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ABSTRACT 
Perishable consumer products like food, cosmetics, and household chemicals face challenges in 
supply chain management due to limited shelf life and uncertainties in demand and transportation. 
To address some of these issues, this work proposes a robust optimization framework for jointly 
optimizing facility allocation and inventory management. The framework determines optimal loca-
tions for distribution centers and their assigned customers, as well as inventory policies that min-
imize the total costs related to transportation, distribution, and storage under uncertain demand 
in a robust setting. Specifically, we develop a two-stage mixed-integer linear programming (MILP) 
model is that incorporates First-In-First-Out (FIFO) inventory policy to reduce spoilage. The bilin-
ear FIFO constraints are linearized to improve computational efficiency. Social equity is integrated 
by defining a fairness index and incorporating it in facility allocation. Demand uncertainty is tackled 
using a robust optimization approach with affine demand functions to handle multiple scenarios. 
The model is solved using row and column generation techniques for scalability. Overall, this ro-
bust optimization framework is expected to enhance supply chain resilience, reduce waste, and 
improve cost-effectiveness in managing perishable products. 
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INTRODUCTION 
The optimization of facility location and inventory 

management is a critical area in operations research, with 
applications spanning healthcare, telecommunications, 
and supply chain logistics. For perishable consumer 
products like food, cosmetics, and household chemicals, 
the challenges are further intensified by their limited shelf 
life and uncertain demand. For instance, every year in the 
U.S., 38% of all food goes unsold or uneaten, which trans-
lates to almost 145 billion meals’ worth of food, or roughly 
1.8% of U.S. GDP [1]. Overestimating demand can lead to 
excessive holding costs and spoilage, while underesti-
mating it results in unmet demand, penalties, and delays. 
These challenges necessitate robust optimization frame-
works that account for perishability, uncertainty, and the 
dynamic nature of supply chain operations [2]. 

Facility location problems, particularly the Uncapac-
itated Facility Location (UFL) problem, aim to identify op-
timal facility placements that minimize allocation costs 
via optimization approaches [3,4]. Despite significant 

advancements in areas such as mixed-integer program-
ming (MIP), large-scale problems often require advanced 
computational techniques like Lagrangian relaxation and 
decomposition methods such as row and column gener-
ation algorithms for efficient solutions [5,6]. 

Meanwhile, by introducing ethical and social as-
pects along with efficiency and cost-effectiveness, fair-
ness has emerged as an important consideration in facil-
ity allocation. Metrics such as Rawlsian maximin, leximax 
criteria [7], group parity measures [8], and proportional 
fairness [9] address equitable resource allocation. In this 
work, a state-level social fairness is contextualized by 
prioritizing disadvantaged communities based on pov-
erty and unemployment rates, thereby ensuring equitable 
access to consumer products being distributed. We re-
mark that, in this work, we define the social fairness index 
by simply calculating the weighted sum of state-level 
poverty rate and unemployment rate obtained from the 
most recent U.S. Census as proof of concept. A more re-
fined definition of social fairness will be developed in fu-
ture studies. 
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mailto:zheyu.jiang@okstate.edu


 

Naraghi et al. / LAPSE:2025.0293 Syst Control Trans 4:882-887 (2025) 883  

This study proposes a joint optimization framework 
that integrates fair facility allocation with robust inven-
tory management for perishable products. Adopting the 
robust inventory management framework proposed in 
[10], a linearized FIFO inventory policy is incorporated to 
minimize spoilage and maintain product shelf life. We also 
incorporate robust optimization techniques such as af-
fine demand functions to model demand uncertainty and 
ensure resilience of the optimal solution found. The prob-
lem is decomposed and solved using row and column 
generation technique [5] to ensure scalability and com-
putational efficiency. 

PROBLEM STATEMENT 
Perishable goods, such as food, cosmetics, and 

household chemicals (e.g., detergents and pesticides), 
represent a significant portion of consumer products, 
creating stringent requirements for supply chain network 
design and inventory management. The perishable na-
ture of these products, combined with uncertainties in 
product transportation and demand, requires us to holis-
tically consider facility allocation and inventory manage-
ment within a joint optimization framework. In this study, 
we consider a hypothetical U.S. nation-wide perishable 
food (including dairy, meat, fruits, and vegetables) supply 
chain network that needs to be jointly optimized for facil-
ity allocation and inventory management subject to de-
mand uncertainty at a state level. 

The objective is to identify the optimal locations for 
food distribution centers, assign customers to these cen-
ters, and determine inventory management strategies 
that effectively meet uncertain demand. The problem is 
formulated as a two-stage mixed-integer linear program-
ming (MILP) model and is solved using row and column 
generation technique. The master problem determines 
the optimal facility locations, customer assignments, and 
initial inventory decisions for a finite set of demand sce-
narios, whereas the subproblem iteratively identifies new 
worst-case demand scenarios that could increase costs. 
These scenarios are incorporated into the master prob-
lem until no further costly scenarios are found, thereby 
ensuring the solution is robust against demand uncer-
tainty. 

FORMULATION 
As mentioned earlier, in the first stage of our pro-

posed two-stage multi-objective robust optimization 
framework, we determine the optimal locations for food 
distribution centers, their capacities, customer alloca-
tions, and the amount of perishable products to be pur-
chased from the supplier. Then, in the second stage, op-
timal inventory management is carried out based on the 
FIFO policy. Note that our inventory management and 

bilinear FIFO policy extend the original framework of [10] 
by incorporating linking constraints between facility allo-
cation in the first stage and inventory management in the 
second stage, which leads to a nonconvex MINLP model 
in the first place. Nevertheless, by implementing the re-
formulation strategy introduced in [10], we can reformu-
late the second-stage problem as a scenario-based lin-
ear programming (LP) problem, thus making the joint 
problem a MILP with significantly improved computa-
tional efficiency and tractability. 

First stage: Fair capacitated facility allocation 
In the first stage, the here-and-now decisions are 

made, which include selecting locations/states i ∈ I  for 
establishing food distribution centers, determining their 
capacities, and assigning customers. The objective is to 
minimize the total opening cost, which consists of land 
acquisition and construction costs ($313/ ft2 ), permit 
costs ($2.75/ ft2 ), labor costs ($0.3/ ft2 ), energy costs 
($0.00134 kWh/ft2.day), shipping costs ($3.19/mile), and 
the cost of purchasing products from the supplier (dairy: 
$0.88/lb, meat: $2.25/lb, fruits: $0.75/lb, and vegetables: 
$0.75/lb). Equation (1a) represents the objective function 
of the here-and-now stage. Considering an annual hurdle 
rate of 12% and a distribution center lifespan of 39 years, 
the corresponding 15-day discount factor is 0.005. To 
formulate the trade-off between economic and social 
fairness objectives, we use the ϵ-constraint in Equation 
(2a), which ensures that the overall social fairness index 
does not fall below a specified level. Equations (3a-5a) 
are standard integer constraints for facility location prob-
lems. Equation (6a) ensures that the size of a food distri-
bution center ranges from 50,000 ft2 × 30 ft  to 
800,000 ft2 × 30 ft . Generally, at most 85% of the ware-
house capacity can be utilized for inventory purposes, 
while the remaining space is allocated for other functions 
such as office use. Therefore, Equation (7a) ensures that 
the amount of products purchased from the supplier does 
not exceed the effective storage capacity. Furthermore, 
the average volume per pound (vp ) for dairy products, 
meat, fruits, and vegetables are given by 0.025, 0.025, 
0.033, and 0.036 (ft3/lb), respectively. 

FH&N = min��0.005�313 + 2.75 + ciland�
i∈I

+ ��0.3 + 0.00134 ct
energy� 

t∈T

�
qi
30

+ ��� cp
supplyui,t,p

supply

p∈Pt∈Ti∈I

, (1a) 

� rifairnessyi
i∈I

≥ � rifairnessϵ
i∈I

, (2a) 

� xi,j
i∈I

= 1,∀j ∈ J, (3a) 
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xi,j ≤ yi,∀i ∈ I, j ∈ J, (4a) 

� xi,j 
j∈J

≥ yi,∀i ∈ I, (5a) 

1.5 × 106yi ≤ qi ≤ 24 × 106yi,∀i ∈ I, (6a) 

� vpui,t,p
supply

p∈P

≤ 0.85qi,∀i ∈ I, t ∈ T, (7a) 

Second stage: Robust inventory management 
In the second stage, the wait-and-see (W&S) deci-

sions are made and must reflect the robust inventory 
management policy. Since our inventory management 
model is similar to that in [10], we only present its refor-
mulation here. The objective is to minimize holding, back-
log, and spoilage costs across all possible scenarios 
while considering the specified level of conservatism (Γ). 
Equation (1b) is the objective function associated with 
the second stage. Equation (2b) ensures that the total 
cost minimized in (1b) corresponds to the worst-case 
scenario, which is a standard formulation technique in ro-
bust optimization. In Equation (2b), the holding cost is as-
sumed to be 15% of the supply cost, the backlog cost is 
equal to the supply cost, and the spoilage cost factor 
βspoil can take difference values and is a user-defined pa-
rameter. Constraint (3b) ensures that under every possi-
ble scenario, the total amount of stored products in the 
inventory does not exceed the effective storage capacity 
(0.85qi). Constraints (4b) and (5b) respectively represent 
the amount of stored and backlogged products subject 
to demand uncertainty, which consists of infinite number 
of scenarios ξ that belong to an uncertainty set Ξ. Equa-
tions (6b) and (7b) implements the FIFO policy in calcu-
lating spoilage [10]. 

FW&S = min z , (1b) 

z ≥����0.15cp
supplyui,t,p,ξ

inv + cp
supplyui,t,p,ξ

backlog

p∈Pt∈Ti∈I

+ βspoilcp
supplyui,t,p,ξ

spoil� ,∀ξ ∈ Ξ, (2b) 

� vpui,t,p,ξ
inv

p∈P

≤ 0.85qi,∀ξ ∈ Ξ, i ∈ I, t ∈ T, (3b) 

ui,t,p,ξ
inv ≥ ��ui,t,p

supply −�Dp,j,k(ξ)xi,j
j∈J

− ui,k,p,ξ
spoil �

t

k=1

,  ∀ξ ∈ Ξ, i

∈ I,  t ∈ T, (4b) 

ui,t,p,ξ
backlog ≥ ∑ �∑ Dp,j,k(ξ)xi,jj∈J + ui,k,p,ξ

spoil −t
k=1

ui,t,p
supply� ,  ∀ξ ∈ Ξ, i ∈ I,  t ∈ T, (5b) 

ui,t,p,ξ
spoil = 0,∀ξ ∈ Ξ, i ∈ I,  t ≤ m, (6b) 

ui,t+m,p,ξ
spoil = max �0,∑ ui,t,p

supply − ∑ ∑ Dp,j,k(ξ)xi,jj∈J
t+m
k=1 −t

k=1

∑ ui,k,p,ξ
spoilt+m−1

k=m+1 � ,∀ξ ∈ Ξ, i ∈ I,  t ≤ |T| − m, (7b)    

Row and column generation 
The proposed problem contains an infinite number 

of variables and constraints, making it inherently intrac-
table. To address this, we employ an iterative approach 
that alternates between solving a relaxed master prob-
lem and separation problems. While the master problem 
is still nonlinear (due to Equation (7a)) for now, it can be 
easily linearized using standard techniques and it is a fi-
nite optimization problem, unlike the infinite optimization 
formulations discussed above. Consider S ⊂ Ξ be a finite 
set of scenarios generated by the separation problem. 
The restricted master problem (RMP) is defined as fol-
lows. 

(RMP): min FH&N + FW&S , (1c) 

(2a) − (7a),  

z ≥����0.15cp
supplyui,t,p,ξ

inv + cp
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p∈Pt∈Ti∈I
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� vpui,t,p,ξ
inv

p∈P
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j∈J
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t
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,  ∀ξ ∈ S, i

∈ I,  t ∈ T, (4c) 

ui,t,p,ξ
backlog ≥ ∑ �∑ Dp,j,k(ξ)xi,jj∈J + ui,k,p,ξ

spoil −t
k=1

ui,t,p
supply� ,  ∀ξ ∈ S, i ∈ I,  t ∈ T, (5c) 

ui,t,p,ξ
spoil = 0,∀ξ ∈ S, i ∈ I,  t ≤ m, (6c) 

ui,t+m,p,ξ
spoil = max �0,� ui,t,p

supply −� �Dp,j,k(ξ)xi,j
j∈J

t+m

k=1

t

k=1

−� ui,k,p,ξ
spoil

t+m−1

k=m+1
� ,∀ξ ∈ S, i ∈ I,  t
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After solving the (RMP), the optimal facility loca-
tions, their capacities, customer assignments, the 
amount of products purchased from the supplier, and the 
worst-case scenario inventory management cost (z∗) for 
the current scenarios can be determined. The separation 
problem (SP) is proposed to find a new scenario with a 
higher inventory management cost.  

(SP): w = max����0.15cp
supplyui,t,pinv + cp

supplyui,t,p
backlog

p∈Pt∈Ti∈I

+ βspoilcp
supplyui,t,p

spoil� , (1d) 

ξ ∈ Ξ, (2d) 
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If there exists a ξ∗  such that w∗(ξ∗) > z∗ , then ξ∗  is 
added to S, and the (RMP) is solved again with the up-
dated set of scenarios. This iterative approach continues 
until no new scenario with a higher inventory manage-
ment cost is found. By implementing this row and column 
generation method, the problem can be solved with a fi-
nite number of variables and constraints. Note that the 
linearization technique for (SP) is discussed in [10].  

ILLUSTRATIVE CASE STUDIES 
To evaluate the effectiveness of our proposed 

framework, we conduct a hypothetical case study featur-
ing the national supply chain of perishable food products. 
This case study illustrates the trade-offs among total 
cost, fairness, and inventory efficiency for perishable 
consumer products.  

By incorporating the poverty and unemployment 
rates of all 50 states in 2023 [11], we develop a social 
fairness index that assigns equal weight to these socio-
economic factors. And the overall social fairness 
∑ rifairnessϵi∈I  can vary from ϵ = 0 (excluding the fairness) 
to ϵ = 1 (maximum fairness). Figure 1 shows the average 
daily demand (in Mlbs) for these products per state in 
2023 [12,13]. In our study, we investigate a planning hori-
zon of 15 days, and the storage duration is m = {2,5} 
days. Furthermore, we consider the spoilage cost factor 
βspoil ∈ {0.5,1,1.5,2}  and the uncertainty parameter Γ ∈
{1,3,5} Mlbs, where Γ = 1 represents the least conserva-
tive case, and Γ = 5  represents the most conservative 
case. 

 

 

 
Figure 1. Average daily demand of dairy products, meat, 
fruits, and vegetables per state. 

Figures 2, 3, 4, and 5 illustrate the Pareto front be-
tween social fairness and total costs, the percentage of 
spoilage for all products, the total amount of backlogged 
products, and the total amount of stored products for 
various ϵ  levels for the case when m = 5 , Γ = 3 , and 
βspoil = 1. First, as ϵ increases, the total costs would con-
tinuously increase. Additionally, lower ϵ values, which in-
dicate that fewer facilities will be chosen, are associated 
with higher spoilage percentage and higher backlogging. 
However, the trend for the total inventory level behaves 
exactly the opposite way. This suggests that, when fewer 
facilities are established, which leads to higher backlogs, 
the inventory level decreases as if the supply chain sys-
tem transfers its weight from stored inventory to unmet 
demand. This opposite trend illustrates the trade-off and 
delicate interplay between storage and shortages in the 
supply chain. 

Figure 2. Pareto front showing the trade-off between 
social fairness and the total cost for the case where m =
5,Γ = 3, βspoil = 1. 
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Figure 3. The percentage of total spoiled products for 
different levels of social fairness when m = 5,Γ =
3,βspoil = 1. 

 
Figure 4. The percentage of total backlogged products 
for different levels of social fairness when  m = 5,  Γ =
3,βspoil = 1.  

Next, we conduct a sensitivity analysis to under-
stand how spoilage changes under different levels of 
conservatism and social fairness. Figures 6 presents the 
results for the total amount of spoiled products under 
various scenarios. As the uncertainty level Γ increases, in 
most of the cases, the amount of spoiled products also 
increases. However, increasing the number of days that 
products can be stored in inventory and raising the spoil-
age cost factor help reduce the total amount of spoilage 
by making spoiled products more expensive. For in-
stance, when the cost of spoiled products is doubled 
compared to the supply cost, spoilage is completely elim-
inated across all levels of conservatism.  

 

Figure 5. The percentage of total stored products for 
different levels of social fairness by varying ϵ for m = 5,
Γ = 3,βspoil = 1. 
 

 
Figure 6. Total amount of spoiled products under 
different levels of fairness level ϵ, uncertainty level, and 
cost factors. (a-c) correspond to m = 2 , while (d-f) 
represent m = 5.  

On the other hand, when the spoilage cost factor is 
half of the supply cost, the highest amount of waste is 
generated across all levels of conservatism. For example, 
when the storage duration m = 2  days, Γ = 5  Mlbs, and 
βspoil = 0.5, the total amount of waste for all three levels 
of fairness is almost 120 Mlbs, which represents the 
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highest recorded spoilage. 

CONCLUSION 
In this study, we develop a robust mixed-integer lin-

ear programming (MILP) model to jointly optimize facility 
allocation and inventory management for perishable con-
sumer products. Our approach incorporates a FIFO in-
ventory policy, leveraging prior results for constraint lin-
earization [10], and employs row and column generation 
techniques to improve scalability. To account for social 
equity, we introduce a fairness index based on poverty 
and unemployment rates across U.S. states [11], allowing 
for trade-off analysis between fairness, cost, and inven-
tory efficiency. Through a national case study, we exam-
ine how factors such as demand uncertainty, storage du-
ration, and spoilage cost sensitivity influence supply 
chain outcomes. Our results reveal that higher levels of 
conservatism in demand forecasting lead to increased 
spoilage, while higher fairness levels result in rising total 
costs. Additionally, storage duration and spoilage cost 
penalties significantly impact waste levels, with severe 
penalties eliminating spoilage altogether. These findings 
underscore the need for systematic optimization ap-
proaches to balance supply chain resilience, cost effi-
ciency, and waste mitigation, consistent with our previ-
ous research [14,15]. In terms of future research, we will 
primarily focus on three main aspects: 1) refine social fair-
ness characterization backed by rigorous, comprehen-
sive prior research in game theory and regional econom-
ics; 2) investigate novel approaches (e.g., political dis-
tricting) to model and solve facility allocation while en-
suring fairness; and 3) accelerate the computational effi-
ciency by developing more effective decomposition 
and/or distributed optimization techniques. 
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