝐻𝐻4,𝐻𝐻2 �,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔

∈ Ω, (6) 

𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔
𝐻𝐻2 + 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝐻𝐻𝐻𝐻,𝑡𝑡,𝜔𝜔

𝐻𝐻2 + 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹,𝑡𝑡,𝜔𝜔
𝐻𝐻2

= 𝑟𝑟H2𝑅𝑅Mix,H2�𝐹𝐹𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔
𝐶𝐶2𝐻𝐻4,𝐻𝐻2 + 𝐹𝐹𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔

𝐶𝐶2𝐻𝐻4,𝐻𝐻2 �,∀𝑡𝑡
∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (7) 

𝐹𝐹𝐶𝐶𝐶𝐶,𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔
𝐶𝐶2𝐻𝐻4,𝐻𝐻2 ≤ 𝑅𝑅H2𝐹𝐹𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔

𝐶𝐶2𝐻𝐻4 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (8) 

𝐹𝐹𝐸𝐸𝐸𝐸,𝑠𝑠𝑠𝑠𝑠𝑠,𝑡𝑡,𝜔𝜔
𝐶𝐶2𝐻𝐻4,𝐻𝐻2 ≤ 𝑅𝑅H2𝐹𝐹𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐶𝐶2𝐻𝐻4 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (9) 

0 ≤ 𝑀𝑀𝐻𝐻𝐻𝐻,𝑡𝑡,𝜔𝜔
𝐻𝐻2 ≤ 𝐻𝐻𝐻𝐻𝐻𝐻,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (10) 

𝑀𝑀𝐻𝐻𝐻𝐻,𝑡𝑡,𝜔𝜔
𝐻𝐻2 =  𝑀𝑀𝐻𝐻𝐻𝐻,𝑡𝑡−1,𝜔𝜔

𝐻𝐻2

+ Δ𝑡𝑡�𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝐻𝐻𝐻𝐻,𝑡𝑡,𝜔𝜔
𝐻𝐻2 + 𝐹𝐹𝐸𝐸𝐸𝐸,𝐻𝐻𝐻𝐻,𝑡𝑡,𝜔𝜔

𝐻𝐻2 − 𝐹𝐹𝐻𝐻𝐻𝐻,FC,𝑡𝑡,𝜔𝜔
𝐻𝐻2

− 𝐹𝐹𝐻𝐻𝐻𝐻,CC,𝑡𝑡,𝜔𝜔
𝐻𝐻2 �,∀ 𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (11) 

𝐹𝐹𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐻𝐻2 =  𝐹𝐹𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹,𝑡𝑡,𝜔𝜔

𝐻𝐻2 + 𝐹𝐹𝐸𝐸𝐸𝐸,𝐻𝐻𝐻𝐻,𝑡𝑡,𝜔𝜔
𝐻𝐻2 + 𝐹𝐹𝐸𝐸𝐸𝐸,𝐶𝐶𝐶𝐶,𝑡𝑡,𝜔𝜔

𝐻𝐻2 ,∀ 𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (12) 

𝐹𝐹𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐻𝐻2 =

𝜂𝜂𝐸𝐸𝐸𝐸

𝑄̇𝑄H2
�� 𝑝𝑝𝐸𝐸𝐸𝐸,𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷

𝑔𝑔∈𝐺𝐺

+  𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝑁𝑁𝑁𝑁 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐺𝐺 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐸𝐸𝐸𝐸𝐸𝐸 � ,∀ 𝑡𝑡

∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (13) 

0 ≤ 𝐹𝐹𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐻𝐻2 ≤ 𝐹𝐹𝐸𝐸𝐸𝐸

H2 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (14) 

𝑝𝑝𝑡𝑡,𝜔𝜔
𝐹𝐹𝐹𝐹 = 𝜂𝜂𝐹𝐹𝐹𝐹𝐿𝐿𝐿𝐿𝑉𝑉H2�𝐹𝐹𝐻𝐻𝐻𝐻,FC,𝑡𝑡,𝜔𝜔

𝐻𝐻2 + 𝐹𝐹𝐸𝐸𝐸𝐸,𝐹𝐹𝐹𝐹,𝑡𝑡,𝜔𝜔
𝐻𝐻2 + 𝐹𝐹𝑠𝑠𝑠𝑠𝑠𝑠,𝐹𝐹𝐹𝐹,𝑡𝑡,𝜔𝜔

𝐻𝐻2 �Δ𝑡𝑡,∀ 𝑡𝑡
∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (15) 

0 ≤ 𝑝𝑝𝑡𝑡,𝜔𝜔
𝐹𝐹𝐹𝐹 ≤ 𝑃𝑃�𝐹𝐹𝐹𝐹𝑥𝑥𝑡𝑡,𝜔𝜔

𝐹𝐹𝐹𝐹 ,∀ 𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (16) 

𝑝𝑝𝑡𝑡,𝜔𝜔
𝐹𝐹𝐹𝐹 = 𝑝𝑝𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐹𝐹𝐹𝐹 + 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐹𝐹𝐹𝐹 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (17) 

𝑃𝑃𝑡𝑡,𝜔𝜔
𝑊𝑊𝑊𝑊 + 𝑃𝑃𝑡𝑡,𝜔𝜔

𝑃𝑃𝑃𝑃 = 𝑝𝑝𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝑁𝑁𝑁𝑁 + 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝑁𝑁𝑁𝑁 +  𝑝𝑝𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝑁𝑁𝑁𝑁 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (18)  

𝑃𝑃𝑔𝑔,𝑡𝑡,𝜔𝜔
𝐷𝐷 = 𝑝𝑝𝐸𝐸𝐸𝐸,𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷 + 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑔𝑔,𝑡𝑡,𝜔𝜔
𝐷𝐷 + 𝑝𝑝𝐸𝐸𝐸𝐸,𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷 ,∀𝑔𝑔 ∈ 𝐺𝐺, 𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔
∈ Ω, (19) 

𝑃𝑃𝐶𝐶,𝑡𝑡,𝜔𝜔
𝐸𝐸𝐸𝐸𝐸𝐸 =  �𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑔𝑔,𝑡𝑡,𝜔𝜔

𝐷𝐷

𝑔𝑔∈𝐺𝐺

+ 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐺𝐺 +  𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝑁𝑁𝑁𝑁 + 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐹𝐹𝐹𝐹 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔

∈ Ω, (20) 

𝑃𝑃𝐷𝐷𝐷𝐷,𝑡𝑡,𝜔𝜔
𝐸𝐸𝐸𝐸𝐸𝐸 =  𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐸𝐸𝐸𝐸𝐸𝐸 + 𝑃𝑃𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐸𝐸𝐸𝐸𝐸𝐸 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (21) 

𝑃𝑃𝑡𝑡,𝜔𝜔
𝐺𝐺 = 𝑝𝑝𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐺𝐺 + 𝑝𝑝𝐸𝐸𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔
𝐺𝐺 + 𝑝𝑝𝐸𝐸𝐸𝐸,𝑡𝑡,𝜔𝜔

𝐺𝐺 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω, (22) 

0 ≤ 𝑃𝑃𝑡𝑡,𝜔𝜔
𝐺𝐺 ≤ 𝑃𝑃�𝐺𝐺 ,∀𝑡𝑡 ∈ 𝑇𝑇,𝜔𝜔 ∈ Ω. (23) 

ILLUSTRATIVE CASE STUDY 
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In this section, we illustrate the proposed multi-ob-
jective scenario-based MILP model in a case study of a 
hypothetical plant designed with an ethylene production 
capacity of 1 million tons per year. Each cracking furnace 
in the U.S. typically can produce 100,000 to 250,000 tons 
of ethylene per year. Based on this, we assume the plant 
operates with five ethane crackers, each with a produc-
tion capacity of 200,000 tons of C2H4 per year. The mi-
crogrid is equipped with 20 natural gas-powered local 
generators with minimum (resp. maximum) capacity of 1 
(resp. 5) MW, a minimum up/downtime of 3 hr, a ramp-
up/down rate of 2.5 MW/h, and an operating cost of 
$33.4/MWh. The battery storage units have a total ca-
pacity of 20 MWh with 5 hours of minimum charging/dis-
charging time. The minimum and maximum capacities of 
charging/discharging power are 0.8 and 4 MW, respec-
tively. Our planning horizon is 24 hours. 

Table 1: Probability of generated scenarios for LMP, wind 
power, and PV. 

Scenario num-
ber used in 
Table  

Probability of uncertain parameter 
(%) 

LMP WP PV 
    
    
    
    
    

Table 2: Probability of generated scenarios (after sce-
nario reduction) for the microgrid problem after scenario 
reduction. 

Com-
bined 
sce-
nario 

Selected 
LMP 
scenario 

Se-
lected 
WP 
sce-
nario 

Se-
lected 
PV sce-
nario 

Probabil-
ity (%) 

     
     
     
     
     

 
Electricity market prices, along with solar and wind 

energy generation, are inherently intermittent. To ac-
count for these uncertainties in our model, we generate 
five scenarios for each uncertain parameter using Monte 
Carlo simulations based on a log-normal distribution, en-
suring that no negative parameter values are produced 
[7]. These scenarios are derived using publicly available 
data from the Texas grid (ERCOT) for August 2024. For 
locational marginal pricing (LMP), we select Bus TC-KO 
arbitrarily as a representative case without loss of gener-
ality. Table 1 summarizes the probabilities of scenarios 

for each uncertain parameter. Note that the combination 
of these scenarios results in 53 = 125 possible outcomes. 
To manage this complexity, we apply a scenario reduc-
tion technique to identify 5 representative combinations. 
This is achieved using a probability distance algorithm 
based on the Kantorovich distance [9] (see Table 2). Fig-
ures 2 through 4 illustrate the mean and average values 
for electricity market prices, wind power, and solar power 
across the 5 representative scenarios synthesized. 

 
Figure 2. The electricity market prices (in $/MWh) of the 
five scenarios considered.  

 
Figure 3. The generation output (in MW) of wind turbines 
of the five scenarios considered. 

 
Figure 4. The output power (in MW) of solar panels of the 
five scenarios considered. 

First, we solve the problem without incorporating 
the 𝜖𝜖 -constraint of Equation (2) to determine the 
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minimum operating cost and the corresponding degree 
of electrification (i.e., % of ethylene produced from ECs) 
required. The minimum expected daily operating cost is 
calculated to be $11,705.22, with 5.28% of the daily eth-
ylene production coming from electrified crackers. The 
expected daily CO2-equivalent emissions amounted to 
919.42 tons, with the maximum hourly emissions reach-
ing 39.43 tons (the first row in Table 3). 

Next, we solve the problem for different values of 
𝜖𝜖 ∈ [32,39] to evaluate the corresponding optimal operat-
ing and degree of electrification. It is important to note 
that the problem becomes infeasible when 𝜖𝜖 = 32, indi-
cating that reducing the hourly CO2-equivalent emissions 
to less than 33 tons is not feasible with the current tech-
nology. The results, summarized in Table 3, show that 
the highest degree of electrification achievable is 19.25%, 
which corresponds to an operating cost of $33,884.81 – 
a 189.5% increase compared to the case without the 𝜖𝜖-
constraint (the first row in Table 3). On the other hand, 
the expected daily CO2-equivalent emissions are re-
duced by 13.86% (almost 130 tons). 

Table 3: Summary of expected operating costs, degrees 
of electrification, and CO2-equivalent emissions for dif-
ferent values of 𝜖𝜖 , highlighting the trade-offs between 
emissions reduction and associated costs. 

# 𝝐𝝐 
(tons) 

Expected 
CO-equiv 
emissions 
(tons) 

Degree of 
electrifi-
cation (%) 

Expected 
operating 
cost ($) 

     
     
     
     
     
     
     

 
Here, we discuss some of the key findings and re-

sults. First, Figures 5 and 6 illustrate the Pareto front and 
the operating cost-degree of the electrification relation-
ship, respectively, providing quantitative insights into the 
trade-off between the two important measures. Mean-
while, Figure 7 and 8 illustrate changes in the expected 
transferred power from the main grid to the microgrid and 
the charge/discharge status of local energy storage sys-
tem (batteries). As one would expect, these fluctuations 
are partly driven by hourly variations in electricity market 
prices (as shown in Figure 2). During peak hours, there 
will be less power transferred from the main grid to the 
microgrid, thereby prompting the chemical plant to prior-
itize local power generation or stored energy to maintain 
continuous operation. During off-peak hours, the mi-
crogrid can rely more on the main grid power to reduce 
operating costs. Additionally, this figure highlights the 
environmental considerations affecting grid power 

usage. As stricter CO₂-equivalent emission constraint (𝜖𝜖) 
is enforced, the microgrid reduces its reliance on the 
main grid and favors cleaner, locally generated energy 
sources. This is due to the relatively high carbon footprint 
associated with main grid electricity given the existing 
energy landscape. Therefore, decarbonization of chemi-
cal manufacturing should not be considered in silo. In-
stead, it must be synergistically coupled with decarboni-
zation in power systems to achieve holistic decarboniza-
tion that is economically favorable. 

Figure 5. Pareto front showing the trade-off between 
expected daily operating cost and expected daily CO2-
equivalent emissions for different values of 𝜖𝜖. Each point 
represents an optimal solution for a specific 𝜖𝜖-value. 

Figure 6. A concave relationship between expected 
operating cost and degree of electrification for different 
values of 𝜖𝜖 . The plot highlights how the tightness of 
emission constraint affects of optimal degree of 
electrification and cost. 
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Figure 7. Expected transferred power from the main grid 
to the chemical plant. 

 
Figure 8. Expected charge/discharge power from ESS to 
ECs. 

CONCLUSION 
This work presents an optimization framework for 

operating the microgrid that integrates electrified and 
conventional steam crackers along with renewable en-
ergy sources and diverse energy sources and storage 
systems. The proposed multi-objective scenario-based 
MILP model illustrates the feasibility of reducing CO2-
equivalent emissions and the resulting process econom-
ics trade-off. The results suggest that, while higher de-
gree of electrification leads to lower emissions, there is a 
lower limit to which electrification and decarbonization of 
steam cracking process can reach given 1) the limited ca-
pacities of energy storage systems and technology read-
iness of fuel cells and electrolyzers, and 2) the resulting 
increase in operating cost. Overall, operating the eth-
ylene plant as a microgrid offers flexibility and resilience 
as it can better cope with the ongoing industrial decar-
bonization initiatives and the evolving U.S. energy land-
scape. Our proposed microgrid superstructure provides 
a viable solution for energy-intensive steam cracking 

process to transition toward being sustainable while eco-
nomically competitive. Looking ahead, further research 
should explore the integration of emerging energy stor-
age technologies, such as advanced batteries and ther-
mal storage, to enhance the stability of electrified steam 
cracking. Additionally, policy incentives and carbon pric-
ing mechanisms could play a critical role in making sus-
tainable production pathways more economically viable. 
Future studies should also investigate the electrification 
of other key process units, such as distillation systems 
using heat pumps, and assess the feasibility of fully elec-
trified cracking plant. Addressing these aspects will un-
lock the full decarbonization potential of clean olefins 
production while ensuring operational reliability and eco-
nomic feasibility. 
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