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 A B S T R A C T

The spatiotemporal water flow dynamics in unsaturated soils can generally be modeled by the Richards 
equation. To overcome the computational challenges associated with solving this highly nonlinear partial 
differential equation (PDE), we present a novel solution algorithm, which we name as the MP-FVM (Message 
Passing-Finite Volume Method), to holistically integrate adaptive fixed-point iteration scheme, encoder-
decoder neural network architecture, Sobolev training, and message passing mechanism in a finite volume 
discretization framework. We thoroughly discuss the need and benefits of introducing these components to 
achieve synergistic improvements in accuracy and stability of the solution. We also show that our MP-FVM 
algorithm can accurately solve the mixed-form 𝑛-dimensional Richards equation with guaranteed convergence 
under reasonable assumptions. Through several illustrative examples, we demonstrate that our MP-FVM 
algorithm not only achieves superior accuracy, but also better preserves the underlying physical laws and mass 
conservation of the Richards equation compared to state-of-the-art solution algorithms and the commercial 
HYDRUS solver.
1. Introduction

The spatiotemporal dynamics of root zone (e.g., top 1 m of soil) 
soil moisture from precipitation and surface soil moisture information 
can generally be modeled by the Richards equation (Richards, 1931), 
which captures irrigation, precipitation, evapotranspiration, runoff, 
and drainage dynamics in soil: 
𝜕𝑡𝜃(𝜓) + ∇ ⋅ 𝐪 = −𝑆(𝜓),

𝐪 = −𝐾(𝜃(𝜓))∇(𝜓 + 𝑧).
(1)

Here, 𝜓 stands for pressure head (in, e.g., m), 𝐪 represents the 
water flux (in, e.g., m3∕m2 ⋅ s), 𝑆 is the sink term associated with 
root water uptake (in, e.g., s−1), 𝜃 denotes the soil moisture content 
(in, e.g., m3∕m3), 𝐾 is unsaturated hydraulic water conductivity (in, 
e.g., m∕s), 𝑡 ∈ [0, 𝑇 ] denotes the time (in, e.g., s), and 𝑧 corresponds to 
the vertical depth (in, e.g., m). The Richards equation is a nonlinear 
convection-diffusion equation (Caputo and Stepanyants, 2008; Song 
and Jiang, 2023a), in which the convection term is due to gravity, 
and the diffusive term comes from Darcy’s law (Smith et al., 2002). 
For unsaturated flow, both 𝜃 and 𝐾 are highly nonlinear functions of 
pressure head 𝜓 and soil properties, making Equation (1) challenging 
to solve numerically. Specifically, 𝜃(𝜓) and 𝐾(𝜓) (or 𝐾(𝜃), depending 
on the model) are commonly referred to as the water retention curve 
(WRC) and hydraulic conductivity function (HCF), respectively. Several 
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of the most widely used empirical models for WRC and HCF are 
summarized in Table  1.

Due to the highly nonlinear nature of WRC and HCF, analytical 
solutions to the Richards equation do not exist in general (Farthing 
and Ogden, 2017a). Thus, the Richards equation is typically solved 
numerically in some discretized form. Consider the discretized version 
of Eq.  (1), whose control volume 𝑉 ⊂ R𝑑 (𝑑 = 1, 2, 3) is discretized 
into 𝑁 small cells 𝑉1,… , 𝑉𝑁 . Using implicit Euler method on the time 
domain with a time step size of 𝛥𝑡, the discretized Richards equation 
at time step 𝑚 = 0, 1,… , ⌈ 𝑇𝛥𝑡 ⌉ − 1 can be expressed as (Song and Jiang, 
2023b): 

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝜃(𝜓𝑚+1𝑖 ) − 𝜃(𝜓𝑚𝑖 ) − 𝛥𝑡∇ ⋅
[

𝐾
(

𝜃(𝜓𝑚+1𝑖 )
)

∇
(

𝜓𝑚+1𝑖 + 𝑧
)

]

+ 𝛥𝑡𝑆(𝜓𝑚+1𝑖 ) = 0,

Dirichlet boundary condition:𝜓𝑗 (⋅) = 0 for all𝑉𝑗 ⊂ 𝜕𝑉 ,
Initial condition:𝜓(0, ⋅) = 𝜓0(⋅),

(2)

where 𝜓𝑚𝑖  is the pressure head in cell 𝑉𝑖 and time step 𝑚, and 𝜓0(⋅)
denotes the initial condition at 𝑡 = 0.

The performance of a numerical PDE solver depends theoretically 
on the well-posedness of the PDE (Sizikov et al., 2011), which is an 
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Table 1
Some of the widely used HCF and WRC models. In these models, 𝐴, 𝛾, 𝛼, 𝛽, 𝑛, 𝜃𝑠, and 𝜃𝑟 are soil-specific 
parameters and have been tabulated for major soil types.
 Model HCF (𝐾(𝜓) or 𝐾(𝜃)) WRC (𝜃(𝜓))  
 Haverkamp et al. (1977) 𝐾𝑠

𝐴
𝐴+|𝜓|𝛾

𝜃𝑟 +
𝛼(𝜃𝑠−𝜃𝑟 )
𝛼+|𝜓|𝛽

 

 Mualem (1976), Van Genuchten (1980) 𝐾𝑠

√
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⎪
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⎪
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⎪

⎭
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𝜃𝑟 +
𝜃𝑠−𝜃𝑟

[

1+(𝛼|𝜓|)𝑛
]
𝑛−1
𝑛
 

 Gardner (1958) 𝐾𝑠𝑒𝛼𝜓 𝜃𝑟 + (𝜃𝑠 − 𝜃𝑟)𝑒𝛼𝜓  
essential property that certifies the accuracy and reliability of numer-
ical solutions to the PDE. A PDE is said to be well-posed if its weak 
solution exists, is unique, and depends continuously on the problem’s 
initial conditions (Sizikov et al., 2011; Evans, 2010). Here, we consider 
an FVM discretization with a discrete space 𝑄ℎ ⊂ 𝐿2(𝑉 ) of piecewise 
constants, where ℎ denotes the maximum dimension of any cell in its 
mesh. With this, we define the space of piecewise constant functions 
on the set of meshes ℎ = {𝑉1, 𝑉2,… , 𝑉𝑁} as 𝑄ℎ(𝑉 ) = {𝑣 ∈ 𝐿2(𝑉 ) ∶
𝑣|𝑉𝑖 is constant for all𝑉𝑖 ∈ ℎ}. Then, we introduce the discrete gradient 
operator (Hyman and Shashkov, 1997), GRADℎ, which maps a cell-
based function in 𝑄ℎ to a face-based function that approximates the 
gradient. Note that 𝜓𝑚𝑖  in Eq.  (2) denotes the pressure head in cell 
𝑉𝑖 and time step 𝑚, which is the value of 𝜓𝑚 in the cell 𝑉𝑖. To study 
the pressure head solution in function space 𝑄ℎ(𝑉 ), we focus on 𝜓𝑚
rather than 𝜓𝑚𝑖 . With this, the discrete solution for the FVM-discretized 
Richards equation can be defined as follows: 

Definition 1.1.  Given 𝜓𝑚 ∈ 𝑄ℎ, if for any 𝑣 ∈ 𝑄ℎ, 
⟨

𝜃(𝜓𝑚+1) − 𝜃(𝜓𝑚), 𝑣
⟩

𝑉 + 𝛥𝑡
⟨

𝐾(𝜃(𝜓𝑚+1)) GRADℎ(𝜓𝑚+1 + 𝑧),GRADℎ(𝑣)
⟩

ℎ

+ 𝛥𝑡
⟨

𝑆(𝜓𝑚+1), 𝑣
⟩

𝑉 = 0
(3)

holds, where ℎ denotes the set of all faces that make up the mesh 
ℎ, then 𝜓𝑚+1 is a discrete solution of the FVM-discretized Richards 
equation.

Following Definition  1.1, for the discrete function space 𝑄ℎ, an 
inner product over a cell 𝑉𝑖 is defined for piecewise constant functions 
𝑓, 𝑔 ∈ 𝑄ℎ as ⟨𝑓, 𝑔⟩𝑉𝑖 ∶= ∫𝑉𝑖 𝑓𝑔d𝑉 . In this case, by denoting 𝑓𝑖 and 𝑔𝑖
as the function values of 𝑓 and 𝑔 respectively on 𝑉𝑖 (i.e., 𝑓𝑖 = 𝑓 |𝑉𝑖  and 
𝑔𝑖 = 𝑔|𝑉𝑖 , both of which are constants), we have ∫𝑉𝑖 𝑓𝑔d𝑉 = 𝑓𝑖𝑔𝑖vol(𝑉𝑖). 
The global inner product over the entire domain 𝑉  is then ⟨𝑓, 𝑔⟩𝑉 ∶=
∑𝑁
𝑖=1⟨𝑓, 𝑔⟩𝑉𝑖 . We remark that the existence and uniqueness of the weak 

solution of the Richards equation have been rigorously established 
and carefully studied (Merz and Rybka, 2010; Misiats and Lipnikov, 
2013; Abdellatif et al., 2018), setting up the theoretical foundation 
for developing an efficient solution algorithm to solve the discretized 
Richards equation numerically.

2. Literature review

Among existing solution algorithms for the Richards equation, meth-
ods based on finite difference and finite element discretizations (Day 
and Luthin, 1956; Celia et al., 1990; Chávez-Negrete et al., 2024; 
Haghighat et al., 2023) are the most well studied and implemented 
(Farthing and Ogden, 2017b). However, these methods often face 
challenges when handling large-scale problems and suffer from insta-
bility issues such as oscillations (Belfort et al., 2013). Recently, Ireson 
et al. (2023) used the method of lines to convert the 1-D Richards 
equation into an ordinary differential equation (ODE), which was then 
solved by finite difference method. Similarly, the process converting 1-
D Richards equation into an ODE can also be achieved by implementing 
generalized Boltzmann transform (Zhou et al., 2013). Despite these 
advancements, finite difference- and finite element-based methods gen-
erally require high mesh resolution to satisfy the local equilibrium 
2 
condition (Or et al., 2015; Roth, 2008; Vogel and Ippisch, 2008). Fur-
thermore, they tend to fail to preserve global mass conservation (Rath-
felder and Abriola, 1994) and other important underlying physical 
relations among soil moisture, pressure head, and water flux.

Meanwhile, finite volume discretization method (FVM) has the 
potential to achieve high solution accuracy and preserve mass conserva-
tion when solving the Richards equation (Eymard et al., 1999). Some of 
the notable works include Lai and Ogden (2015) who obtained a family 
of mass-conservative finite volume predictor-corrector solutions for the 
1-D Richards equation, Misiats and Lipnikov (2013) who proposed a 
second-order accurate monotone FVM for 1-D Richards equation, as 
well as others (Bassetto et al., 2022; Caviedes-Voullième et al., 2013; 
Manzini and Ferraris, 2004; Su et al., 2022). However, like finite 
difference and finite element methods, conventional FVM typically 
converts the discretized Richards equation into a large, stiff matrix 
equation, which can be challenging to solve.

Instead of following the standard practice of converting the dis-
cretized equation into a matrix equation, a fixed-point iteration scheme 
solves the discretized Richards equations iteratively. Some of the no-
table fixed-point iteration schemes include Bergamaschi and Putti 
(1999) and Zeidler (1986). In standard fixed-point iteration schemes, 
a static parameter 𝜏 is used for all time steps and discretized cells. 
However, choosing an appropriate 𝜏 value is not straightforward, as soil 
moisture content and pressure head can exhibit strong spatiotemporal 
variations. For instance, Zhu et al. (2019) reported that, when a large 
static parameter 𝜏 is chosen, the discretized Richards equation could 
become ill-posed. To address this drawback, Amrein (2019) proposed 
a fully adaptive fixed-point iteration scheme based on the Galerkin 
method to solve 2-D semilinear elliptic equations by finding the optimal 
mesh refinements for fixed 𝜏 at each iteration. Nevertheless, some of the 
existing adaptive fixed-point iteration schemes have been reported to 
suffer from numerical oscillations (Casulli and Zanolli, 2010). So far, 
no fully adaptive fixed-point iteration scheme has been established for 
solving the 3-D Richards equation.

With the breakthroughs in artificial intelligence and machine/deep 
learning, a new avenue for solving PDEs is to directly incorporate 
physical knowledge and constraints derived from the PDE into a neural 
network. One of the popular frameworks is the Physics-Informed Neural 
Network (PINN) (Raissi et al., 2019, 2017; Chen et al., 2023; Lan 
et al., 2024; Ng et al., 2025), where the PDE itself is embedded 
in the loss function as a regularization term. However, this often 
results in high computational costs and training instability. On the 
other hand, hybrid methods that integrate machine/deep learning tech-
niques with discretization-based numerical methods have emerged as a 
promising approach to enhance the accuracy and stability of numerical 
algorithms (Bar-Sinai et al., 2019). In particular, the encoder-decoder 
network architecture has shown great potential in solving PDEs (Pichi 
et al., 2024; Lu et al., 2020). For example, Ranade et al. (2021) em-
ployed a generative CNN-based encoder-decoder model with PDE vari-
ables as both input and output features. However, hybrid PDE solvers 
based on conventional encoder-decoder architecture face convergence 
and stability issues as the latent variables do not have physical meaning 
or obey conservation laws. To overcome this limitation, Brandstetter 
et al. (2022) proposed a message passing mechanism, in which a 
new module called processor consisting of graph neural networks is 
placed between the encoder and the decoder. Meanwhile, Ranade et al. 
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(2021) proposed the use of iterative algorithm along with the encoder-
decoder network, such that the latent variables can be viewed as the 
numerical solutions of PDE and convergence can be established without 
invoking the message passing mechanism. Nevertheless, to the best 
of our knowledge, the encoder-decoder network architecture and the 
message passing mechanism have not yet been integrated to solve the 
Richards equation.

3. Motivation and scope of our approach

When solving the FVM-discretized Richards equation using static 
fixed-point iteration scheme, we observe that different choices of static 
parameter 𝜏 and total iteration count 𝑆 lead to slightly different so-
lutions. This aligns with the observations made by Zhu et al. (2019) 
that varying 𝜏 affects the condition number of the discretized Richards 
equation. To ensure our numerical scheme is well-posed and reaches 
convergence within 𝑆 iterations, here we propose an adaptive fixed-
point iteration scheme, where 𝜏 can dynamically adjust itself with 
respect to space, time and iteration count. Furthermore, we propose 
to characterize the solution discrepancies in a data-driven approach. 
Specifically, we adopt the encoder-decoder network architecture to 
solve the Richards equation by extending the message passing mech-
anism to FVM-based adaptive fixed-point iteration scheme. This re-
sults in a novel numerical framework called the MP-FVM (Message 
Passing Finite Volume Method). In addition to these architectural ad-
vancements, we introduce several new strategies to further improve 
the numerical accuracy and computational efficiency of our MP-FVM 
algorithm, including:

• We present a generalized framework for any 𝑑-dimensional (𝑑 =
1, 2, 3) Richards equation, and demonstrate that the new MP-FVM 
algorithm can be versatilely adopted to modeling different realis-
tic scenarios (e.g., layered soil, actual precipitation). We provide 
rigorous theoretical justification of the convergence behavior of 
our MP-FVM algorithm.

• We introduce a ‘‘coarse-to-fine’’ approach to enhance the solution 
accuracy of our MP-FVM algorithm without requiring a large 
amount of high-accuracy, fine-mesh training data. We demon-
strate that this coarse-to-fine approach maintains a good balance 
between computational efficiency and solution accuracy.

• We show that, by synergistically integrating our novel adap-
tive fixed-point iteration scheme, FVM, and the encoder-decoder 
network, our new MP-FVM algorithmic framework significantly 
enhances the ability of FVM discretization in preserving the un-
derlying physical relationships and mass conservation associated 
with the Richards equation.

Overall, these techniques holistically improve convergence and re-
duce numerical oscillations compared to conventional FVM. Mean-
while, they also help preserve physical laws (e.g., global water balance 
more reliably compared to standard finite element and finite difference 
schemes. Furthermore, our MP-FVM algorithm achieves fine-scale ac-
curacy using only coarse-grid training data, hence bypassing computa-
tionally expensive training. Finally, we remark that MP-FVM algorithm 
can leverage pre-trained models to reduce retraining time, enabling 
transfer learning across different boundary and/or initial conditions.

We organize the subsequent sections of the paper as follows. In 
Section 4, we derive the FVM-based adaptive fixed-point iteration 
formulation and prove its global convergence. Then, in Section 5, 
we present the encoder-decoder network architecture as well as its 
integration with the message passing mechanism to form the MP-FVM 
algorithm. To compare the performance of our MP-FVM algorithm with 
state-of-the-art Richards equation solvers, we conduct comprehensive 
case studies and in-depth analyses of 1- through 3-D benchmark prob-
lems in Section 6. Finally, we summarize the results and discuss future 
directions in Section 8.
3 
4. Adaptive fixed-point iteration scheme of discretized Richards 
equation

In this section, we will formally introduce the adaptive fixed-point 
iteration scheme formulation of the FVM-discretized Richards equation. 
We will also derive sufficient conditions for parameter 𝜏 to ensure 
convergence. We will also analyze the convergence behavior of the 
resulting sequence of solutions {𝜓𝑚+1,𝑠𝑖 }𝑠, where 𝑠 is the iteration count 
(𝑠 = 1, 2,… , 𝑆).

4.1. Adaptive fixed-point iteration scheme for the Richards equation

To discretize the Richards equation via FVM, we first integrate both 
sides of Eq.  (1) over 𝑉 : 

∫𝑉

[

𝜕𝑡𝜃(𝜓) + 𝑆(𝜓)
]

d𝑉 = ∫𝑉
∇ ⋅

[

𝐾(𝜃)∇(𝜓 + 𝑧)
]

d𝑉 . (4)

Next, we apply the divergence theorem to Eq.  (4), which converts 
the volume integral on the RHS into a surface integral: 
[

𝜕𝑡𝜃(𝜓̂) + 𝑆(𝜓̂)
]

𝜓̂∈𝑉 vol(𝑉 ) = ∮𝑆𝑉
𝐾(𝜃)∇(𝜓 + 𝑧) ⋅ 𝐧d𝑆𝑉 , (5)

where vol(𝑉 ) is the volume of 𝑉 , 𝑆𝑉  is the surface of 𝑉  and 𝐧 is the 
outward pointing unit normal to the boundary 𝜕𝑉 . The common surface 
shared by cell 𝑉𝑖 and cell 𝑉𝑗 is denoted as 𝜔𝑖,𝑗 . With this, we can rewrite 
the operator 𝐾(⋅)∇(⋅) and the outward pointing unit normal vector 𝐧 on 
𝜔𝑖,𝑗 as 

[

𝐾(⋅)∇(⋅)
]

𝜔𝑖,𝑗
 and 𝐧𝜔𝑖,𝑗 , respectively. After FVM discretization, we 

obtain the discretized version of Eq.  (5) as: 

𝜕𝑡𝜃𝑖vol(𝑉𝑖) + 𝑆(𝜓𝑖)vol(𝑉𝑖) =
∑

𝑗∈𝑖

[

𝐾(𝜃)∇(𝜓 + 𝑧)
]

𝜔𝑖,𝑗
⋅ 𝐧𝜔𝑖,𝑗𝐴𝜔𝑖,𝑗 ∀𝑖 = 1,… , 𝑁,

(6)

where 𝜕𝑡𝜃𝑖 refers to the time derivative 𝜕𝑡𝜃(𝜓𝑖) in cell 𝑉𝑖, 𝑖 denotes the 
index set of all the neighboring cells sharing a common surface with 𝑉𝑖, 
and 𝐴𝜔𝑖,𝑗  is the area of surface 𝜔𝑖,𝑗 .

In static fixed-point iteration scheme, for each cell 𝑉𝑖 and at each 
time step 𝑚 + 1, one would add the term 1

𝜏 (𝜓
𝑚+1,𝑠+1
𝑖 − 𝜓𝑚+1,𝑠𝑖 ) to 

either side of Eq.  (6), so that the Richards equation can be solved 
in an iterative manner. The fixed-point pressure head solution of this 
iterative procedure is denoted as 𝜓𝑚𝑖 . Since 𝜏 is a static constant, a trial-
and-error procedure is typically required to obtain an appropriate 𝜏
value that avoids convergence issues. Not only is this search procedure 
tedious to implement, the solutions obtained are also less accurate most 
of the time as we will show in Section 6.1. Thus, inspired by previous 
works (Amrein, 2019; Zhu et al., 2019), we propose an adaptive fixed-
point iteration scheme that replaces the static 𝜏 with 𝜏𝑚+1,𝑠𝑖 , which 
adjusts itself for each specific discretized cell, time step, and iteration 
count. We then introduce the term 1

𝜏𝑚+1,𝑠𝑖
(𝜓𝑚+1,𝑠+1𝑖 − 𝜓𝑚+1,𝑠𝑖 ) to the LHS 

of Eq.  (6), which leads to: 
𝜓𝑚+1,𝑠+1𝑖 =𝜓𝑚+1,𝑠𝑖 + 𝜏𝑚+1,𝑠𝑖

∑

𝑗∈𝑖

[

𝐾(𝜃)∇(𝜓 + 𝑧)
]𝑚+1,𝑠
𝜔𝑖,𝑗

⋅ 𝐧𝜔𝑖,𝑗𝐴𝜔𝑖,𝑗

− 𝜏𝑚+1,𝑠𝑖

[

𝜕𝑡𝜃
𝑚+1,𝑠
𝑖 + 𝑆(𝜓𝑚+1,𝑠𝑖 )

]

vol(𝑉𝑖),
(7)

By discretizing 𝜕𝑡𝜃𝑚+1,𝑠𝑖  using implicit Euler scheme as 𝜃(𝜓
𝑚+1,𝑠
𝑖 )−𝜃(𝜓𝑚𝑖 )

𝛥𝑡 , 
we can obtain the adaptive fixed-point iteration scheme of the FVM-
discretized Richards equation: 

𝜓𝑚+1,𝑠+1
𝑖 = 𝜓𝑚+1,𝑠

𝑖 + 𝜏𝑚+1,𝑠𝑖

∑

𝑗∈𝑖

𝐾𝑚+1,𝑠
𝜔𝑖,𝑗

(𝜓 + 𝑧)𝑚+1,𝑠𝑗 − (𝜓 + 𝑧)𝑚+1,𝑠𝑖

dist(𝑉𝑗 , 𝑉𝑖)
𝐞 ⋅ 𝐧𝜔𝑖,𝑗𝐴𝜔𝑖,𝑗

− 𝜏𝑚+1,𝑠𝑖

[

𝜃(𝜓𝑚+1,𝑠
𝑖 ) − 𝜃(𝜓𝑚

𝑖 )
𝛥𝑡

+ 𝑆(𝜓𝑚+1,𝑠
𝑖 )

]

vol(𝑉𝑖),

(8)

where 𝐞 = (1, 1, 1) for the standard 3-D Cartesian coordinate system, 
and dist(⋅, ⋅) represents the Euclidean distance function.
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4.2. Choice of adaptive linearization parameter

In adaptive fixed-point iteration scheme, we observe that 𝜏𝑚+1,𝑠𝑖
needs to be sufficiently small because otherwise, the RHS of Eq.  (8) 
could approach infinity, which affects the convergence of the scheme. 
To prevent 1

𝜏𝑚+1,𝑠𝑖
 from being too large, we impose a user-specified 

global upper bound 𝜏0:

𝜏𝑚+1,𝑠𝑖 ≤ 𝜏0.

In addition, the choice of 𝜏𝑚+1,𝑠𝑖  can impact the accuracy of solu-
tions. In other words, the term ||

|

|

𝜓𝑚+1,𝑠+1𝑖 −𝜓𝑚+1,𝑠𝑖
𝜓𝑚+1,𝑠𝑖

|

|

|

|

 should be no greater 
than a prespecified tolerance 𝜌. Thus, we have:
|

|

|

|

|

|

𝜓𝑚+1,𝑠+1𝑖 − 𝜓𝑚+1,𝑠𝑖

𝜓𝑚+1,𝑠𝑖

|

|

|

|

|

|

=
𝜏𝑚+1,𝑠𝑖 |𝑔𝑚+1,𝑠𝑖 |

|𝜓𝑚+1,𝑠𝑖 |

≤ 𝜌 ∀𝑠 = 1,… , 𝑆,

where 𝑆 is the user-specified total number of iterations for conver-
gence, 𝜌 should be no less than the overall tolerance of convergence 
𝜖 (to be discussed in Section 4.3), and:

𝑔𝑚+1,𝑠𝑖 =
∑

𝑗∈𝑖

𝐾𝑚+1,𝑠
𝜔𝑖,𝑗

(𝜓 + 𝑧)𝑚+1,𝑠𝑗 − (𝜓 + 𝑧)𝑚+1,𝑠𝑖

dist(𝑉𝑗 , 𝑉𝑖)
𝐞 ⋅ 𝐧𝜔𝑖,𝑗𝐴𝜔𝑖,𝑗

−
𝜃(𝜓𝑚+1,𝑠𝑖 ) − 𝜃(𝜓𝑚𝑖 )

𝛥𝑡
vol(𝑉𝑖) − 𝑆(𝜓

𝑚+1,𝑠
𝑖 )vol(𝑉𝑖).

This implies that: 

𝜏𝑚+1,𝑠𝑖 ≤
𝜌|𝜓𝑚+1,𝑠𝑖 |

(1 + 𝜌)|𝑔𝑚+1,𝑠𝑖 |

∀𝑠 = 1,… , 𝑆, (9)

whose RHS can be explicitly determined from the results of the previous 
iteration. Note that, in actual implementation, we select 𝜏𝑚+1,𝑠𝑖  based 
on: 

𝜏𝑚+1,𝑠𝑖 = min

{

𝜏0,
𝜌|𝜓𝑚+1,𝑠𝑖 |

(1 + 𝜌)|𝑔𝑚+1,𝑠𝑖 |

}

∀𝑠 = 1,… , 𝑆. (10)

Meanwhile, we can monitor the sensitivity of solutions obtained 
by our adaptive fixed-point iteration scheme and make sure that the 
solutions do not change drastically with respect to small perturbations. 
To achieve this, following Zarba (1988), Celia and Zarba (1988), we 
explicitly write down Equation (8) for all discretized cells in the form 
of a matrix equation: 

𝐀𝐱𝑚+1,𝑠 = 𝐛, (11)

where the 𝑖th element of vector 𝐱𝑚+1,𝑠 is 𝑥𝑚+1,𝑠𝑖 = 𝜓𝑚+1,𝑠+1𝑖 − 𝜓𝑚+1,𝑠𝑖 , 
which corresponds to cell 𝑉𝑖. Here, it is worth mentioning that Eq.  (11) 
is not used for solving Eqs. (8) as it is an explicit numerical scheme. 
Rather, it is used for analyzing the properties of the scheme after 
𝑥𝑚+1,𝑠𝑖  solutions are obtained by solving Equation (8). For example, to 
evaluate the choice of 𝜏𝑚+1,𝑠𝑖 , we can calculate the condition number 
of 𝐀 based on the solutions obtained from the chosen 𝜏𝑚+1,𝑠𝑖 . If the 
condition number is larger than a user-specified threshold, we will 
update 𝜏0 in Eq.  (10) so that the condition number drops below the 
threshold. For 1-D problems, Zarba (1988) showed that 𝐀 is a 𝑁 ×𝑁
asymmetric tridiagonal matrix. In this case, the condition number of 𝐀
can be determined by calculating its eigenvalues. On the other hand, 
for 2-D and 3-D problems, 𝐀 is a rectangular matrix, so that singular 
value decomposition will be used to determine its condition number.

4.3. Convergence of adaptive fixed-point iteration scheme

We now study the convergence behavior of our adaptive fixed-
point iteration scheme, which is formalized in Theorem  4.1. Recall that 
functions 𝜓𝑚 and 𝜓𝑚+1,𝑠 are considered to study the convergence.
4 
To show this, the idea is to leverage Definition  1.1 and find
𝜓𝑚+1,𝑠+1 ∈ 𝑄ℎ(𝑉 ) given 𝜓𝑚, 𝜓𝑚+1,𝑠 ∈ 𝑄ℎ(𝑉 ) such that: 
⟨

𝜃(𝜓𝑚+1,𝑠+1) − 𝜃(𝜓𝑚), 𝑣
⟩

𝑉 + 𝛥𝑡
𝜏𝑚+1,𝑠

⟨

𝜓𝑚+1,𝑠+1 − 𝜓𝑚+1,𝑠, 𝑣
⟩

𝑉 +
⟨

𝑆(𝜓𝑚+1,𝑠+1), 𝑣
⟩

𝑉

= −𝛥𝑡
⟨

𝐾
(

𝜃(𝜓𝑚+1)
)

GRADℎ(𝜓𝑚+1,𝑠+1 + 𝑧),GRADℎ(𝑣)
⟩

ℎ

(12)

holds for any 𝑣 ∈ 𝑄ℎ(𝑉 ). We remark that, unlike previous proofs 
(e.g., Amrein (2019)) that are based on several restrictive assumptions, 
our convergence proof follows a different approach that is intuitive and 
flexible, as it does not involve any additional assumptions other than 
the properties listed below.

Theorem 4.1.  The sequence {𝜓𝑚+1,𝑠}𝑠 converges to a unique solution 
𝜓𝑚+1 ∈ 𝑄ℎ(𝑉 ) for 𝑚 = 0, 1,… , ⌈ 𝑇𝛥𝑡 ⌉ − 1.

Proof.  First, we state two key properties used in the proof:

Observation 1.  The Cauchy-Schwarz inequality holds for the discrete 
𝐿2 inner product: for any 𝑢,𝑤 ∈ 𝑄ℎ, we have ⟨𝑢,𝑤⟩𝑉 ≤ ‖𝑢‖𝐿2‖𝑤‖𝐿2 .

Observation 2. 𝜃̇(𝜓) = d𝜃
d𝜓 |𝜓𝑚+1,𝑠 ≥ 𝑐0 > 0, which is valid in most WRC 

models (see Table  1). Similarly, 𝑆̇(𝜓) = d𝑆
d𝜓 |𝜓𝑚+1,𝑠 ≥ 0 in the region 

between the start and optimal root water extraction.
First, we subtract Eq. (3) from Eq.  (12) to obtain the error equation. 

Let 𝑒𝑠 ∶= 𝜓𝑚+1,𝑠 − 𝜓𝑚+1, we have: 
⟨

𝜃(𝜓𝑚+1,𝑠+1) − 𝜃(𝜓𝑚+1), 𝑣
⟩

𝑉 + 𝛥𝑡
𝜏𝑚+1,𝑠

⟨

𝑒𝑠+1 − 𝑒𝑠, 𝑣
⟩

𝑉

+
⟨

𝑆(𝜓𝑚+1,𝑠+1) − 𝑆(𝜓𝑚+1), 𝑣
⟩

𝑉 = −𝛥𝑡
⟨

𝐾(⋅)GRADℎ(𝑒𝑠+1),GRADℎ(𝑣)
⟩

ℎ
.

(13)

Let the test function 𝑣 = 𝑒𝑠+1 = 𝜓𝑚+1,𝑠+1 − 𝜓𝑚+1. This is a valid 
choice as 𝑒𝑠+1 ∈ 𝑄ℎ. By applying the mean value theorem to the 𝜃 and 
𝑆 terms, and using Observation  2, we have: 
⟨

𝜃(𝜓𝑚+1,𝑠+1) − 𝜃(𝜓𝑚+1), 𝑒𝑠+1
⟩

𝑉 =
⟨

𝜃̇(𝜉𝜃)𝑒𝑠+1, 𝑒𝑠+1
⟩

𝑉 ≥ 𝑐0‖𝑒
𝑠+1

‖

2
𝐿2 ,

⟨

𝑆(𝜓𝑚+1,𝑠+1) − 𝑆(𝜓𝑚+1), 𝑒𝑠+1
⟩

𝑉 =
⟨

𝑆̇(𝜉𝑆 )𝑒𝑠+1, 𝑒𝑠+1
⟩

𝑉 ≥ 0
(14)

for some 𝜉𝜃 , 𝜉𝑆 between 𝜓𝑚+1,𝑠+1 and 𝜓𝑚+1. The flux term on the RHS 
of Eq.  (13) is also non-negative: 
− 𝛥𝑡

⟨

𝐾(⋅) GRADℎ(𝑒𝑠+1),GRADℎ(𝑒𝑠+1)
⟩

ℎ
= −𝛥𝑡‖𝑒𝑠+1‖2ℎ ≤ 0, (15)

where ‖ ⋅ ‖ℎ is the discrete energy semi-norm. Substituting Eq.  (14) 
and Eq.  (15) into Eq.  (13) gives: 
𝑐0‖𝑒

𝑠+1
‖

2
𝐿2 + 0 + 𝛥𝑡

𝜏𝑚+1,𝑠
⟨

𝑒𝑠+1 − 𝑒𝑠, 𝑒𝑠+1
⟩

𝑉 ≤ 0 (16)

By applying Observation  1, Eq. (16) leads to: 
𝑐0‖𝑒

𝑠+1
‖

2
𝐿2 +

𝛥𝑡
𝜏𝑚+1,𝑠

(

‖𝑒𝑠+1‖2
𝐿2 − ⟨𝑒𝑠, 𝑒𝑠+1⟩𝑉

)

≤ 0. (17)

Then, we have: 
(

𝑐0 +
𝛥𝑡

𝜏𝑚+1,𝑠

)

‖𝑒𝑠+1‖2
𝐿2 ≤ 𝛥𝑡

𝜏𝑚+1,𝑠
⟨𝑒𝑠, 𝑒𝑠+1⟩𝑉 ≤ 𝛥𝑡

𝜏𝑚+1,𝑠
‖𝑒𝑠‖𝐿2‖𝑒𝑠+1‖𝐿2 .

(18)

If 𝑒𝑠+1 = 0, we complete the proof. If 𝑒𝑠+1 ≠ 0, we can divide Equation 
(18) by ‖𝑒𝑠+1‖𝐿2 : 
(

𝑐0 +
𝛥𝑡

𝜏𝑚+1,𝑠

)

‖𝑒𝑠+1‖𝐿2 ≤ 𝛥𝑡
𝜏𝑚+1,𝑠

‖𝑒𝑠‖𝐿2 , (19)

which yields the contraction: 

‖𝑒𝑠+1‖𝐿2 ≤
⎛

⎜

⎜

⎝

𝛥𝑡
𝜏𝑚+1,𝑠

𝑐0 +
𝛥𝑡

𝜏𝑚+1,𝑠

⎞

⎟

⎟

⎠

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

‖𝑒𝑠‖𝐿2 . (20)
=∶𝛾𝑠
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Fig. 1. Flowchart of our proposed algorithm to solve the FVM-discretized Richards equation using a message passing mechanism.
Since 𝑐0 > 0, the contraction factor 𝛾𝑠 is strictly less than 1. Therefore, 
the sequence is a contraction mapping on the discrete space 𝑄ℎ(𝑉 )
equipped with the 𝐿2 norm. By the Banach fixed-point theorem, the 
sequence {𝜓𝑚+1,𝑠} converges to a unique solution 𝜓𝑚+1 ∈ 𝑄ℎ(𝑉 ). This 
completes the proof. □

5. Message passing finite volume method (MP-FVM)

Once the adaptive fixed-point iteration scheme for the
FVM-discretized Richards equation is established, we incorporate it 
in our MP-FVM algorithm to enhance the solver accuracy and ability 
to retain underlying physics (e.g., mass conservation). As discussed 
previously, the message passing neural PDE solver proposed by Brand-
stetter et al. (2022) comprises three main components: an encoder, 
a processor, and a decoder. The message passing mechanism is im-
plemented within the processor that operates in the latent space. 
However, it has not been extended to discretized PDEs. In this work, we 
introduce the message passing mechanism for the discretized Richards 
equation by defining a latent variable 𝜇𝑚,𝑠𝑖  as the processor. Therefore, 
by leveraging our adaptive fixed-point iteration scheme, we can now 
solve the latent variable iteratively to enhance the convergence and 
numerical stability of the message passing mechanism. Specifically, this 
integrative algorithm, MP-FVM, adopts one neural network (encoder) 
𝑓NN to learn the map 𝜓𝑚,𝑠𝑖 ↦ 𝜇𝑚,𝑠𝑖  and another neural network (decoder) 
𝑓−1
NN to learn the inverse map 𝜇

𝑚,𝑠
𝑖 ↦ 𝜓𝑚,𝑠𝑖 . Overall, our MP-FVM 

algorithm involves offline training (dataset preparation and encoder-
decoder training) and solution (message passing) process, which are 
summarized in the flowchart of Fig.  1.

5.1. Dataset preparation and data augmentation

The dataset used to train the encoder and decoder neural networks 
comes from two different sources/solvers. Specifically, for each cell 
𝑉𝑖 and time step 𝑚, we approximate the latent variable solution 𝜇𝑚,𝑆𝑖
from a finite difference solver (e.g., Ireson et al. (2023)). Here, 𝑆
is the user-specified total iteration number. The corresponding 𝜓𝑚,𝑆𝑖
solution is obtained separately from the fixed-point iteration scheme 
of Eq.  (8) using a static parameter 𝜏. The resulting set of solution pairs, 
{(

𝜓𝑚,𝑆 , 𝜇𝑚,𝑆
)}

, form a set of original ‘‘reference solutions’’. In actual 
𝑖 𝑖 𝑖,𝑚

5 
implementation, we obtain multiple sets of original reference solutions 
by selecting multiple total iteration numbers (𝑆1,… , 𝑆𝑝) and/or fixed-
point parameters (𝜏1,… , 𝜏𝑟) that cover their ranges expected during 
the actual solution process. These sets of original reference solutions, 
which are {(𝜓𝑚,𝑆1𝑖 , 𝜇𝑚,𝑆1𝑖

)

|𝜏1

}

𝑖,𝑚,… ,
{(

𝜓
𝑚,𝑆𝑝
𝑖 , 𝜇

𝑚,𝑆𝑝
𝑖

)

|𝜏𝑟

}

𝑖,𝑚, are combined 
to form a larger set to perform data augmentation.

Next, to apply data augmentation, we introduce Gaussian noise 
𝑍𝑞 ∼  (0, 𝜎2𝑞 ) with different variances 𝜎21 ,… , 𝜎2𝑄 to each and ev-
ery element in the reference solution set obtained previously. After 
data augmentation, the resulting expanded set of reference solutions, 
{

(𝜓𝑚,𝑆1𝑖 + 𝑍𝑝, 𝜇
𝑚,𝑆1
𝑖 + 𝑍𝑞)|𝜏1

}

𝑖,𝑚,𝑞 ,… ,
{

(𝜓
𝑚,𝑆𝑝
𝑖 + 𝑍𝑞 , 𝜇

𝑚,𝑆𝑝
𝑖 + 𝑍𝑞)|𝜏𝑟

}

𝑖,𝑚,𝑞 , 
is denoted as  and will be used for neural network training. This 
data augmentation step not only increases the size of the training 
dataset, but also reflects the characteristics of actual soil sensing data, 
which are subject to various measurement uncertainties. Furthermore, 
In Section 6.1, we will show that introducing Gaussian noise can 
greatly reduce the biases of reference solutions and enhance generaliza-
tion performance (Da Silva and Adeodato, 2011), thereby significantly 
improving the accuracy of numerical solutions.

5.2. Neural network training

A neural network is capable of approximating any function provided 
that it contains enough neurons (Hornik, 1991; Pinkus, 1999). In the 
actual implementation, depending on the problem settings, the desired 
choices of optimal optimizer, number of hidden layers, and activation 
functions can vary. Based on our extensive research and hyperparam-
eter tuning, we find that a simple three-layer neural network with 
256 neurons in each layer achieves the best performance for most 1-D 
through 3-D problems compared to other more complex neural network 
architectures (e.g., LSTM). Also, we find that stochastic gradient decent 
(SGD) optimizer often outperforms others (e.g., Adam or RMSProp). 
The learning rate is set to be 0.001. This simple neural network struc-
ture makes our MP-FVM algorithm training much less computationally 
expensive compared to state-of-the-art neural PDE solvers (e.g., Lu et al. 
(2020), Brandstetter et al. (2022)).

In terms of loss function design, we note that the solution of the 
Richards equation at a given time step depends on the pressure head 
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solution at the initial condition and previous time steps. A small per-
turbation in these solutions can lead to slow convergence or inaccurate 
solutions at the final time step. To account for this, we introduce 
Sobolev training (Czarnecki et al., 2017) for both neural networks 𝑓NN
and 𝑓−1

NN to ensure compatibility and stability in the same solution 
space. We implement Sobolev training by adding a Sobolev regular-
ization term to the standard Mean Squared Error (MSE) in the loss 
functions for 𝑓NN and 𝑓−1

NN: 

𝑓NN = 1
||

∑

(𝜓,𝜇)∈

(

𝜇 − 𝑓NN(𝜓)
)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
MSE term

+𝜆𝑓NN ⋅
1
||

∑

(𝜓,𝜇)∈

(

‖

‖

‖

∇
(

𝜇 − 𝑓NN(𝜓)
)

‖

‖

‖

2

𝐿2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Sobolev regularization term

,

(21)

and 

𝑓−1
NN

= 1
||

∑

(𝜓,𝜇)∈

(

𝜓 − 𝑓−1
NN(𝜇)

)2

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
MSE term

+𝜆𝑓−1
NN

⋅
1
||

∑

(𝜓,𝜇)∈

(

‖

‖

‖

∇
(

𝜓 − 𝑓−1
NN(𝜇)

)

‖

‖

‖

2

𝐿2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Sobolev regularization term

,

(22)

where 𝜆𝑓NN  and 𝜆𝑓−1NN  are user-specified regularization parameters for 
the neural networks 𝜆𝑓−1NN  and 𝑓

−1
NN, respectively. Here, we use the Leaky 

ReLU activation function, as it has been shown that there exists a single 
hidden-layer neural network with ReLU (or Leaky ReLU) activation 
function that can approximate any function in a Sobolev space (Czar-
necki et al., 2017). Overall, this combined loss function ensures that 
the model not only produces accurate predictions but also generates 
smooth and regular outputs by matching the gradients of the true 
function.

5.3. Message passing process

When neural network training is complete, the trained encoder 𝑓NN
and decoder 𝑓−1

NN can then be incorporated into Eq.  (8) to derive the 
following fixed-point iterative scheme for the latent variables with 
message passing mechanism: 

𝜇𝑚+1,𝑠+1𝑖 = 𝜇𝑚+1,𝑠𝑖 + 𝜏𝑚+1,𝑠𝑖

∑

𝑗∈𝑖

𝐾𝑚+1,𝑠
𝜔𝑖,𝑗

𝐞 ⋅𝐧𝜔𝑖,𝑗
𝜇𝑚+1,𝑠𝑗 − 𝜇𝑚+1,𝑠𝑖

dist(𝑉𝑗 , 𝑉𝑖)
𝐴𝜔𝑖,𝑗 +𝑓NN(𝐽 ),

(23)

where 𝐽 = 𝜏𝑚+1,𝑠𝑖
∑

𝑗∈𝑖
𝐾𝑚+1,𝑠
𝜔𝑖,𝑗 𝐞 ⋅ 𝐧𝜔𝑖,𝑗

𝑧𝑗−𝑧𝑖
dist(𝑉𝑗 ,𝑉𝑖)

𝐴𝜔𝑖,𝑗

− 𝜏𝑚+1,𝑠𝑖

(

𝜃𝑚+1,𝑠𝑖 −𝜃𝑚𝑖
𝛥𝑡 + 𝑆(𝜓𝑚+1,𝑠𝑖 )

)

vol(𝑉𝑖). To solve Equation (23), we 
will adopt a similar strategy as in Eq.  (10) to adaptively select the 
linearization parameter 𝜏𝑚+1,𝑠𝑖 . To start the message passing process, 
we obtain the initial pressure head solutions in the control volume at 
𝑚 = 0 from the initial and boundary conditions. These initial pressure 
head solutions can be mapped to the latent space via trained encoder 
network 𝑓NN. Next, for each new time step 𝑚 + 1, the latent variable 
for every cell can be iteratively solved by Eq.  (23) by utilizing the 
trained neural networks 𝑓NN and 𝑓−1

NN. Note that the iterative usage 
of 𝑓−1

NN is implicitly implied in the MP-FVM algorithm, as the term 𝐽
in Eq.  (23) contains 𝜓𝑚+1,𝑠𝑖  that must be evaluated by applying 𝑓−1

NN on 
latent variable 𝜇𝑚+1,𝑠𝑖 . Also, it is worth mentioning that, since 𝜓 and 𝐽
have different scales, in actual implementation, in addition to 𝑓NN for 
learning 𝜓𝑚,𝑠𝑖 → 𝜇𝑚,𝑠𝑖 , we train another neural network named 𝑓 ′NN for 
mapping 𝐽 to the latent space in Eq.  (23). To monitor convergence of 
the iterative message passing process, we define the relative error RE𝑠
as: 

RE𝑠 ∶=
‖𝜇𝑚+1,𝑠+1 − 𝜇𝑚+1,𝑠‖𝐿2

, (24)

‖𝜇𝑚+1,𝑠+1‖𝐿2
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where 𝜇𝑚+1,𝑠+1 = (𝜇𝑚+1,𝑠+11 ,… , 𝜇𝑚+1,𝑠+1𝑁 )𝑇  and so on. Once RE𝑠 is 
below a user-specified tolerance tol (typically in the order of 10−6), 
we declare convergence of {𝜇𝑚+1,𝑠𝑖 }𝑠 to 𝜇𝑚+1𝑖 . From there, one can 
determine the converged 𝜓𝑚+1𝑖  using 𝑓−1

NN, followed by obtaining other 
physical quantities such as soil moisture content 𝜃𝑚+1𝑖  and 𝐪𝑚+1𝑖  from 
the WRC and HCF models (Table  1) and Eq.  (1). The entire solution 
process then repeats itself in the next time step until 𝑚 = ⌈

𝑇
𝛥𝑡 ⌉ − 1.

Furthermore, it is worth mentioning that, when neural network 
training for a specific problem setting (e.g., boundary condition and 
initial condition) is complete, the trained neural networks can be 
saved as a pre-trained model. As we encounter a new problem setting, 
the pre-trained model provides a strong starting point that can be 
quickly refined with a small number of epochs (typically no more than 
100) before it can be deployed to solve the new problem. The use 
of pre-trained model is a well-established technique in machine/deep 
learning for leveraging knowledge learned from (large) datasets, reduc-
ing the need for extensive training data and computation, and enabling 
faster deployment and improved performance in new tasks through 
fine-tuning.

5.4. Convergence of MP-FVM algorithm

The convergence of our MP-FVM algorithm, which features the 
sequence {𝜇𝑚+1,𝑠}𝑠, can be established by extending Theorem  4.1 and 
investigating the convergence behavior of stochastic gradient descent 
(SGD) for neural network realizations of 𝑓NN and 𝑓−1

NN. Similar to 
Theorem  4.1, we consider functions {𝜇𝑚+1,𝑠}𝑠 and 𝜇𝑚+1 instead of their 
discretized variants. 

Theorem 5.1.  The sequence {𝜇𝑚+1,𝑠}𝑠 converges to 𝜇𝑚+1 for 𝑚 =
0, 1,… , ⌈ 𝑇𝛥𝑡 ⌉ − 1.

Proof.  See Appendix for the complete proof. □

6. Case studies

Now that we have introduced the MP-FVM algorithm formulation 
for the Richards equation, in this section, we evaluate our MP-FVM 
framework on a series of 1-D through 3-D benchmark problems mod-
ified from the literature (Celia et al., 1990; Gąsiorowski and Kolerski, 
2020; Tracy, 2006; Berardi et al., 2018; Orouskhani et al., 2023). 
Specifically, we extensively study the 1-D benchmark problem of Celia 
et al. (1990) to demonstrate the need and benefits of different com-
ponents employed in our MP-FVM algorithm, including adaptive fixed-
point iteration scheme, encoder-decoder architecture and message pass-
ing mechanism, and Sobolev training. Also, using this problem as a 
benchmark, we demonstrate the accuracy of our solution algorithm 
with respect to state-of-the-art solvers. In the 1-D layered soil case study 
proposed by Berardi et al. (2018), we show that our MP-FVM algorithm 
is capable of handling discontinuities in soil properties and modeling 
the infiltration process through the interface of two different soils. In 
the 2-D case study adopted from Gąsiorowski and Kolerski (2020), we 
show that our MP-FVM algorithm can better satisfy the mass balance 
embedded in the Richards equation. In the 3-D case study adopted 
from Tracy (2006) in which an analytical solution to the Richards equa-
tion exists, we show that our MP-FVM algorithm produces much more 
accurate solutions compared to conventional FVM solvers. Finally, we 
study a 3-D problem adopted from Orouskhani et al. (2023) featuring 
an actual center-pivot system and validate the accuracy and robustness 
of our MP-FVM algorithm in modeling real-world precipitation and 
irrigation scenarios for a long period of time.

6.1. A 1-D benchmark problem

Here, we study the 1-D benchmark problem over a 40 cm deep soil 
presented by Celia et al. (1990). The HCF and WRC adopt the model 



Z. Song and Z. Jiang Computers and Geotechnics 190 (2026) 107745 
Table 2
Soil-specific parameters and their values used in the 1-D case study of Celia et al. (1990) based on the 
empirical model developed by Haverkamp et al. (1977).
 Soil-specific parameters Values Units 
 Saturated hydraulic conductivity, 𝐾𝑠 0.00944 cm/s 
 Saturated soil moisture content, 𝜃𝑠 0.287 –  
 Residual soil moisture content, 𝜃𝑟 0.075 –  
 𝛼 in Haverkamp’s model 1.611 × 106 cm  
 𝐴 in Haverkamp’s model 1.175 × 106 cm  
 𝛽 in Haverkamp’s model 3.96 –  
 𝛾 in Haverkamp’s model 4.74 –  
 Total time, 𝑇 360 s  
Fig. 2. Comparison of pressure head solution profiles at 𝑡 = 𝑇 = 360 seconds under (a) 𝑆 = 500 iterations and (b) tol = 3.2 × 10−5 for the 1-D benchmark 
problem (Celia et al., 1990) using standard and adaptive fixed-point iteration schemes (Eq. (8)). The solutions obtained from Celia et al. (1990) based on very 
fine space and time steps are marked as the ground truth solutions.
of Haverkamp et al. (1977) (see Table  1), whose parameters are listed 
in Table  2. The initial condition is given by 𝜓(𝑧, 0) = −61.5 cm, whereas 
the two boundary conditions are 𝜓(40cm, 𝑡) = −20.7cm, 𝜓(0, 𝑡) = −61.5
cm, respectively (Haverkamp et al., 1977). This benchmark problem 
ignores the sink term.

Through this 1-D illustrative example, we will highlight the ben-
efits of (a) adopting an adaptive fixed-point iteration scheme as op-
posed to standard the fixed-point iteration scheme, (b) implementing 
the MP-FVM algorithm as opposed to the conventional FVM method, 
and (c) integrating the adaptive fixed-point iteration scheme with 
encoder-decoder network and message passing mechanism in a holistic 
numerical framework.

6.1.1. The need for adaptive fixed-point iteration scheme
To illustrate how adaptive fixed-point iteration scheme improves 

convergence and accuracy of conventional fixed-point iteration
schemes, we compare the pressure head solution profiles at 𝑡 = 𝑇 = 360
seconds obtained by different static fixed-point parameters after (a) 
𝑆 = 500 iterations and (b) tol = 3.2 × 10−5. We adopt a spatial grid 
containing 101 mesh points (𝛥𝑧 = 0.4 cm) and a temporal grid satisfying 
the Courant-Friedrichs-Lewy (CFL)-like condition, typically expressed 
as 𝛥𝑡 ≤ 𝛥𝑧2

2𝐾  (De Moura and Kubrusly, 2013). As shown in Fig.  2, when 
using static fixed-point iteration scheme, the choice of parameter 𝜏
and the total number of iterations can impact the solution accuracy 
and algorithm stability significantly. For example, when the fixed-point 
parameter is too large (e.g., 𝜏 = 2 for this problem), the stability 
of the static fixed-point iteration scheme can be adversely affected 
(as illustrated by the zigzag pressure head profile towards 𝑧 = 40
cm). Another key observation is that, increasing the total number of 
iterations sometimes deteriorates solution accuracy of static fixed-point 
iteration scheme. These observations pose practical challenges for using 
static fixed-point iteration scheme, especially when the ground truth 
solutions are absent, as identifying the optimal fixed-point parameter 
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and total number of iterations that would yield accurate solutions will 
not be possible without referring to ground truth solutions. This moti-
vates us to develop adaptive fixed-point iteration scheme as a robust 
and reliable numerical scheme that produces solutions that are close 
to ground truth solutions without trail-and-error parameter tuning. 
Also, it is worth noting that our adaptive fixed-point iteration scheme 
successfully bypasses the singularity issue as 1

𝜏𝑚+1,𝑠𝑖
 approaches to 0 and 

correctly calculates the pressure head solutions for 𝑧 ∈ [0, 20cm] where 
𝜃̇(𝜓) becomes small.

6.1.2. The need for encoder-decoder architecture
To generate the reference solutions, we consider a coarse spatial 

discretization containing 40 cells (i.e., grid size 𝛥𝑧 = 1 cm) and 
solve for 𝑇 = 360 seconds. The time step size 𝛥𝑡 is determined using 
the CFL condition (De Moura and Kubrusly, 2013). A set of pressure 
head solutions 𝜓 is obtained using the finite difference method that 
incorporates a modified Picard iteration scheme developed by Celia 
et al. (1990). Meanwhile, another set of pressure head solutions, which 
essentially becomes the latent variable dataset 𝜇 for neural network 
training, is obtained from the fixed-point iteration scheme of Eq.  (8) 
under 4 different static fixed-point parameter 𝜏 = 0.25, 0.24, 0.23, 0.22
and 10 different total iteration counts 𝑆 = 1, 000, 2,000, up to 10,000.

As mentioned earlier, reference solutions utilized to train the en-
coder 𝑓NN and decoder 𝑓−1

NN come from two different sources. As shown 
in Fig.  3, a highly nonlinear relationship between two sources of 
pressure head solutions is observed. This is mainly because pressure 
head solutions from different sources exhibit different sensitivities with 
respect to different choices of 𝜏 and 𝑆. Without knowing the ground 
truth solutions a priori, it is hard to determine which set of pressure 
head solutions is more accurate. This motivates us to adopt an encoder-
decoder architecture to explicitly capture this nonlinear relationship, 
which encapsulates the sensitivity of solution with respect to different 
choices of 𝜏 and 𝑆.
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Fig. 3. The relationships between 1640 pressure head solutions 𝜓 and 𝜇, which are obtained by two distinct approaches. The resulting nonlinearity present in 
these reference solutions highlights need for data-driven approach.
Fig. 4. Persistence diagrams (Edelsbrunner and Morozov, 2013) for pressure head solutions 𝜓 (left) and 𝜇 (right). The marked differences in topological features 
illustrate the need for an encoder to map 𝜓 into the topological space of 𝜇. Here, ∞ refers to infinite lifespan and 𝐻0 are connected components.
Another motivation for adopting an encoder-decoder architecture 
in our numerical solver comes from the fact that different sources of 
pressure head solutions also exhibit different topological features. To 
see this, we use persistent homology (Edelsbrunner and Morozov, 2013) 
as a way to capture the multiscale topology of each source of pressure 
head solutions. Specifically, we construct a sequence of simplicial 
complexes and track the ‘‘birth’’ and ‘‘death’’ of topological features 
across this sequence. Fig.  4 shows that the 𝜇 solutions exhibit longer-
lasting topological components than the 𝜓 solutions, as all points die 
off much sooner (e.g., ∼ 7.4 on the death axis) for the 𝜓 solutions. 
Therefore, the use of an encoder 𝑓NN, which maps the pressure head 
solutions 𝜓 to a latent space where 𝜇 solutions lie, can capture the 
distinct topological structures of two sources of pressure head solutions. 
Similarly, the decoder 𝑓−1

NN transforms the latent representation 𝜇 back 
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to the original solution space, ensuring that the essential topological 
features of 𝜓 solutions are accurately captured and reconstructed.

6.1.3. Improving MP-FVM algorithm performance via Sobolev training and 
encoder-decoder architecture

As previously discussed, we perform data augmentation on the 
reference solutions to increase dataset size and enhance generalization 
performance. Specifically, after we obtain a set of 𝜓 solutions using 
the finite difference method developed by Celia et al. (1990), we 
make multiple copies of it and append each copy to the 𝜇 solutions 
obtained by the fixed-point iteration scheme of Eq.  (8) under differ-
ent static 𝜏 and 𝑆 values. We then add zero-mean Gaussian noises 
with standard deviation varying from 0.1 to 0.5 to these augmented 
reference solutions. Overall, this leads to a total of 17,097 reference 
solutions for neural network training and validation. Note that, as 
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Fig. 5. Comparison of pressure head solution profiles at 𝑡 = 𝑇 = 360 seconds produced from adaptive fixed-point iteration scheme only (Eq. (8)) and from MP-FVM 
algorithm (Eq. (23)) with and without implementing Sobolev training.
previously discussed, the original and augmented reference solutions 
are generated using a coarse grid (𝛥𝑧 = 1 cm). Thus, they can be 
obtained relatively efficiently. On the other hand, in the solution step, 
we will use a more refined grid containing 101 mesh points (𝛥𝑧 = 0.4
cm). This ‘‘coarse-to-fine’’ approach can therefore enhance the solution 
accuracy of our MP-FVM algorithm without requiring a large amount of 
high-accuracy, fine-mesh training data. Furthermore, when augmented 
reference solutions are used for training, only 100 additional epochs 
are needed to retrain neural networks that have already been trained 
using the original reference solutions. Second, we notice that there 
is only a slight difference in the final pressure head solution profile 
when Gaussian noises of different magnitudes are directly added to 
the original reference solutions without augmenting them together. 
Third, increasing training data size (from 1,640 to 17,097) via data 
augmentation of original reference solutions is an effective way to 
improve solution accuracy of our MP-FVM algorithm, as the pressure 
head profile matches very well with the ground truth solution.

From Fig.  5, it is clear that integrating adaptive fixed-point itera-
tion scheme in the MP-FVM framework synergistically improves the 
overall solution accuracy of the Richards equation, especially in the 
region where pressure head changes rapidly with respect to depth 
(i.e., between 𝑧 = 20 to 30 cm). On the other hand, we observe 
slight discrepancy in pressure head solution close to 𝑧 = 40 cm 
when comparing our MP-FVM algorithm with ground-truth solutions, 
whereas the solution produced by adaptive fixed-point iteration scheme 
alone matches perfectly with ground-truth solution at 𝑧 = 40 cm, 
which corresponds to one of the boundary conditions. We believe that 
this is due to the fact that 𝑓NN and 𝑓−1

NN only approximate the true 
relationships 𝑓 and 𝑓−1, respectively, and the resulting induced error 
causes discrepancies in pressure head solutions even at the boundaries. 
To overcome this limitation, one way is to increase the size of the 
augmented reference solutions for neural network training. Another 
approach is to switch from MP-FVM (Eq. (23)) to adaptive fixed-point 
iteration scheme only (i.e., Eq.  (8)) when solving for the boundary 
conditions. We leave this refinement for future research.

Fig.  6 illustrates how Sobolev training affects the solution quality 
of our MP-FVM algorithm. Specifically, we find that, first, the effec-
tiveness of Sobolev training depends on the choice of hyperparameter 
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𝜆. Second, larger values of 𝜆 (e.g., 10−5) may not lead to improved 
accuracy in pressure head solution, as in this case, neural network 
training may prioritize smoothness or derivative agreement over fitting 
the pressure head solutions. Third, smaller values of 𝜆 (e.g., 10−9) could 
still be useful in improving solution accuracy compared to without 
Sobolev training (i.e., 𝜆 = 0). Last but not least, we notice that, when 
pre-trained models are used, the sensitivity of pressure head solution to 
𝜆 is significantly reduced, especially for 𝜆 < 10−6. We suspect that this is 
because pre-trained models already capture the relationships between 
𝜓 and 𝜇 solutions reasonably well, so that the Sobolev loss primarily 
serves to fine tune the models.

6.1.4. Convergence and solution accuracy comparison
We compare our MP-FVM algorithm with other solvers based on 

computational performance and solution accuracy under two scenarios. 
In Scenario 1, we set the error tolerance tol to be 3.2 × 10−5, whereas 
in Scenario 2, we set the total number of iterations 𝑆 = 500. For static 
fixed-point iteration scheme, we use an optimal fixed-point parameter 
𝜏 = 1

3.5 ≈ 0.2857 identified by trail-and-error process. In terms of 
computational performance, we use the condition number of matrix 
𝐀 defined in Eq.  (11), which measures the sensitivity of fixed-point 
iteration scheme subject to small perturbations, as the metric.

From Tables  3 and Table  4, we see that implementing adaptive 
fixed-point iteration scheme significantly improves the stability of con-
ventional FVM and our MP-FVM algorithms, as matrix 𝐀 is well-
conditioned. These observations suggest that adaptive fixed-point itera-
tion scheme outperforms static fixed-point iteration scheme in enhanc-
ing the convergence behavior of discretization-based solvers.

In terms of solution accuracy, we consider two metrics. The first 
metric is the discrepancy from the ground truth solutions of Celia et al. 
(1990). The comparison results are illustrated in Fig.  7. The second 
metric is the solver’s performance in preserving the mass (moisture) 
balance, which is quantified by the mass balance measure MB defined 
in Celia et al. (1990): 
MB = total additional mass in the domain

total water flux into the domain . (25)

In Fig.  7, we compare the pressure head profiles obtained from our 
MP-FVM algorithm (which implements adaptive fixed-point iteration 
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Fig. 6. Comparison of pressure head solution profiles at 𝑡 = 𝑇 = 360 seconds produced from MP-FVM algorithm (Eq. (23)) with implementing Sobolev training 
with different regularization parameters in Eq.  (21) and Eq.  (22) at Scenario 2. Here, we use the same 𝜆 = 𝜆𝑓NN = 𝜆𝑓−1

NN
 and all neural networks are trained from 

scratch.
Table 3
Comparison of average condition number under Scenario 1 across all time steps (as Equation (11) already 
considers all discretized cells) for conventional FVM and our MP-FVM algorithms that implement static or adaptive 
fixed-point iteration scheme.
 Algorithm Average condition number of 𝐀 obtained from Zarba (1988) (Scenario 1)
 Static fixed-point iteration scheme Adaptive fixed-point iteration scheme  
 FVM 1.7668 1.0064  
 MP-FVM 1.7419 1.0075  
Table 4
Comparison of average condition number under Scenario 2 across all time steps for conventional FVM and our 
MP-FVM algorithms that implement static or adaptive fixed-point iteration scheme.
 Algorithm Average condition number of 𝐀 obtained from Zarba (1988) (Scenario 2)
 Static fixed-point iteration scheme Adaptive fixed-point iteration scheme  
 FVM 1.7206 1.0064  
 MP-FVM 1.7113 1.0071  
scheme and Sobolev training), the conventional FVM algorithm (that 
implements adaptive fixed-point iteration scheme), and a state-of-the-
art physics-informed neural network (PINN) solver based on Bandai and 
Ghezzehei (2021), against the ground truth solution (Celia et al., 1990). 
Clearly, in both scenarios, compared with the MP-FVM solutions, PINN 
and FVM solutions are further apart from ground truth solutions.

From Tables  5 and 6, we observe that, in both Scenarios 1 and 
2, our MP-FVM algorithm achieves the best MB values when using 
either coarse time steps suggested by the CFL condition (De Moura and 
Kubrusly, 2013) or a fixed time step. Considering that using coarse time 
steps reduces solution time without affecting solution quality, adopting 
a CFL-like condition is desired.

6.1.5. Remark on computational efficiency
Although our MP-FVM framework does involve neural network 

training which will take some additional time, there are several well-
established strategies widely used in the machine/deep learning com-
munity to reduce the overall computational time and costs. For exam-
ple, as previously discussed, one can leverage the previously trained 
neural network from a different problem setting as a good starting point 
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to train with new dataset for the new problem setting in just a small 
number of epochs. To see this, we run the 1-D benchmark problem 
of Celia et al. (1990) in a Dell Precision 7920 Tower equipped with Intel 
Xeon Gold 6246R CPU and NVIDIA Quadro RTX 6000 GPU (with 24 GB 
GGDR6 memory). The MP-FVM algorithm is implemented in Python 
3.10.5. The total computational time for solving the Celia problem from 
scratch with 𝑆 = 500 is 181.43 s, in which the neural network training 
step costs 127.58 s. On the other hand, when using a pre-trained model, 
the time for neural network training step and the total computational 
time are reduced by 89.79% and 63.21% down to 13.01 and 66.76 s, 
respectively. Meanwhile, the computational time for a direct solver is 
43.75 s. While our MP-FVM algorithm still takes more time than the 
direct solver, it is still an attractive numerical framework as: (1) it gives 
more accurate solutions; (2) its data-driven nature makes it suitable 
for seamless integration between physics-based modeling and in situ 
soil sensing technologies; (3) for large-scale and/or more complex 
problem settings, the neural network training time will become less 
significant compared to the actual solution time; and (4) our MP-FVM 
algorithm consumes less computational time compared to many neural 
PDE solvers (Lu et al., 2020; Brandstetter et al., 2022).
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Fig. 7. Pressure head profiles at 𝑡 = 𝑇 = 360 sec obtained by different algorithms under (left) Scenario 1, and (right) Scenario 2. Both conventional FVM and 
our MP-FVM algorithm incorporate adaptive fixed-point iteration scheme. Note the PINN solver is not an iterative method, thus the solution profile is the same 
under both scenarios.
Table 5
MB results of different numerical methods. Note that here, 𝛥𝑡 is the determined for each method by the CFL 
condition (De Moura and Kubrusly, 2013) and we take the average across all iterations.
 Method used Scenario Average 𝛥𝑡(sec) MB  
 FVM algorithm 1 18.90 96.13%  
 MP-FVM algorithm 1 18.68 100.23% 
 FVM algorithm 2 17.62 86.04%  
 MP-FVM algorithm 2 18.35 97.29%  
 Celia et al. (1990) N/A 10 95.00%  
Table 6
MB results of different numerical methods, in which a common 𝛥𝑡 = 10 seconds is used for all numerical 
methods.
 Method used Scenario MB (𝛥𝑡 = 15 sec) 
 FVM algorithm 1 98.87%  
 MP-FVM algorithm 1 100.72%  
 FVM algorithm 2 96.79%  
 MP-FVM algorithm 2 97.81%  
 Celia et al. (1990) N/A 95.00%  
6.2. A 1-D layered soil benchmark problem

To investigate the robustness of our MP-FVM algorithm in handling 
realistic problems, we study the classic Hills’ problem (Hills et al., 
1989) that involves the 1-D water infiltration into two layers of very dry 
soil, each having a depth of 30 cm. The top layer (layer 1) corresponds 
to Berino loamy fine sand and the bottom layer (layer 2) corresponds 
to Glendale clay loam. The WRC and HCF follow the Mualem-van 
Genuchten model. The soil-specific parameters are extracted from Hills 
et al. (1989) and are listed in Table  7. This benchmark problem also 
ignores the sink term.

As pointed out by Berardi et al. (2018), the dry condition is the most 
challenging physical case to model from a numerical point of view. The 
presence of discontinuous interface across the two soil layers presents 
another complication to this problem. We simulate the problem for up 
to 7.5 min. For neural network training, we generate a total of 30,500 
reference solutions using conventional FVM solver (which implements 
the static fixed-point iteration scheme of Eq.  (8) with an optimal 𝜏 =
0.04 identified by a trial-and-error procedure).

Fig.  8 illustrates the soil moisture profile at three different times 
obtained using our MP-FVM algorithm, conventional FVM algorithm, as 
well as the Transversal Method of Lines (TMOL) solver (Berardi et al., 
11 
2018) (which is considered the current state-of-the-art algorithm for 
this problem). All three approaches adopt the same discretized tempo-
ral (𝛥𝑡 = 1 second) and spatial steps (𝛥𝑧 = 1 cm). We set RE𝑠 = 1×10−5

as the common stopping criterion. From Fig.  8, we observe that our MP-
FVM algorithm is capable of successfully simulating this challenging 
problem with discontinuities in soil properties at the interface. The 
soil moisture solutions obtained by our MP-FVM algorithm are also 
consistent with existing solvers. In fact, compared to the FVM solver, 
the solutions produced by our MP-FVM algorithm are closer to the 
state-of-the-art TMOL solutions.

6.3. A 2-D benchmark problem

In the second example, we study the 2-D Richards equation for an 
infiltration process in a 1 m × 1 m loam soil field (Gąsiorowski and 
Kolerski, 2020). The spatial steps in both horizontal (𝛥𝑥) and vertical 
(𝛥𝑧) directions are set to be 0.02 m, and the time step used for this 
comparison study is 𝛥𝑡 = 10 seconds. The Mualem-van Genuchten 
model (see Table  1) was used in this case study. The soil-specific 
parameters, given by Carsel and Parrish (1988), are listed in Table  8. 
This problem also ignores the sink term.

The initial and boundary conditions of this case study are given by:
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Table 7
Soil-specific parameters and constants used in the layered soil problem of Hills et al. (1989).
 Soil 𝜃𝑟 𝜃𝑠 𝛼 𝑛 𝐾𝑠  
 Berino loamy fine sand 0.029 0.366 0.028 2.239 541.0 
 Glendale clay loam 0.106 0.469 0.010 1.395 13.10 
Fig. 8. Comparison of soil moisture content profile obtained different methods with 𝛥𝑧 = 1 cm under (left) MP-FVM, FVM and TMOL at 𝑡 = 𝑇 = 3 sec and 
𝑡 = 𝑇 = 2.5 min and (right) MP-FVM, FVM and TMOL at 𝑡 = 𝑇 = 7.5 min. Note that TMOL by Berardi et al. (2018) is not an iterative method. FVM and MP-FVM 
are implemented for 500 iterations at every time step.
Table 8
Soil-specific parameters and constants used in 2-D case study.
 Property Symbol Value Units 
 Saturated hydraulic conductivity 𝐾𝑠 2.89 × 10−6 m/s  
 Saturated water content 𝜃𝑠 0.43 –  
 Residual water content 𝜃𝑟 0.078 –  
 van Genuchten Constant 𝛼 3.6 m−1  
 van Genuchten Constant 𝑛 1.56 –  
 Total time 𝑇 1.26 × 104 s  
Initial condition:𝜓(𝑥, 𝑧, 𝑡 = 0s) =
{

0m, 𝑥 ∈ [0.46, 0.54]m, 𝑧 = 0m,

−10m, otherwise.
Boundary condition:𝜓(𝑥 ∈ [0.46, 0.54]m, 𝑧 = 0, 𝑡) = 0m,

no slip conditions for other boundaries.

Note that the initial and boundary conditions are symmetric along 
𝑥 = 0.5m. We first obtain 9 sets of original reference solutions (𝜓, 𝜇), 
where each 𝜓 or 𝜇 is a 51 × 51 array. Here, 𝜓 solutions are obtained 
from the conventional 2-D FVM solver (which implements the static 
fixed-point iteration scheme) that uses a spatial step of 0.02 m under 
three different fixed-point parameters 𝜏 = 2, 2.22 and 2.5 and three 
total iteration counts 𝑆 = 300, 400 and 500. Then, we apply data 
augmentation by adding Gaussian noises with 𝜎2 values ranging from 
0.01 to 0.05 to generate a total of 400 reference solutions (which also 
contain the original reference solutions). Meanwhile, 𝜇 solutions are 
obtained from the HYDRUS software (Šimůnek et al., 2016). These 
reference solutions are used to train the encoder-decoder networks for 
our MP-FVM algorithm. Each neural network contains 3 hidden layers 
and 256 neurons in each layer. ReLU activation function is adopted in 
each layer, and each neural network is trained by Adam optimizer for 
100 epochs. We set the total iteration number to be 𝑆 = 500. The total 
computational time for our MP-FVM algorithm to run from scratch with 
𝑆 = 500 is 1473.5 s, whereas the FVM solver takes 876.6 s under the 
same 𝑆.

Meanwhile, we also simulate this 2-D problem using HYDRUS soft-
ware (Šimůnek et al., 2016) and compare the pressure head results at 
𝑡 = 𝑇 = 1.26 × 104 sec with our MP-FVM algorithm and the FVM solver 
(the fixed-point parameter identified to be 1 by trial-and-error). From 
12 
Table 9
MB results of three methods at 𝑥 = 0.5 m.
 Method MB (𝛥𝑡 = 10 sec) 
 FVM algorithm 63.12%  
 HYDRUS 2D simulation 62.45%  
 MP-FVM algorithm 71.74%  

Fig.  9, we can draw two observations. First, the pressure head solution 
profiles for both FVM and MP-FVM algorithms appear to be symmetric 
along 𝑥 = 0.5 m, whereas HYDRUS 2D shows a clear asymmetric profile. 
As pointed out earlier, since the initial and boundary conditions are 
symmetric along 𝑥 = 0.5 m, symmetry in the pressure head solutions is 
expected. This suggests that both FVM and MP-FVM based solvers can 
capture some degree of underlying physics of the original problem. Sec-
ond, despite the asymmetric behavior in pressure head profile, the size 
of isolines for the HYDRUS 2D simulation result is more similar to our 
MP-FVM solution than to the FVM solver solution. This observation is 
also consistent with the information presented in Fig.  11a. In fact, both 
observations can also be carried over to the soil moisture profile, as 
shown in Figs.  10 and 11b. Finally, in terms of mass conservation, our 
MP-FVM algorithm achieves significantly higher MB value compared 
to other benchmark solvers (see Table  9).

6.4. A 3-D benchmark problem with analytical solutions

Lastly, we consider a 3-D water infiltration example, in which the 
analytical solution exists (Tracy, 2006). In this example, 𝑉  is a 3-
D cuboid [0, 𝑎] × [0, 𝑏] × [0, 𝑐]. The hydraulic conductivity function 
follows the Gardner’s model (Gardner, 1958) (see Table  1). The initial 
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Fig. 9. Pressure head solution profile obtained from three numerical methods: (left) FVM solver (fixed-point parameter 𝜏 = 1); (middle) HYDRUS 2D software; 
(right) our MP-FVM algorithm.
Fig. 10. Soil moisture solution profile obtained from three numerical methods: (left) FVM solver (fixed-point parameter 𝜏 = 1); (middle) HYDRUS 2D software; 
(right) our MP-FVM algorithm.
Fig. 11. Cross-sectional view (𝑥 = 0.5 m) of: (left) the pressure head profile; (right) soil moisture profile.
𝜓 = 1
𝛼
ln
{

exp (𝛼ℎ𝑟) + ℎ0 sin
𝜋𝑥
𝑎

sin
𝜋𝑦
𝑏

exp
(

𝛼(𝑐 − 𝑧)
2

)

[ sinh 𝛽𝑧
sinh 𝛽𝑐

+ 2
𝑧𝑑

∞
∑

𝑘=1
(−1)𝑘

𝜆𝑘
𝛾

sin (𝜆𝑘𝑧) exp (−𝑟𝑡)
]

}

, (26)
Box I. 

 
 

condition is given by:
𝜓(𝑥, 𝑦, 𝑧, 𝑡 = 0) = ℎ𝑟,

where ℎ𝑟 is a constant. The boundary condition is given by:

𝜓(𝑥, 𝑦, 𝑧 = 𝑐, 𝑡) = 1
𝛼
ln
[

exp (𝛼ℎ𝑟) + ℎ0 sin
𝜋𝑥
𝑎

sin
𝜋𝑦
𝑏

]

,

where ℎ0 = 1 − exp (𝛼ℎ𝑟). Ignoring the sink term, the pressure head
solution for this problem was derived in Tracy (2006) as (see Eq.
(26) in Box  I): where 𝑑 = 𝛼(𝜃𝑠−𝜃𝑟)

𝐾𝑠
, 𝜆𝑘 = 𝑘𝜋

𝑐 , 𝛾 =
𝜆2𝑘+𝛽

2

𝑐  and 𝛽 =
√

𝛼2 𝜋 2 𝜋 2

4 + ( 𝑎 ) + ( 𝑏 ) .
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The infinite series in Eq.  (26) is convergent by the alternating series 
test, and we consider the first 1,000 terms of this series. Note from Eq. 
(26) that the analytical solution depends only on the saturated (𝜃𝑠) 
and residual soil moisture content (𝜃𝑠). The Mualem-van Genuchten 
correlation (Mualem, 1976; Van Genuchten, 1980) tabulated in Table 
1 was used for the water retention curve 𝜃(𝜓). The constants and 
parameters used in this case study are listed in Table  10.

Our goal is to compare the accuracy of our MP-FVM algorithm with 
FVM solvers using this analytical solution as the benchmark. We use 
our own in-house 3-D FVM solver, which implements the static fixed-

point iteration scheme of the FVM-discretized 3-D Richards equation, 
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Table 10
Soil-specific parameters and constants used in the 3-D case study.
 Property Symbol Value Units 
 Saturated hydraulic conductivity 𝐾𝑠 1.1 m/s  
 Saturated soil moisture 𝜃𝑠 0.5 –  
 Residual soil moisture 𝜃𝑟 0 –  
 Parameter in Gardner’s model 𝛼 0.1 m−1  
 Parameter in initial and boundary conditions ℎ𝑟 −15.24 m  
 Length of 𝑉 𝑎 2 m  
 Width of 𝑉 𝑏 2 m  
 Depth of 𝑉 𝑐 2 m  
 Total time 𝑇 86,400 sec  
Fig. 12. Pressure head solution at 𝑧 = 0.5 m of different methods: (A) analytical solution, (B) MP-FVM algorithm, (C) the relative difference between analytical 
and MP-FVM solutions, (D) conventional FVM solver (which implements static fixed-point iteration scheme with an optimal 𝜏 = 2) and (E) the relative difference 
between analytical solution and FVM solution.
to obtain 1,734 original reference solutions using a coarse grid of 
𝛥𝑥 = 𝛥𝑦 = 𝛥𝑧 = 0.4 m under two fixed-point parameters 𝜏 = 1 and 2 
and five total iteration counts 𝑆 = 100, 200, … , 500, while excluding 
any NaN values. Then, data augmentation is applied by introducing 
Gaussian noise, resulting in a total of 8,820 data points (which include 
the original reference solutions) for neural network training. For both 
FVM and MP-FVM algorithms, we set the tolerance to 1 × 10−9, which 
can be achieved in less than 500 iterations for each time step.

We examine and compare the pressure head solutions at 𝑧 = 0.5 and 
1 m, which are shown in Figs.  12 and 13, respectively. We quantify 
the relative difference between the numerical and analytical solutions 
by 𝜓analytical−𝜓numerical𝜓analytical

. From the relative difference heat map of Figs. 
12c,e and 13c,e, we observe that, first, the magnitude of relative 
difference of our MP-FVM algorithm is significantly lower than that of 
the conventional FVM solver. Second, the largest relative difference of 
our MP-FVM pressure head solution occurs around the four corners of 
the 𝑥-𝑦 domain, whereas the largest relative difference of FVM solution 
occurs in the center of the 𝑥-𝑦 domain. Furthermore, in each cell, the 
relative difference of FVM based pressure head solution is always non-
positive, whereas that of MP-FVM based solution can be positive or 
negative.

Here, we provide some justifications for these observations. First, 
for conventional FVM solver that embeds the static fixed-point iteration 
14 
scheme, we observe from Eqs. (8) that:

𝜓analytical − 𝜓numerical ∝

⎧

⎪

⎨

⎪

⎩

∑

𝑗∈𝑖

[

𝐾(𝜓)∇(𝜓 + 𝑧)
]𝑚+1,𝑠
𝜔𝑖,𝑗

⋅ 𝐧𝜔𝑖,𝑗𝐴𝜔𝑖,𝑗 − 𝜕𝑡𝜃
𝑚+1
𝑖 vol(𝑉𝑖)

⎫

⎪

⎬

⎪

⎭

,

for any 𝑠, discretized cell 𝑉𝑖, and discretized time step 𝑚. Since the 
hydraulic conductivity function is positive and symmetric along 𝑥 = 1
m and 𝑦 = 1 m, and ∇𝜓||

|𝜔+∶=[0,1]×[0,1]×𝑧
= −∇𝜓||

|𝜔−∶=[1,2]×[1,2]×𝑧
, we have 

∑

𝑗∈𝑖

[

𝐾(𝜃(𝜓))∇(𝜓+𝑧)
]𝑚+1,𝑠
𝜔𝑖,𝑗

⋅𝐧𝜔𝑖,𝑗𝐴𝜔𝑖,𝑗 > 0. Meanwhile, 𝜕𝑡𝜃𝑚+1𝑖 (𝜓)vol(𝑉𝑖)
is typically small due to the slow dynamics of water infiltration in soil 
and the fact that vol(𝑉𝑖) is small. Thus, we have 𝜓analytical−𝜓numerical > 0
for the FVM solution, which explains why the relative difference is 
non-positive. On the other hand, for our MP-FVM algorithm, the use 
of neural networks to approximate 𝑓 and 𝑓−1 complicates the behavior 
(including the sign) of the relative difference.

Regarding the distribution of the magnitude of relative difference in 
the FVM solver, since hydraulic conductivity function is an increasing 
function of 𝜓 , and 𝜓 is at its maximum at the center of the 𝑥-𝑦 plain, it 
is expected that ∑𝑗∈𝑖

[

𝐾(𝜓)∇(𝜓+𝑧)
]𝑚+1,𝑠
𝜔𝑖,𝑗

⋅𝐧𝜔𝑖,𝑗𝐴𝜔𝑖,𝑗  (hence the relative 
difference) is maximized at and around the center of the 𝑥-𝑦 plane. 
However, for MP-FVM based pressure head solution, we suspect that 
the higher relative difference at the four corners may be attributed to 
the slight decrease in accuracy of neural networks in approximating 𝑓
and 𝑓−1 near the domain boundaries.
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Fig. 13. Pressure head solution at 𝑧 = 1.0 m of different methods: (A) analytical solution, (B) MP-FVM algorithm, (C) the relative difference between analytical 
and MP-FVM solutions, (D) conventional FVM solver (which implements static fixed-point iteration scheme with an optimal 𝜏 = 2) and (E) the relative difference 
between analytical solution and FVM solution.
Finally, we evaluate the Mean Absolute Error (MAE) by averaging 
the absolute errors between numerical and analytical pressure head 
solutions across all cells on two vertical planes, 𝑧 = 0.5 m and 𝑧 = 1
m. For 𝑧 = 0.5 m, MAEMP-FVM and MAEFVM are calculated to be 
0.0146 and 0.3444, respectively. For 𝑧 = 1 m, MAEMP-FVM and MAEFVM
are 0.0375 and 0.5653, respectively. This indicates that the MAE of 
the FVM solutions is typically 1 to 2 orders of magnitude higher 
than the MP-FVM solutions, highlighting the accuracy of our MP-FVM 
algorithm.

7. A realistic case study

Finally, we consider a real-world case study adopted from 
Orouskhani et al. (2023), where infiltration, irrigation, and root water 
extraction take place in circular agricultural field, equipped with a 
center-pivot irrigation system with a radius of 50 m, located in Leth-
bridge, Alberta. Soil moisture sensors are inserted at a depth of 25 cm 
across 20 different locations in this field to collect soil moisture data 
every 30 min from June 19 to August 13, 2019. To validate our MP-
FVM algorithm in solving real-world 3-D applications, we select one 
of the 20 locations where the Mualem-van Genuchten WRC and HCF 
model parameters are identified and given in Orouskhani et al. (2023). 
We consider a cylindrical control volume 𝑉  with a radius of 0.1 m and a 
depth of 25 cm. We discretize 𝑉  into 6, 40 and 22 nodes in the radial, 
azimuthal, and axial directions, respectively. The time step size 𝛥𝑡 is 
determined using the heuristic formula. Thus, we reformulate Equation 
(23) in cylindrical coordinate system as:

𝜇𝑚+1,𝑠+1𝑖 = 𝜇𝑚+1,𝑠𝑖 +𝜏𝑚+1,𝑠𝑖

∑

𝑗∈𝑖

𝐾𝑚+1,𝑠
𝜔𝑖,𝑗

𝐞̂𝑗 ⋅𝐧𝜔𝑖,𝑗
𝜇𝑚+1,𝑠𝑗 − 𝜇𝑚+1,𝑠𝑖

dist(𝑉𝑗 , 𝑉𝑖)
𝐴𝜔𝑖,𝑗 +𝑓

−1(𝐽 ),

where 𝐞̂𝑗 = (1, 1
𝑟2𝑗
, 1)𝑇  and 

𝐽 =𝜏𝑚+1,𝑠𝑖

∑

𝑗∈𝑖

𝐾𝑚+1,𝑠
𝜔𝑖,𝑗

𝐞̂𝑗 ⋅ 𝐧𝜔𝑖,𝑗
𝑧𝑗 − 𝑧𝑖

dist(𝑉𝑗 , 𝑉𝑖)
𝐴𝜔𝑖,𝑗 − 𝜏

𝑚+1,𝑠
𝑖

𝜃𝑚+1,𝑠𝑖 − 𝜃𝑚𝑖
𝛥𝑡

vol(𝑉𝑖)

𝑚+1,𝑠 𝑚+1,𝑠

(27)

− 𝜏𝑖 𝑆(𝜓𝑖 )vol(𝑉𝑖).
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Here, the sink term in 𝑆 follows the Feddes model (Feddes and 
Zaradny, 1978): 
𝑆 = 𝜎(𝜓)𝑆max, (28)

where 𝑆max is the maximum possible root extraction rate and 𝜎 denotes 
a dimensionless water stress reduction factor (see Agyeman et al. 
(2020) for the detailed formulation).

The boundary conditions are given by:
𝜕𝜓(𝑟, 𝜔, 𝑧)

𝜕𝑟
= 0 at𝑟 = 0m,

𝜕𝜓(𝑟, 𝜔, 𝑧)
𝜕𝑟

= 0 at𝑟 = 0.1m,

𝜕𝜓(𝑟, 𝜔, 𝑧)
𝜕𝑧

= 0 at𝑧 = 0cm,

𝜕𝜓(𝑟, 𝜔, 𝑧)
𝜕𝑧

= −1 −
𝑢irr
𝐾(𝜓)

at𝑧 = 25cm,

𝜓(𝑟, 𝜔 = 0, 𝑧) = 𝜓(𝑟, 𝜔 = 2𝜋, 𝑧),

where 𝑢irr is the irrigation rate (in m/s). The initial condition is simply:
𝜓(𝑥, 𝑦, 𝑧, 𝑡 = 0) = ℎ𝑟,

where ℎ𝑟 is the starting pressure head recording.
Note that the boundary conditions are time dependent due to 𝑢irr. 

This poses a potential computational challenge, as the neural networks 
typically need to be retrained whenever initial and/or boundary con-
ditions change (Mattey and Ghosh, 2022; Brecht et al., 2023). To 
overcome this practical challenge, we adopt a new approach of training 
the two neural networks with 3,000 epochs based on the boundary con-
ditions for June 19, 2019 (no irrigation) when data collection began. 
Then, the trained weights within these two neural networks serve as 
the starting point for retraining when a new set of boundary conditions 
is adopted. This way, only 500 epochs are sufficient to retrain the 
neural networks. For each set of boundary conditions, we obtain the 
training set containing 84,480 reference solutions. In addition, the 
dataset provided by Orouskhani et al. (2023), after performing data 
augmentation by introducing Gaussian noises, is also included in our 
training dataset. Each neural network, which has 5 hidden layers with 
256 neurons in each layer, is trained using SGD optimizer with a 
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Fig. 14. Comparison of pressure head profile at 𝑧 = 25 cm in a selected 0.1-m 
radius region (averaged for all 6×40 = 240 cells at 𝑧 = 25 cm) in the field. Note 
that the standard FVM solver becomes highly inaccurate when the boundary 
condition changes (15th day, 30th day, etc.). The flattening of true peaks 
of pressure head solutions represents a nonphysical smoothing of the true 
solution (Miller et al., 1998), which we suspect to come from the numerical 
dispersion and inherent discrete maximum principle (DMP)-type peak clipping 
behavior observed in standard FVM schemes (Njifenjou, 2025).

learning rate of 0.001. We set the stopping criterion to be 1 × 10−9, 
which can be achieved well within 500 iterations.

For this problem, we simulate the pressure head from 1:00 am on 
June 19, 2019 to 5:00 pm on July 28, 2019. As mentioned
in Orouskhani et al. (2023), there are two irrigation instances between 
this time frame, one is on July 4 (the 15th day, 1.81 mm) and the other 
is on July 18 (the 30th day, 1.58 mm). Fig.  14 shows the pressure head 
solution profile obtained by our MP-FVM algorithms compared to the 
experimental measurements provided by Orouskhani et al. (2023) over 
the course of 35 days. We observe that, most of the time, the MP-FVM 
solutions match with the experimental measurements very well. The 
only major mismatch between experimental measurements and MP-
FVM solutions occurs on the 30th day, which corresponds to the time 
when the irrigation takes place. We believe that the mismatch is due 
to our simplifying assumption regarding the irrigation schedule. Due 
to the limited information we have on the exact irrigation schedule 
and intensity, we have to assume that the irrigation instances occurred 
throughout the day. Thus, we simply divide the irrigation amount by 
86,400 s to obtain 𝑢irr. However, in reality, the irrigation could end in 
less than 24 h. With more accurate 𝑢irr model, our MP-FVM algorithm is 
expected to produce highly accurate solutions that match more closely 
with experimental measurements at all times. This makes our MP-
FVM algorithm an accurate and scalable numerical framework to solve 
Richards equation over a long period of time.

8. Conclusion

In this work, we present a novel message passing finite volume 
method named the MP-FVM algorithm to accurately and efficiently 
solve 𝑑-dimensional Richards equation (𝑑 = 1, 2, 3). Our MP-FVM algo-
rithm is inspired by the encoder-decoder network architecture (Ranade 
et al., 2021) and message passing neural PDE solvers (Brandstetter 
et al., 2022). It adopts an adaptive fixed-point iteration scheme based 
on the FVM discretization of the Richards equation and, therefore, 
significantly improves the convergence and stability of the solution 
process. To account for the numerical errors observed during actual 
16 
implementation due to computational constraints and realistic simula-
tion settings, we introduce a data-driven approach to first learn the 
forward and inverse maps between the solutions using two neural 
networks, followed by integrating the trained neural networks with 
the numerical scheme via the message passing mechanism to achieve 
synergistic improvement in solution quality. Furthermore, we also dis-
cuss effective ways, such as the ‘‘coarse-to-fine’’ approach and Sobolev 
training (Czarnecki et al., 2017), to perform data augmentation to 
facilitate neural network training using only a small number of low-
fidelity reference solutions as training set. Overall, these innovative 
techniques work seamlessly to improve the convergence and accuracy 
of our MP-FVM algorithm in solving the Richards equation. Indeed, 
via several 1-D through 3-D case studies that span across benchmark 
problems and real-world applications, we demonstrate that, compared 
to state-of-the-art numerical solvers, our MP-FVM algorithm not only 
achieves significantly improved accuracy and convergence, but also 
better preserves the overall mass balance and conservation laws while 
being computationally efficient to implement. Finally, we remark that 
our MP-FVM algorithm is expected to be a generalizable computational 
framework for modeling a wide range of geotechnical applications, 
including fractional diffusion (Gerolymatou et al., 2006; Zhang et al., 
2018; Zheng et al., 2025; Song and Jiang, 2025b) and its inverse prob-
lem (Song and Jiang, 2025a), saturated-unsaturated seepage (Sun et al., 
2024), in-field monitoring of soil suction profiles (Venkatesan et al., 
2021), transport in chemically reactive porous media (Saeedmonir 
et al., 2024; Feng et al., 2024), and so on.

In terms of future work, we would like to address some of the 
potential limitations of MP-FVM algorithm. First, since the encoder 
and decoder networks only approximate the true mappings, small but 
visible discrepancies may be introduced near the boundaries even 
when the FVM-based fixed-point iteration scheme by itself matches 
ground truth solutions. To mitigate this, as discussed previously, we 
plan to experiment with a hybrid switch-solve approach, where we 
adopt MP-FVM scheme in the interior of the domain, but fall back to 
the adaptive fixed-point iteration scheme for boundary cells. Another 
potential limitation of the current MP-FVM is related to the sensitivity 
of solution quality to the Sobolev regularization parameter in the loss 
functions of Eqs. (21) and (22). One possible solution is to use staged 
(homotopy) training, in which one can start by pre-training the model 
with 𝜆 = 0, followed by gradually ramping up 𝜆 to introduce derivative 
matching without over-smoothing.
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Appendix. Proof of Theorem  5.1

A.1. Lemmas

To prove Theorem  5.1, we first need to introduce the follow-
ing preliminary assumptions and results from Fontaine et al. (2021) 
and Berner et al. (2019).

Assumption 1. 
The objective function 𝑓 is 𝐿-smooth.

Assumption 2.  There exists a Polish probability space (𝑍,, 𝜋𝑍 ) and 
𝜂 ≥ 0 such that one of the following conditions holds:
(a) There exists a function 𝐻 ∶ R𝑑 × 𝑍 → R𝑑 such that for any 

𝑥 ∈ R𝑑 ,

∫𝑍
𝐻(𝑥, 𝑧)𝑑𝜋𝑍 (𝑧) = ∇𝑓 (𝑥), ∫𝑍

‖𝐻(𝑥, 𝑧) −∇𝑓 (𝑥)‖2
𝐿2𝑑𝜋

𝑍 (𝑧) ≤ 𝜂.

(b) There exists a function 𝑓 ∶ R𝑑 × 𝑍 → R such that for all 
𝑧 ∈ 𝑍, 𝑓 (⋅, 𝑧) ∈ 𝐶1(R𝑑 ,R) is 𝐿-smooth. Furthermore, there exists 
𝑥∗ ∈ R𝑑 such that, for any 𝑥 ∈ R𝑑 ,

∫𝑍
𝑓 (𝑥, 𝑧)𝑑𝜋𝑍 (𝑧) = 𝑓 (𝑥), ∫𝑍

∇𝑓 (𝑥, 𝑧)𝑑𝜋𝑍 (𝑧) = ∇𝑓 (𝑥),

∫𝑍
‖∇𝑓 (𝑥∗, 𝑧)‖2

𝐿2𝑑𝜋
𝑍 (𝑧) ≤ 𝜂.

In this case, we define 𝐻 = ∇𝑓 .

Assumption 3.  There exists 𝑀 ≥ 0 such that for any 𝑥, 𝑦 ∈ R𝑑 ,

‖𝛴(𝑥)1∕2 − 𝛴(𝑦)1∕2‖𝐿2 ≤𝑀‖𝑥 − 𝑦‖𝐿2 .

Assumption 4. 
One of the following conditions holds:
(a) For Assumption  2(a): 𝑓 is convex, i.e., for any 𝑥, 𝑦 ∈ R𝑑 ,

⟨∇𝑓 (𝑥) − ∇𝑓 (𝑦), 𝑥 − 𝑦⟩ ≥ 0,

and there exists a minimizer 𝑥∗ ∈ argmin𝑥∈R𝑑 𝑓 .
(b) For Assumption  2(b): For all 𝑧 ∈ 𝑍, 𝑓 (⋅, 𝑧) is convex, and there 

exists a minimizer 𝑥∗ ∈ argmin𝑥∈R𝑑 𝑓 .

Under Assumptions  1 and 2, we introduce the sequence {𝑋𝑛}𝑛∈N
starting from 𝑋0 ∈ R𝑑 corresponding to SGD with non-increasing step 
sizes for any 𝑛 ∈ N by:
𝑋𝑛+1 = 𝑋𝑛 − 𝛾(𝑛 + 1)−𝛼𝐻(𝑋𝑛, 𝑍𝑛+1),

where 𝛾 > 0, 𝛼 ∈ [0, 1], and {𝑍𝑛}𝑛∈N is a sequence of independent 
random variables on a probability space (𝛺, , 𝑃 ) valued in (𝑍,) such 
that for any 𝑛 ∈ N, 𝑍𝑛 is distributed according to 𝜋𝑍 . As Fontaine et al. 
(2021) pointed out, the solution of the following SDE is a continuous 
counterpart of {𝑋𝑛}𝑛∈N:

d𝐗𝐭 = −(𝛾 + 𝑡)−𝛼∇𝑓 (𝐗𝐭 )d𝑡 + 𝛾(𝛾 + 𝑡)−2𝛼𝛴(𝐗𝐭 )1∕2d𝐁𝐭 ,

where 𝛾𝛼 = 𝛾1∕(1−𝛼) and (𝐵𝑡)𝑡≥0 is a 𝑑-dimensional Brownian motion.
Given these preliminaries, we now leverage two established results 

as lemmas: 

Lemma A.1 (Theorem 6 of Fontaine et al. (2021)).  Let 𝛼, 𝛾 ∈ (0, 1), for 
𝑓 ∈ 𝐶2(R𝑑 ,R), there exists 𝐶 ≥ 0 such that for any 𝑇 ≥ 1,

E[𝑓 (𝐗𝐓)] − min
𝑥∈R𝑑

𝑓 ≤ 𝐶
(1 + log(𝑇 ))2

𝑇 𝛼(1−𝛼)
.

Lemma A.2 (Equation 35 of Berner et al. (2019)).  Suppose 𝑓 with an at 
most polynomially growing derivative is the ‘‘true’’ function learned by the 
17 
neural network. Let 𝜅 > 0 be the polynomial growth rate, there exists 𝐷 ≥ 0
such that
‖𝑓 (𝑥) − 𝑓 (𝑦)‖𝐿2 ≤ 𝐷

(

1 + ‖𝑥‖𝜅+2
𝐿2 + ‖𝑦‖𝜅+2

𝐿2

)

‖𝑥 − 𝑦‖𝐿2

holds. 
A.2. Proof of Theorem  5.1

With Lemmas  A.1 and A.2, we are now ready to give the proof of 
Theorem  5.1 which accounts for the convergence of SGD:

Proof.  To start, we have:
‖𝜇𝑚+1,𝑠+1 − 𝜇𝑚+1,𝑠‖𝐿2 ≤ E

[

‖𝑓NN(𝜓𝑚+1,𝑠+1,𝐗𝐓) − 𝑓NN(𝜓𝑚+1,𝑠,𝐗𝐓)‖𝐿2
]

≤ E
[

‖𝑓NN(𝜓𝑚+1,𝑠+1,𝐗𝐓) − 𝑓 (𝜓𝑚+1,𝑠+1)‖𝐿2
]

+ ‖𝑓 (𝜓𝑚+1,𝑠+1) − 𝑓 (𝜓𝑚+1,𝑠)‖𝐿2

+ E
[

‖𝑓 (𝜓𝑚+1,𝑠) − 𝑓NN(𝜓𝑚+1,𝑠,𝐗𝐓)‖𝐿2
]

,

where 𝐗𝐓 is the weights of 𝑓NN optimized by SGD optimizer, whose 
process is assumed to be well-approximated by the SDE in Lemma  A.1, 
and 𝑓 is the true function learned by 𝑓NN.

To bound the first and third terms, we define the objective function 
for the SGD process for a given input 𝜓 as 𝑓𝜓 (𝑥) = ‖𝑓NN(𝜓, 𝑥)−𝑓 (𝜓)‖𝐿2 . 
We assume this function satisfies the conditions for Lemma  A.1. The 
terms we seek to bound are then precisely of the form E[𝑓𝜓 (𝐗𝐓)]. From 
Lemma  A.1, we have:

E[𝑓𝜓 (𝐗𝐓)] ≤ 𝐶
(1 + log(𝑇 ))2

𝑇 𝛼(1−𝛼)
+ min
𝑥∈R𝑑

𝑓𝜓 (𝑥).

We assume the network is a good approximator, such that for a 
given 𝜀 > 0 and for any relevant 𝜓 , the minimum error satisfies 
min𝑥∈R𝑑 𝑓𝜓 (𝑥) ≤

𝜀
6 . When the network is trained for a sufficiently large 

𝑇 , we can ensure 𝐶 (1+log(𝑇 ))2

𝑇 𝛼(1−𝛼)
≤ 𝜀

6 . Thus, for both the first and third 
terms, which correspond to 𝜓 = 𝜓𝑚+1,𝑠+1 and 𝜓 = 𝜓𝑚+1,𝑠, we have the 
bound:

E
[

‖𝑓NN(𝜓,𝐗𝐓) − 𝑓 (𝜓)‖𝐿2
]

≤ 𝜀
6
+ 𝜀

6
= 𝜀

3
.

Next, for the term ‖𝑓 (𝜓𝑚+1,𝑠+1)−𝑓 (𝜓𝑚+1,𝑠)‖𝐿2 , it can be bounded us-
ing Lemma  A.2 and the result ‖𝜓𝑚+1,𝑠+1 − 𝜓𝑚+1,𝑠‖𝐿2

≤ 𝜀
3𝐷

(

1+‖𝜓𝑚+1,𝑠+1‖𝜅+2
𝐿2

+‖𝜓𝑚+1,𝑠‖𝜅+2
𝐿2

)  obtained from Theorem  4.1:

‖𝑓 (𝜓𝑚+1,𝑠+1) − 𝑓 (𝜓𝑚+1,𝑠)‖𝐿2

≤ 𝐷
(

1 + ‖𝜓𝑚+1,𝑠+1‖𝜅+2
𝐿2 + ‖𝜓𝑚+1,𝑠‖𝜅+2

𝐿2

)

‖𝜓𝑚+1,𝑠+1 − 𝜓𝑚+1,𝑠‖𝐿2

≤ 𝜀
3
.

Therefore, it follows that
‖𝜇𝑚+1,𝑠+1 − 𝜇𝑚+1,𝑠‖𝐿2 ≤ 𝜀

3
+ 𝜀

3
+ 𝜀

3
= 𝜀,

which completes the proof. □

Data availability

Data will be made available on request.
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