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The spatiotemporal water flow dynamics in unsaturated soils can generally be modeled by the Richards
equation. To overcome the computational challenges associated with solving this highly nonlinear partial
differential equation (PDE), we present a novel solution algorithm, which we name as the MP-FVM (Message
Passing-Finite Volume Method), to holistically integrate adaptive fixed-point iteration scheme, encoder-
decoder neural network architecture, Sobolev training, and message passing mechanism in a finite volume
discretization framework. We thoroughly discuss the need and benefits of introducing these components to
achieve synergistic improvements in accuracy and stability of the solution. We also show that our MP-FVM
algorithm can accurately solve the mixed-form n-dimensional Richards equation with guaranteed convergence
under reasonable assumptions. Through several illustrative examples, we demonstrate that our MP-FVM
algorithm not only achieves superior accuracy, but also better preserves the underlying physical laws and mass
conservation of the Richards equation compared to state-of-the-art solution algorithms and the commercial

HYDRUS solver.

1. Introduction

The spatiotemporal dynamics of root zone (e.g., top 1 m of soil)
soil moisture from precipitation and surface soil moisture information
can generally be modeled by the Richards equation (Richards, 1931),
which captures irrigation, precipitation, evapotranspiration, runoff,
and drainage dynamics in soil:

0,0(y)+V-q=-Sy),
q=—-KOW)V(y + 2).

Here, y stands for pressure head (in, e.g., m), q represents the
water flux (in, e.g., m3/m? - s), S is the sink term associated with
root water uptake (in, e.g., s~!), 6 denotes the soil moisture content
(in, e.g., m?/m?), K is unsaturated hydraulic water conductivity (in,
e.g., m/s), t € [0,T] denotes the time (in, e.g., s), and z corresponds to
the vertical depth (in, e.g., m). The Richards equation is a nonlinear
convection-diffusion equation (Caputo and Stepanyants, 2008; Song
and Jiang, 2023a), in which the convection term is due to gravity,
and the diffusive term comes from Darcy’s law (Smith et al., 2002).
For unsaturated flow, both 6 and K are highly nonlinear functions of
pressure head y and soil properties, making Equation (1) challenging
to solve numerically. Specifically, 0(y) and K(y) (or K(6), depending
on the model) are commonly referred to as the water retention curve
(WRC) and hydraulic conductivity function (HCF), respectively. Several
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of the most widely used empirical models for WRC and HCF are
summarized in Table 1.

Due to the highly nonlinear nature of WRC and HCF, analytical
solutions to the Richards equation do not exist in general (Farthing
and Ogden, 2017a). Thus, the Richards equation is typically solved
numerically in some discretized form. Consider the discretized version
of Eq. (1), whose control volume V c R? (d = 1,2,3) is discretized

into N small cells V,, ..., V. Using implicit Euler method on the time
domain with a time step size of At, the discretized Richards equation
at time step m=0,1, ..., [%] — 1 can be expressed as (Song and Jiang,
2023b):

Oy — O(y") — ALV - [K (6™ ) V (! + z)] + Ay =0,
Dirichlet boundary condition:y;(-) =0 for allV; c dV,
Initial condition:y (0, -) = ywy(-),

(2)

where " is the pressure head in cell ¥; and time step m, and (-
denotes the initial condition at 7 = 0.

The performance of a numerical PDE solver depends theoretically
on the well-posedness of the PDE (Sizikov et al., 2011), which is an
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Table 1
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Some of the widely used HCF and WRC models. In these models, 4, v, a, §, n, 6,, and 6, are soil-specific
parameters and have been tabulated for major soil types.

Model HCF (K(w) or K(6)) WRC (0w))
- " (0,-0,)
Haverkamp et al. (1977) K, yrowa . 0, + P
g5
Mualem (1976), Van Genuchten (1980) [VEZR I [1 - (%)“] 0, + — Lt
o i [1eatyrr] "

Gardner (1958) K

0, + (0, = 0,)e™

essential property that certifies the accuracy and reliability of numer-
ical solutions to the PDE. A PDE is said to be well-posed if its weak
solution exists, is unique, and depends continuously on the problem’s
initial conditions (Sizikov et al., 2011; Evans, 2010). Here, we consider
an FVM discretization with a discrete space Q, C L*(V) of piecewise
constants, where s denotes the maximum dimension of any cell in its
mesh. With this, we define the space of piecewise constant functions
on the set of meshes 7, = {V,Vs,....Vy} as Q,(V) = {v € L2(V) :
vly,is constant for allV; € 7,}. Then, we introduce the discrete gradient
operator (Hyman and Shashkov, 1997), GRAD,,, which maps a cell-
based function in Q, to a face-based function that approximates the
gradient. Note that " in Eq. (2) denotes the pressure head in cell
V; and time step m, which is the value of y™ in the cell V. To study
the pressure head solution in function space Q,(V), we focus on y"
rather than y". With this, the discrete solution for the FVM-discretized
Richards equation can be defined as follows:

Definition 1.1. Given y™ € Q,, if for any v € Q,

mtly _ poom ml m+l
(O™ = 0w™), 0, + At<K(0(u/ ) GRAD, (™! + z), GRAD,,(U))Sh @
+ 4t (S@™),v), =0

holds, where &, denotes the set of all faces that make up the mesh
T, then w"™*! is a discrete solution of the FVM-discretized Richards
equation.

Following Definition 1.1, for the discrete function space Q,, an
inner product over a cell V; is defined for piecewise constant functions
f.g € 0, as (f,g)V’_ = fvv fgdV. In this case, by denoting f; and g;
as the function values of f and g respectively on V; (i.e., f; = f ly, and
& =28ly, both of which are constants), we have fV fgdV = f,g;vol(V,).
The global inner product over the entire domain V is then (f.8)y =
Zfi 1{f.&)y,- We remark that the existence and uniqueness of the weak
solution of the Richards equation have been rigorously established
and carefully studied (Merz and Rybka, 2010; Misiats and Lipnikov,
2013; Abdellatif et al., 2018), setting up the theoretical foundation
for developing an efficient solution algorithm to solve the discretized
Richards equation numerically.

2. Literature review

Among existing solution algorithms for the Richards equation, meth-
ods based on finite difference and finite element discretizations (Day
and Luthin, 1956; Celia et al., 1990; Chavez-Negrete et al., 2024;
Haghighat et al., 2023) are the most well studied and implemented
(Farthing and Ogden, 2017b). However, these methods often face
challenges when handling large-scale problems and suffer from insta-
bility issues such as oscillations (Belfort et al., 2013). Recently, Ireson
et al. (2023) used the method of lines to convert the 1-D Richards
equation into an ordinary differential equation (ODE), which was then
solved by finite difference method. Similarly, the process converting 1-
D Richards equation into an ODE can also be achieved by implementing
generalized Boltzmann transform (Zhou et al., 2013). Despite these
advancements, finite difference- and finite element-based methods gen-
erally require high mesh resolution to satisfy the local equilibrium

condition (Or et al., 2015; Roth, 2008; Vogel and Ippisch, 2008). Fur-
thermore, they tend to fail to preserve global mass conservation (Rath-
felder and Abriola, 1994) and other important underlying physical
relations among soil moisture, pressure head, and water flux.

Meanwhile, finite volume discretization method (FVM) has the
potential to achieve high solution accuracy and preserve mass conserva-
tion when solving the Richards equation (Eymard et al., 1999). Some of
the notable works include Lai and Ogden (2015) who obtained a family
of mass-conservative finite volume predictor-corrector solutions for the
1-D Richards equation, Misiats and Lipnikov (2013) who proposed a
second-order accurate monotone FVM for 1-D Richards equation, as
well as others (Bassetto et al., 2022; Caviedes-Voullieme et al., 2013;
Manzini and Ferraris, 2004; Su et al., 2022). However, like finite
difference and finite element methods, conventional FVM typically
converts the discretized Richards equation into a large, stiff matrix
equation, which can be challenging to solve.

Instead of following the standard practice of converting the dis-
cretized equation into a matrix equation, a fixed-point iteration scheme
solves the discretized Richards equations iteratively. Some of the no-
table fixed-point iteration schemes include Bergamaschi and Putti
(1999) and Zeidler (1986). In standard fixed-point iteration schemes,
a static parameter 7 is used for all time steps and discretized cells.
However, choosing an appropriate r value is not straightforward, as soil
moisture content and pressure head can exhibit strong spatiotemporal
variations. For instance, Zhu et al. (2019) reported that, when a large
static parameter 7 is chosen, the discretized Richards equation could
become ill-posed. To address this drawback, Amrein (2019) proposed
a fully adaptive fixed-point iteration scheme based on the Galerkin
method to solve 2-D semilinear elliptic equations by finding the optimal
mesh refinements for fixed 7 at each iteration. Nevertheless, some of the
existing adaptive fixed-point iteration schemes have been reported to
suffer from numerical oscillations (Casulli and Zanolli, 2010). So far,
no fully adaptive fixed-point iteration scheme has been established for
solving the 3-D Richards equation.

With the breakthroughs in artificial intelligence and machine/deep
learning, a new avenue for solving PDEs is to directly incorporate
physical knowledge and constraints derived from the PDE into a neural
network. One of the popular frameworks is the Physics-Informed Neural
Network (PINN) (Raissi et al., 2019, 2017; Chen et al., 2023; Lan
et al, 2024; Ng et al., 2025), where the PDE itself is embedded
in the loss function as a regularization term. However, this often
results in high computational costs and training instability. On the
other hand, hybrid methods that integrate machine/deep learning tech-
niques with discretization-based numerical methods have emerged as a
promising approach to enhance the accuracy and stability of numerical
algorithms (Bar-Sinai et al., 2019). In particular, the encoder-decoder
network architecture has shown great potential in solving PDEs (Pichi
et al.,, 2024; Lu et al., 2020). For example, Ranade et al. (2021) em-
ployed a generative CNN-based encoder-decoder model with PDE vari-
ables as both input and output features. However, hybrid PDE solvers
based on conventional encoder-decoder architecture face convergence
and stability issues as the latent variables do not have physical meaning
or obey conservation laws. To overcome this limitation, Brandstetter
et al. (2022) proposed a message passing mechanism, in which a
new module called processor consisting of graph neural networks is
placed between the encoder and the decoder. Meanwhile, Ranade et al.
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(2021) proposed the use of iterative algorithm along with the encoder-
decoder network, such that the latent variables can be viewed as the
numerical solutions of PDE and convergence can be established without
invoking the message passing mechanism. Nevertheless, to the best
of our knowledge, the encoder-decoder network architecture and the
message passing mechanism have not yet been integrated to solve the
Richards equation.

3. Motivation and scope of our approach

When solving the FVM-discretized Richards equation using static
fixed-point iteration scheme, we observe that different choices of static
parameter 7 and total iteration count .S lead to slightly different so-
lutions. This aligns with the observations made by Zhu et al. (2019)
that varying = affects the condition number of the discretized Richards
equation. To ensure our numerical scheme is well-posed and reaches
convergence within S iterations, here we propose an adaptive fixed-
point iteration scheme, where 7 can dynamically adjust itself with
respect to space, time and iteration count. Furthermore, we propose
to characterize the solution discrepancies in a data-driven approach.
Specifically, we adopt the encoder-decoder network architecture to
solve the Richards equation by extending the message passing mech-
anism to FVM-based adaptive fixed-point iteration scheme. This re-
sults in a novel numerical framework called the MP-FVM (Message
Passing Finite Volume Method). In addition to these architectural ad-
vancements, we introduce several new strategies to further improve
the numerical accuracy and computational efficiency of our MP-FVM
algorithm, including:

» We present a generalized framework for any d-dimensional (d =
1,2,3) Richards equation, and demonstrate that the new MP-FVM
algorithm can be versatilely adopted to modeling different realis-
tic scenarios (e.g., layered soil, actual precipitation). We provide
rigorous theoretical justification of the convergence behavior of
our MP-FVM algorithm.

We introduce a “coarse-to-fine” approach to enhance the solution
accuracy of our MP-FVM algorithm without requiring a large
amount of high-accuracy, fine-mesh training data. We demon-
strate that this coarse-to-fine approach maintains a good balance
between computational efficiency and solution accuracy.

We show that, by synergistically integrating our novel adap-
tive fixed-point iteration scheme, FVM, and the encoder-decoder
network, our new MP-FVM algorithmic framework significantly
enhances the ability of FVM discretization in preserving the un-
derlying physical relationships and mass conservation associated
with the Richards equation.

Overall, these techniques holistically improve convergence and re-
duce numerical oscillations compared to conventional FVM. Mean-
while, they also help preserve physical laws (e.g., global water balance
more reliably compared to standard finite element and finite difference
schemes. Furthermore, our MP-FVM algorithm achieves fine-scale ac-
curacy using only coarse-grid training data, hence bypassing computa-
tionally expensive training. Finally, we remark that MP-FVM algorithm
can leverage pre-trained models to reduce retraining time, enabling
transfer learning across different boundary and/or initial conditions.

We organize the subsequent sections of the paper as follows. In
Section 4, we derive the FVM-based adaptive fixed-point iteration
formulation and prove its global convergence. Then, in Section 5,
we present the encoder-decoder network architecture as well as its
integration with the message passing mechanism to form the MP-FVM
algorithm. To compare the performance of our MP-FVM algorithm with
state-of-the-art Richards equation solvers, we conduct comprehensive
case studies and in-depth analyses of 1- through 3-D benchmark prob-
lems in Section 6. Finally, we summarize the results and discuss future
directions in Section 8.

Computers and Geotechnics 190 (2026) 107745

4. Adaptive fixed-point iteration scheme of discretized Richards
equation

In this section, we will formally introduce the adaptive fixed-point
iteration scheme formulation of the FVM-discretized Richards equation.
We will also derive sufficient conditions for parameter r to ensure
convergence. We will also analyze the convergence behavior of the
resultmg sequence of solutions {y/"’Jrl *1,, where s is the iteration count
(s=1,2,...,95).

4.1. Adaptive fixed-point iteration scheme for the Richards equation

To discretize the Richards equation via FVM, we first integrate both
sides of Eq. (1) over V:

/ [0,00) + S(w)] dV = / V- [K@O)V(y + 2)]dV. (@)
14 14

Next, we apply the divergence theorem to Eq. (4), which converts
the volume integral on the RHS into a surface integral:

[0,003) + S(@]W vol(V) = }5 K@)V(y +z) - ndS), (5)
Sy

where vol(V) is the volume of V, S}, is the surface of V' and n is the
outward pointing unit normal to the boundary dV. The common surface
shared by cell V; and cell V; is denoted as w, ;. With this, we can rewrite
the operator K(-)V(-) and the outward pointing unit normal vector n on

;as [KOV( )]m and n, o , respectively. After FVM discretization, we
obtam the dlscretlzed version of Eq. (5) as:

9,0,vol(V;) + S(w,)vol(V;) = Z [KOV(W +2)], -n, A Vi=1,...,N,

ij " @ij
JEN;
(6)

where 9,0, refers to the time derivative 9,0(y;) in cell V;, N; denotes the
index set of all the neighboring cells sharing a common surface with V;,
and A, = is the area of surface w;

In static fixed- -point iteration scheme, for each cell V; and at each
time step m + 1, one would add the term %(1//1.'"+1 S '”“ *) to
either side of Eq. (6), so that the Richards equation can be solved
in an iterative manner. The fixed-point pressure head solution of this
iterative procedure is denoted as y;". Since 7 is a static constant, a trial-
and-error procedure is typically required to obtain an appropriate =
value that avoids convergence issues. Not only is this search procedure
tedious to implement, the solutions obtained are also less accurate most
of the time as we will show in Section 6.1. Thus, inspired by previous
works (Amrein, 2019; Zhu et al., 2019), we propose an adaptive fixed-
point iteration scheme that replaces the static r with r'"“ ¥ which
adjusts itself for each specific discretized cell, time step, and iteration

count. We then introduce the term —i(y"""**' —y/"*'%) to the LHS
T,
of Eq. (6), which leads to:
m+1,s+1 m+l,s m+l,s m+l,s
W =y 4] Z;‘, [KOV@w +2]7" n,, A,
e )]
Tim+l,s [atgim+l,s + S(W:n+l,s)] VO](Vi),
m+1,s m

By discretizing 9,0, using implicit Euler scheme as -
we can obtain the adaptlve fixed-point iteration scheme of the FVM-
discretized Richards equation:

) ‘ ‘ (W + Z)m-f»l S (IV + Z)m+l K
lI/im-¢-l,4+| _ l,/im-¢-u + Tim-H,A z: K:f“" e-n, Am
_ i dist(V,, R
JEN; A
oy — o
_ Tim+l.,s i - i + S(l[/m+] A) VOl(Vi),

(8)

where e = (1,1,1) for the standard 3-D Cartesian coordinate system,
and dist(., -) represents the Euclidean distance function.
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4.2. Choice of adaptive linearization parameter

In adaptive fixed-point iteration scheme, we observe that r’"“ g

needs to be sufficiently small because otherwise, the RHS of Eq 8
could approach infinity, which affects the convergence of the scheme.
To prevent ﬁ from being too large, we impose a user-specified

T,

global upper bound

m+1,s <

T,. < To.
In addition, the choice of rm“ * can impact the accuracy of solu-
mls+l_ mtls
tions. In other words, the term |-—— Hf’ should be no greater

than a prespecified tolerance p. Thus, we have:

m+1,s+1 m+1,s
v -y

m+l,s
v

m+1l,s, m+l,s

et

- m+l,s =/
lw;

where S is the user-specified total number of iterations for conver-
gence, p should be no less than the overall tolerance of convergence
¢ (to be discussed in Section 4.3), and:

m+1,s m+1,s
gfn+l,s — Z Km+l Y(W+Z) (W+Z) e-n A
i e i dist(V;, V;) @i O
0w = 0w
- #vol(vj) - Sy vol()).
This implies that:
1,s
ply"
g —L— Ws=1..8, ©
(1+p)lg"")

whose RHS can be explicitly determined from the results of the previous
iteration. Note that, in actual implementation, we select TI.'””"‘ based
on:

1,s

o ply" )
g =mm{fo R
(1 +p)lg" |

Meanwhile, we can monitor the sensitivity of solutions obtained
by our adaptive fixed-point iteration scheme and make sure that the
solutions do not change drastically with respect to small perturbations.
To achieve this, following Zarba (1988), Celia and Zarba (1988), we
explicitly write down Equation (8) for all discretized cells in the form
of a matrix equation:

} Vs=1,...,8. 10)

Ax"™Ls = p, 11)

where the ith element of vector x"*1s is xS =yl s

which corresponds to cell V;. Here, it is worth mentioning that Eq. (11)
is not used for solving Egs. (8) as it is an explicit numerical scheme.
Rather, it is used for analyzing the properties of the scheme after
x,erl ** solutions are obtained by solving Equation (8). For example, to
evaluate the choice of z-'"“ *, we can calculate the condition number
of A based on the solutlons obtained from the chosen r'"“ S If the
condition number is larger than a user-specified threshold, we will
update 7, in Eq. (10) so that the condition number drops below the
threshold. For 1-D problems, Zarba (1988) showed that A isa N x N
asymmetric tridiagonal matrix. In this case, the condition number of A
can be determined by calculating its eigenvalues. On the other hand,
for 2-D and 3-D problems, A is a rectangular matrix, so that singular
value decomposition will be used to determine its condition number.

4.3. Convergence of adaptive fixed-point iteration scheme

We now study the convergence behavior of our adaptive fixed-
point iteration scheme, which is formalized in Theorem 4.1. Recall that
functions y"™ and y™*!* are considered to study the convergence.
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To show this, the idea is to leverage Definition 1.1 and find
st e 0, (V) given w™, w1 € 0, (V) such that:

(O™ 141 — oy, v, + ,»itl,s (s s Y (S, b))

= —41(K (0(y™*")) GRAD, (y"*'**! + z), GRAD, (v)) .,
12)

holds for any v € Q,(V). We remark that, unlike previous proofs
(e.g., Amrein (2019)) that are based on several restrictive assumptions,
our convergence proof follows a different approach that is intuitive and
flexible, as it does not involve any additional assumptions other than
the properties listed below.

Theorem 4.1. The sequence {y"*!*}, converges to a unique solution
w1l e Q,V) form=0,1,..., [%1 -1

Proof. First, we state two key properties used in the proof:

Observation 1. The Cauchy-Schwarz inequality holds for the discrete
L? inner product: for any u,w € Q,, we have (u, w), < |lull;2[lwll 2.

Observation 2. d(y) = mils = ¢o > 0, which is valid in most WRC

by
models (see Table 1). Slmllarly, S(y) = d_lwm+l.s > 0 in the region

between the start and optimal root water extraction.

First, we subtract Eq. (3) from Eq. (12) to obtain the error equation.
Let ¢f := w15 — ™1 we have:

<0(Wm+l,x+l) _ 0(l[/m+l), U>V e <ea+l — e’ U)v
+ (S@m - s, v), = —4r( K()GRAD (e, GRADh(v)>gh.
(13)

Let the test function v = es*! = ymtls+l _ ym+l This is a valid
choice as e**! € Q,,. By applying the mean value theorem to the # and
S terms, and using Observation 2, we have:

<0(Wm+l,s+l) _ H(Werl)7 es+l >V <0(§ )es+l s+1 >V > < ”es+l ”
<S(Wm+l,s+l) _ S(‘I/m-H)’ es+l >V — <S(§S)€A+1, e_s+1 >V > 0

for some &, &g between w15+ and w*!. The flux term on the RHS
of Eq. (13) is also non-negative:

127 (14)

— At{K(-) GRAD,(e**"), GRADh(e“”))gh = —atllet2 <0, 15)

where || - ||, is the discrete energy semi-norm. Substituting Eq. (14)
and Eq. (15) into Eq. (13) gives:

< ”es+l”2 +0+ <es+l es,eSH)V <0 (16)

m+1,s
By applying Observatlon 1, Eq. (16) leads to:
= (e 12, = (e ety ) <0, an

s+1 “2

Colle gm+ls

Then, we have:

At s+112 At s s+1 At s+1
<Co+fm+1,s>”e 17 < S le ey < el

(18)

If e*+! = 0, we complete the proof. If e**! # 0, we can divide Equation
(18) by [le**!|| 2

<c0+ m‘L) ez < =Sl 19
which yields the contraction:
AI
et e < | — el 2. (20)
€ ,mT
——

=
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Solution (Message Passing) Process

( Start )

Initial latent

Fixed-point iteration
scheme for latent variables
with message passing

<:)| Encoder
<:>| Decoder

Convergence
criterion met

Decoder

Pressure head
solutions at m

HCF & WRC
models

Soil moisture
level at m

Fig. 1. Flowchart of our proposed algorithm to solve the FVM-discretized Richards equation using a message passing mechanism.

Since ¢, > 0, the contraction factor y, is strictly less than 1. Therefore,
the sequence is a contraction mapping on the discrete space Q,(V)
equipped with the L? norm. By the Banach fixed-point theorem, the
sequence {y"*1%} converges to a unique solution y"*! € Q, (V). This
completes the proof. []

5. Message passing finite volume method (MP-FVM)

Once the adaptive fixed-point iteration scheme for the
FVM-discretized Richards equation is established, we incorporate it
in our MP-FVM algorithm to enhance the solver accuracy and ability
to retain underlying physics (e.g., mass conservation). As discussed
previously, the message passing neural PDE solver proposed by Brand-
stetter et al. (2022) comprises three main components: an encoder,
a processor, and a decoder. The message passing mechanism is im-
plemented within the processor that operates in the latent space.
However, it has not been extended to discretized PDEs. In this work, we
introduce the message passing mechanism for the discretized Richards
equation by defining a latent variable 4" as the processor. Therefore,
by leveraging our adaptive fixed-point iteration scheme, we can now
solve the latent variable iteratively to enhance the convergence and
numerical stability of the message passing mechanism. Specifically, this
integrative algorithm, MP-FVM, adopts one neural network (encoder)
fxn to learn the map y/l.""s > ﬂf"’s and another neural network (decoder)
f;;l to learn the inverse map u™* +~ w™'. Overall, our MP-FVM
algorithm involves offline training (dataset preparation and encoder-
decoder training) and solution (message passing) process, which are
summarized in the flowchart of Fig. 1.

5.1. Dataset preparation and data augmentation

The dataset used to train the encoder and decoder neural networks
comes from two different sources/solvers. Specifically, for each cell
V; and time step m, we approximate the latent variable solution ;4;"‘5
from a finite difference solver (e.g., Ireson et al. (2023)). Here, S
is the user-specified total iteration number. The corresponding y/‘.’"'S
solution is obtained separately from the fixed-point iteration scheme
of Eq. (8) using a static parameter z. The resulting set of solution pairs,

{(q/'.'"’s, ;4;"‘5) }I_ ,» form a set of original “reference solutions”. In actual

implementation, we obtain multiple sets of original reference solutions
by selecting multiple total iteration numbers (.5, ... ,Sp) and/or fixed-
point parameters (zy,...,7,) that cover their ranges expected during
the actual solution process. These sets of original reference solutions,
which are {(y/im’sl , ;4;"’51 ) l-, }’.,m, o {(y/l.m’s”, M:n’s” ) ls, }i,m, are combined
to form a larger set to perform data augmentation.

Next, to apply data augmentation, we introduce Gaussian noise
Z, ~ N(0,0}) with different variances 012,...,02 to each and ev-
ery element in the reference solution set obtained previously. After

data augmentation, the resulting expanded set of reference solutions,
{(Wim’Sl + ZP’”im'Sl + Zq)lfl }i,m,q’ e {(Wim’sp + Zq’”l"n,sp + Zq)lfr}i,mﬂ’
is denoted as S and will be used for neural network training. This
data augmentation step not only increases the size of the training
dataset, but also reflects the characteristics of actual soil sensing data,
which are subject to various measurement uncertainties. Furthermore,
In Section 6.1, we will show that introducing Gaussian noise can
greatly reduce the biases of reference solutions and enhance generaliza-
tion performance (Da Silva and Adeodato, 2011), thereby significantly
improving the accuracy of numerical solutions.

5.2. Neural network training

A neural network is capable of approximating any function provided
that it contains enough neurons (Hornik, 1991; Pinkus, 1999). In the
actual implementation, depending on the problem settings, the desired
choices of optimal optimizer, number of hidden layers, and activation
functions can vary. Based on our extensive research and hyperparam-
eter tuning, we find that a simple three-layer neural network with
256 neurons in each layer achieves the best performance for most 1-D
through 3-D problems compared to other more complex neural network
architectures (e.g., LSTM). Also, we find that stochastic gradient decent
(SGD) optimizer often outperforms others (e.g., Adam or RMSProp).
The learning rate is set to be 0.001. This simple neural network struc-
ture makes our MP-FVM algorithm training much less computationally
expensive compared to state-of-the-art neural PDE solvers (e.g., Lu et al.
(2020), Brandstetter et al. (2022)).

In terms of loss function design, we note that the solution of the
Richards equation at a given time step depends on the pressure head
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solution at the initial condition and previous time steps. A small per-
turbation in these solutions can lead to slow convergence or inaccurate
solutions at the final time step. To account for this, we introduce
Sobolev training (Czarnecki et al., 2017) for both neural networks fNN
and fI;III to ensure compatibility and stability in the same solution
space. We implement Sobolev training by adding a Sobolev regular-
ization term to the standard Mean Squared Error (MSE) in the loss
functions for fyy and /gk:

1 S 2 1 A 2
Lin=Tg 2 (H=fe@) #2575 X <||v(u—fNN<w>) U),
(y.pEes (w.pEes
MSE term Sobolev regularization term
@1
and
Lo = 1 00) +A ! v o)
TS Z (w = fyw)” + TS Z ” (w = fnm) o)
(y,uES (y,uES
S/
MSE term Sobolev regularization term
(22)

where A - and A /-1 are user-specified regularization parameters for
NN

the neural networks 4 Fl and AI;I}I, respectively. Here, we use the Leaky
ReLU activation function, as it has been shown that there exists a single
hidden-layer neural network with ReLU (or Leaky ReLU) activation
function that can approximate any function in a Sobolev space (Czar-
necki et al., 2017). Overall, this combined loss function ensures that
the model not only produces accurate predictions but also generates
smooth and regular outputs by matching the gradients of the true
function.

5.3. Message passing process

When neural network training is complete, the trained encoder fyy
and decoder f;;l can then be incorporated into Eq. (8) to derive the
following fixed-point iterative scheme for the latent variables with
message passing mechanism:

m+1,s m+l,s
7 — U,
m+1,5+1 m+1,s m+1,s m+1,s J ! 7
D YL Syt T Fe M SRy WY
i i i Py o @i dist(V;, V) 0 NS
i
(23)
_ m+1s m+1,s . ZjTE
where J = T; ZJEM Ko, € Doy Tt v o
9”’*]”‘—9?"

m+1,s i

. A—I‘+S(y/i'"“’5) vol(V;). To solve Equation (23), we

will adopt a similar strategy as in Eq. (10) to adaptively select the
linearization parameter r,.m+]‘s . To start the message passing process,
we obtain the initial pressure head solutions in the control volume at
m = 0 from the initial and boundary conditions. These initial pressure
head solutions can be mapped to the latent space via trained encoder
network fyy. Next, for each new time step m + 1, the latent variable
for every cell can be iteratively solved by Eq. (23) by utilizing the
trained neural networks fyy and fAI;I}I Note that the iterative usage
of f}\}l] is implicitly implied in the MP-FVM algorithm, as the term J
in Eq. (23) contains y/l.'"“’s that must be evaluated by applying f;;l on
latent variable ;4;"”“. Also, it is worth mentioning that, since y and J
have different scales, in actual implementation, in addition to fyy for
learning q/,.’""S - ;4;”’5, we train another neural network named f/yy for
mapping J to the latent space in Eq. (23). To monitor convergence of
the iterative message passing process, we define the relative error RE;
as:

m+1,s+1 _ ”m+l,s ” 12

||Mm+1,s+] ”LZ

iz

s T

RE 24)
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where ymtlstl ,...,;4']'\’[+1"‘+1)T and so on. Once RE, is
below a user-specified tolerance tol (typically in the order of 107°),
we declare convergence of { M;"H'S}S to Mf"+l~ From there, one can
determine the converged u/i'"“ using fI;I{I, followed by obtaining other
physical quantities such as soil moisture content 9,.'”“ and qf”“ from
the WRC and HCF models (Table 1) and Eq. (1). The entire solution
process then repeats itself in the next time step until m = [AZ’] -1

Furthermore, it is worth mentioning that, when neural network
training for a specific problem setting (e.g., boundary condition and
initial condition) is complete, the trained neural networks can be
saved as a pre-trained model. As we encounter a new problem setting,
the pre-trained model provides a strong starting point that can be
quickly refined with a small number of epochs (typically no more than
100) before it can be deployed to solve the new problem. The use
of pre-trained model is a well-established technique in machine/deep
learning for leveraging knowledge learned from (large) datasets, reduc-
ing the need for extensive training data and computation, and enabling
faster deployment and improved performance in new tasks through
fine-tuning.

(Mm-H ,s+1
1

5.4. Convergence of MP-FVM algorithm

The convergence of our MP-FVM algorithm, which features the
sequence {u™*1*}  can be established by extending Theorem 4.1 and
investigating the convergence behavior of stochastic gradient descent
(SGD) for neural network realizations of fNN and fl\;& Similar to
Theorem 4.1, we consider functions {x"**}, and x"*! instead of their
discretized variants.

Theorem 5.1.
0,1, [£]-1

The sequence {u"+'*}; converges to u"™*' for m =

Proof. See Appendix for the complete proof. []
6. Case studies

Now that we have introduced the MP-FVM algorithm formulation
for the Richards equation, in this section, we evaluate our MP-FVM
framework on a series of 1-D through 3-D benchmark problems mod-
ified from the literature (Celia et al., 1990; Gasiorowski and Kolerski,
2020; Tracy, 2006; Berardi et al., 2018; Orouskhani et al., 2023).
Specifically, we extensively study the 1-D benchmark problem of Celia
et al. (1990) to demonstrate the need and benefits of different com-
ponents employed in our MP-FVM algorithm, including adaptive fixed-
point iteration scheme, encoder-decoder architecture and message pass-
ing mechanism, and Sobolev training. Also, using this problem as a
benchmark, we demonstrate the accuracy of our solution algorithm
with respect to state-of-the-art solvers. In the 1-D layered soil case study
proposed by Berardi et al. (2018), we show that our MP-FVM algorithm
is capable of handling discontinuities in soil properties and modeling
the infiltration process through the interface of two different soils. In
the 2-D case study adopted from Gasiorowski and Kolerski (2020), we
show that our MP-FVM algorithm can better satisfy the mass balance
embedded in the Richards equation. In the 3-D case study adopted
from Tracy (2006) in which an analytical solution to the Richards equa-
tion exists, we show that our MP-FVM algorithm produces much more
accurate solutions compared to conventional FVM solvers. Finally, we
study a 3-D problem adopted from Orouskhani et al. (2023) featuring
an actual center-pivot system and validate the accuracy and robustness
of our MP-FVM algorithm in modeling real-world precipitation and
irrigation scenarios for a long period of time.

6.1. A 1-D benchmark problem

Here, we study the 1-D benchmark problem over a 40 cm deep soil
presented by Celia et al. (1990). The HCF and WRC adopt the model
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Table 2

Computers and Geotechnics 190 (2026) 107745

Soil-specific parameters and their values used in the 1-D case study of Celia et al. (1990) based on the
empirical model developed by Haverkamp et al. (1977).

Soil-specific parameters Values Units
Saturated hydraulic conductivity, K 0.00944 cm/s
Saturated soil moisture content, 6, 0.287 -
Residual soil moisture content, 6, 0.075 -

a in Haverkamp’s model 1.611 x 10° cm
A in Haverkamp’s model 1.175 x 10° cm
p in Haverkamp’s model 3.96 -

y in Haverkamp’s model 4.74 -
Total time, T 360 s
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Fig. 2. Comparison of pressure head solution profiles at ¢t = T = 360 seconds under (a) S = 500 iterations and (b) tol = 3.2 x 10~ for the 1-D benchmark
problem (Celia et al., 1990) using standard and adaptive fixed-point iteration schemes (Eq. (8)). The solutions obtained from Celia et al. (1990) based on very

fine space and time steps are marked as the ground truth solutions.

of Haverkamp et al. (1977) (see Table 1), whose parameters are listed
in Table 2. The initial condition is given by y(z,0) = —61.5 cm, whereas
the two boundary conditions are y(40cm, ) = —20.7cm, w(0,7) = —61.5
cm, respectively (Haverkamp et al., 1977). This benchmark problem
ignores the sink term.

Through this 1-D illustrative example, we will highlight the ben-
efits of (a) adopting an adaptive fixed-point iteration scheme as op-
posed to standard the fixed-point iteration scheme, (b) implementing
the MP-FVM algorithm as opposed to the conventional FVM method,
and (c) integrating the adaptive fixed-point iteration scheme with
encoder-decoder network and message passing mechanism in a holistic
numerical framework.

6.1.1. The need for adaptive fixed-point iteration scheme

To illustrate how adaptive fixed-point iteration scheme improves
convergence and accuracy of conventional fixed-point iteration
schemes, we compare the pressure head solution profiles at t = T = 360
seconds obtained by different static fixed-point parameters after (a)
S = 500 iterations and (b) tol = 3.2 x 10™>. We adopt a spatial grid
containing 101 mesh points (4z = 0.4 cm) and a temporal grid satisfying
the Courant-Friedrichs-Lewy (CFL)-like condition, typically expressed
as At < % (De Moura and Kubrusly, 2013). As shown in Fig. 2, when
using static fixed-point iteration scheme, the choice of parameter
and the total number of iterations can impact the solution accuracy
and algorithm stability significantly. For example, when the fixed-point
parameter is too large (e.g., = = 2 for this problem), the stability
of the static fixed-point iteration scheme can be adversely affected
(as illustrated by the zigzag pressure head profile towards z = 40
cm). Another key observation is that, increasing the total number of
iterations sometimes deteriorates solution accuracy of static fixed-point
iteration scheme. These observations pose practical challenges for using
static fixed-point iteration scheme, especially when the ground truth
solutions are absent, as identifying the optimal fixed-point parameter

and total number of iterations that would yield accurate solutions will
not be possible without referring to ground truth solutions. This moti-
vates us to develop adaptive fixed-point iteration scheme as a robust
and reliable numerical scheme that produces solutions that are close
to ground truth solutions without trail-and-error parameter tuning.
Also, it is worth noting that our adaptive fixed-point iteration scheme

successfully bypasses the singularity issue as ﬁ approaches to 0 and
T, ’
correctly calculates the pressure head solutions for z € [0,20cm] where

6(y) becomes small.

6.1.2. The need for encoder-decoder architecture

To generate the reference solutions, we consider a coarse spatial
discretization containing 40 cells (i.e., grid size 4z = 1 cm) and
solve for T = 360 seconds. The time step size 47 is determined using
the CFL condition (De Moura and Kubrusly, 2013). A set of pressure
head solutions y is obtained using the finite difference method that
incorporates a modified Picard iteration scheme developed by Celia
et al. (1990). Meanwhile, another set of pressure head solutions, which
essentially becomes the latent variable dataset x for neural network
training, is obtained from the fixed-point iteration scheme of Eq. (8)
under 4 different static fixed-point parameter r = 0.25, 0.24, 0.23, 0.22
and 10 different total iteration counts S = 1,000, 2,000, up to 10,000.

As mentioned earlier, reference solutions utilized to train the en-
coder fyy and decoder fﬁgl come from two different sources. As shown
in Fig. 3, a highly nonlinear relationship between two sources of
pressure head solutions is observed. This is mainly because pressure
head solutions from different sources exhibit different sensitivities with
respect to different choices of = and .S. Without knowing the ground
truth solutions a priori, it is hard to determine which set of pressure
head solutions is more accurate. This motivates us to adopt an encoder-
decoder architecture to explicitly capture this nonlinear relationship,
which encapsulates the sensitivity of solution with respect to different
choices of z and S.
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Fig. 4. Persistence diagrams (Edelsbrunner and Morozov, 2013) for pressure head solutions y (left) and u (right). The marked differences in topological features
illustrate the need for an encoder to map y into the topological space of u. Here, oo refers to infinite lifespan and H, are connected components.

Another motivation for adopting an encoder-decoder architecture
in our numerical solver comes from the fact that different sources of
pressure head solutions also exhibit different topological features. To
see this, we use persistent homology (Edelsbrunner and Morozov, 2013)
as a way to capture the multiscale topology of each source of pressure
head solutions. Specifically, we construct a sequence of simplicial
complexes and track the “birth” and “death” of topological features
across this sequence. Fig. 4 shows that the u solutions exhibit longer-
lasting topological components than the y solutions, as all points die
off much sooner (e.g., ~ 7.4 on the death axis) for the y solutions.
Therefore, the use of an encoder fyy, which maps the pressure head
solutions y to a latent space where yu solutions lie, can capture the
distinct topological structures of two sources of pressure head solutions.
Similarly, the decoder fﬁﬁl transforms the latent representation u back

to the original solution space, ensuring that the essential topological
features of y solutions are accurately captured and reconstructed.

6.1.3. Improving MP-FVM algorithm performance via Sobolev training and
encoder-decoder architecture

As previously discussed, we perform data augmentation on the
reference solutions to increase dataset size and enhance generalization
performance. Specifically, after we obtain a set of y solutions using
the finite difference method developed by Celia et al. (1990), we
make multiple copies of it and append each copy to the y solutions
obtained by the fixed-point iteration scheme of Eq. (8) under differ-
ent static = and S values. We then add zero-mean Gaussian noises
with standard deviation varying from 0.1 to 0.5 to these augmented
reference solutions. Overall, this leads to a total of 17,097 reference
solutions for neural network training and validation. Note that, as
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Fig. 5. Comparison of pressure head solution profiles at = T = 360 seconds produced from adaptive fixed-point iteration scheme only (Eq. (8)) and from MP-FVM

algorithm (Eq. (23)) with and without implementing Sobolev training.

previously discussed, the original and augmented reference solutions
are generated using a coarse grid (4z = 1 cm). Thus, they can be
obtained relatively efficiently. On the other hand, in the solution step,
we will use a more refined grid containing 101 mesh points (4z = 0.4
cm). This “coarse-to-fine” approach can therefore enhance the solution
accuracy of our MP-FVM algorithm without requiring a large amount of
high-accuracy, fine-mesh training data. Furthermore, when augmented
reference solutions are used for training, only 100 additional epochs
are needed to retrain neural networks that have already been trained
using the original reference solutions. Second, we notice that there
is only a slight difference in the final pressure head solution profile
when Gaussian noises of different magnitudes are directly added to
the original reference solutions without augmenting them together.
Third, increasing training data size (from 1,640 to 17,097) via data
augmentation of original reference solutions is an effective way to
improve solution accuracy of our MP-FVM algorithm, as the pressure
head profile matches very well with the ground truth solution.

From Fig. 5, it is clear that integrating adaptive fixed-point itera-
tion scheme in the MP-FVM framework synergistically improves the
overall solution accuracy of the Richards equation, especially in the
region where pressure head changes rapidly with respect to depth
(i.e., between z = 20 to 30 cm). On the other hand, we observe
slight discrepancy in pressure head solution close to z = 40 cm
when comparing our MP-FVM algorithm with ground-truth solutions,
whereas the solution produced by adaptive fixed-point iteration scheme
alone matches perfectly with ground-truth solution at z = 40 cm,
which corresponds to one of the boundary conditions. We believe that
this is due to the fact that fyy and f;lll only approximate the true
relationships f and f~!, respectively, and the resulting induced error
causes discrepancies in pressure head solutions even at the boundaries.
To overcome this limitation, one way is to increase the size of the
augmented reference solutions for neural network training. Another
approach is to switch from MP-FVM (Eq. (23)) to adaptive fixed-point
iteration scheme only (i.e., Eq. (8)) when solving for the boundary
conditions. We leave this refinement for future research.

Fig. 6 illustrates how Sobolev training affects the solution quality
of our MP-FVM algorithm. Specifically, we find that, first, the effec-
tiveness of Sobolev training depends on the choice of hyperparameter

A. Second, larger values of 4 (e.g., 10~>) may not lead to improved
accuracy in pressure head solution, as in this case, neural network
training may prioritize smoothness or derivative agreement over fitting
the pressure head solutions. Third, smaller values of 4 (e.g., 10~?) could
still be useful in improving solution accuracy compared to without
Sobolev training (i.e., 4 = 0). Last but not least, we notice that, when
pre-trained models are used, the sensitivity of pressure head solution to
A is significantly reduced, especially for 4 < 10%. We suspect that this is
because pre-trained models already capture the relationships between
y and u solutions reasonably well, so that the Sobolev loss primarily
serves to fine tune the models.

6.1.4. Convergence and solution accuracy comparison

We compare our MP-FVM algorithm with other solvers based on
computational performance and solution accuracy under two scenarios.
In Scenario 1, we set the error tolerance tol to be 3.2 x 1075, whereas
in Scenario 2, we set the total number of iterations .S = 500. For static
fixed-point iteration scheme, we use an optimal fixed-point parameter
T = % ~ 0.2857 identified by trail-and-error process. In terms of
computational performance, we use the condition number of matrix
A defined in Eq. (11), which measures the sensitivity of fixed-point
iteration scheme subject to small perturbations, as the metric.

From Tables 3 and Table 4, we see that implementing adaptive
fixed-point iteration scheme significantly improves the stability of con-
ventional FVM and our MP-FVM algorithms, as matrix A is well-
conditioned. These observations suggest that adaptive fixed-point itera-
tion scheme outperforms static fixed-point iteration scheme in enhanc-
ing the convergence behavior of discretization-based solvers.

In terms of solution accuracy, we consider two metrics. The first
metric is the discrepancy from the ground truth solutions of Celia et al.
(1990). The comparison results are illustrated in Fig. 7. The second
metric is the solver’s performance in preserving the mass (moisture)
balance, which is quantified by the mass balance measure MB defined
in Celia et al. (1990):

total additional mass in the domain
B= ; —. (25)
total water flux into the domain

In Fig. 7, we compare the pressure head profiles obtained from our
MP-FVM algorithm (which implements adaptive fixed-point iteration
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Fig. 6. Comparison of pressure head solution profiles at r = T = 360 seconds produced from MP-FVM algorithm (Eq. (23)) with implementing Sobolev training
with different regularization parameters in Eq. (21) and Eq. (22) at Scenario 2. Here, we use the same 4 = 4 Fao = Apa and all neural networks are trained from
NN

scratch.

Table 3

Comparison of average condition number under Scenario 1 across all time steps (as Equation (11) already
considers all discretized cells) for conventional FVM and our MP-FVM algorithms that implement static or adaptive

fixed-point iteration scheme.

Algorithm Average condition number of A obtained from Zarba (1988) (Scenario 1)
Static fixed-point iteration scheme Adaptive fixed-point iteration scheme
FVM 1.7668 1.0064
MP-FVM 1.7419 1.0075
Table 4

Comparison of average condition number under Scenario 2 across all time steps for conventional FVM and our
MP-FVM algorithms that implement static or adaptive fixed-point iteration scheme.

Algorithm Average condition number of A obtained from Zarba (1988) (Scenario 2)

Static fixed-point iteration scheme Adaptive fixed-point iteration scheme
FVM 1.7206 1.0064
MP-FVM 1.7113 1.0071

scheme and Sobolev training), the conventional FVM algorithm (that
implements adaptive fixed-point iteration scheme), and a state-of-the-
art physics-informed neural network (PINN) solver based on Bandai and
Ghezzehei (2021), against the ground truth solution (Celia et al., 1990).
Clearly, in both scenarios, compared with the MP-FVM solutions, PINN
and FVM solutions are further apart from ground truth solutions.

From Tables 5 and 6, we observe that, in both Scenarios 1 and
2, our MP-FVM algorithm achieves the best MB values when using
either coarse time steps suggested by the CFL condition (De Moura and
Kubrusly, 2013) or a fixed time step. Considering that using coarse time
steps reduces solution time without affecting solution quality, adopting
a CFL-like condition is desired.

6.1.5. Remark on computational efficiency

Although our MP-FVM framework does involve neural network
training which will take some additional time, there are several well-
established strategies widely used in the machine/deep learning com-
munity to reduce the overall computational time and costs. For exam-
ple, as previously discussed, one can leverage the previously trained
neural network from a different problem setting as a good starting point

10

to train with new dataset for the new problem setting in just a small
number of epochs. To see this, we run the 1-D benchmark problem
of Celia et al. (1990) in a Dell Precision 7920 Tower equipped with Intel
Xeon Gold 6246R CPU and NVIDIA Quadro RTX 6000 GPU (with 24 GB
GGDR6 memory). The MP-FVM algorithm is implemented in Python
3.10.5. The total computational time for solving the Celia problem from
scratch with § = 500 is 181.43 s, in which the neural network training
step costs 127.58 s. On the other hand, when using a pre-trained model,
the time for neural network training step and the total computational
time are reduced by 89.79% and 63.21% down to 13.01 and 66.76 s,
respectively. Meanwhile, the computational time for a direct solver is
43.75 s. While our MP-FVM algorithm still takes more time than the
direct solver, it is still an attractive numerical framework as: (1) it gives
more accurate solutions; (2) its data-driven nature makes it suitable
for seamless integration between physics-based modeling and in situ
soil sensing technologies; (3) for large-scale and/or more complex
problem settings, the neural network training time will become less
significant compared to the actual solution time; and (4) our MP-FVM
algorithm consumes less computational time compared to many neural
PDE solvers (Lu et al., 2020; Brandstetter et al., 2022).
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Fig. 7. Pressure head profiles at t = T = 360 sec obtained by different algorithms under (left) Scenario 1, and (right) Scenario 2. Both conventional FVM and
our MP-FVM algorithm incorporate adaptive fixed-point iteration scheme. Note the PINN solver is not an iterative method, thus the solution profile is the same

under both scenarios.

Table 5

MB results of different numerical methods. Note that here, Ar is the determined for each method by the CFL
condition (De Moura and Kubrusly, 2013) and we take the average across all iterations.

Method used Scenario Average At(sec) MB

FVM algorithm 1 18.90 96.13%
MP-FVM algorithm 1 18.68 100.23%
FVM algorithm 2 17.62 86.04%
MP-FVM algorithm 2 18.35 97.29%
Celia et al. (1990) N/A 10 95.00%

Table 6
MB results of different numerical methods, in which a common 47 = 10 seconds is used for all numerical
methods.
Method used Scenario MB (4t =15 sec)
FVM algorithm 1 98.87%
MP-FVM algorithm 1 100.72%
FVM algorithm 2 96.79%
MP-FVM algorithm 2 97.81%
Celia et al. (1990) N/A 95.00%

6.2. A 1-D layered soil benchmark problem

To investigate the robustness of our MP-FVM algorithm in handling
realistic problems, we study the classic Hills’ problem (Hills et al.,
1989) that involves the 1-D water infiltration into two layers of very dry
soil, each having a depth of 30 cm. The top layer (layer 1) corresponds
to Berino loamy fine sand and the bottom layer (layer 2) corresponds
to Glendale clay loam. The WRC and HCF follow the Mualem-van
Genuchten model. The soil-specific parameters are extracted from Hills
et al. (1989) and are listed in Table 7. This benchmark problem also
ignores the sink term.

As pointed out by Berardi et al. (2018), the dry condition is the most
challenging physical case to model from a numerical point of view. The
presence of discontinuous interface across the two soil layers presents
another complication to this problem. We simulate the problem for up
to 7.5 min. For neural network training, we generate a total of 30,500
reference solutions using conventional FVM solver (which implements
the static fixed-point iteration scheme of Eq. (8) with an optimal r =
0.04 identified by a trial-and-error procedure).

Fig. 8 illustrates the soil moisture profile at three different times
obtained using our MP-FVM algorithm, conventional FVM algorithm, as
well as the Transversal Method of Lines (TMOL) solver (Berardi et al.,

11

2018) (which is considered the current state-of-the-art algorithm for
this problem). All three approaches adopt the same discretized tempo-
ral (4t = 1 second) and spatial steps (4z = 1 cm). We set RE; = 1x 1075
as the common stopping criterion. From Fig. 8, we observe that our MP-
FVM algorithm is capable of successfully simulating this challenging
problem with discontinuities in soil properties at the interface. The
soil moisture solutions obtained by our MP-FVM algorithm are also
consistent with existing solvers. In fact, compared to the FVM solver,
the solutions produced by our MP-FVM algorithm are closer to the
state-of-the-art TMOL solutions.

6.3. A 2-D benchmark problem

In the second example, we study the 2-D Richards equation for an
infiltration process in a 1 m x 1 m loam soil field (Gasiorowski and
Kolerski, 2020). The spatial steps in both horizontal (4x) and vertical
(4z) directions are set to be 0.02 m, and the time step used for this
comparison study is Ar 10 seconds. The Mualem-van Genuchten
model (see Table 1) was used in this case study. The soil-specific
parameters, given by Carsel and Parrish (1988), are listed in Table 8.
This problem also ignores the sink term.

The initial and boundary conditions of this case study are given by:
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Table 7
Soil-specific parameters and constants used in the layered soil problem of Hills et al. (1989).
Soil 0, 0, a n K,
Berino loamy fine sand 0.029 0.366 0.028 2.239 541.0
Glendale clay loam 0.106 0.469 0.010 1.395 13.10
Soil moisture content Soil moisture content
010 015 020 025 030 035 040 045 050 010 015 020 025 030 035 040 045 0.50
0 4 1 L | — 1 1 1 1 0 1 1 1 1 1 1
10 10
20 + 20 4
£ £
XA e
< 304 = 30
s 3
a MP-FVM (T=3 sec) K
404 ——FVM (T=3 sec) 40 4
—— TMOL (T=3 sec) !
—— MP-FVM (T=2.5 min) MP-FVM (T=7.5 min)
809 | FVM (T=2.5 min) 50 ——FVM (T=7.5 min)
—— TMOL (T=2.5 min) —— TMOL (T=7.5 min)
60 60

Fig. 8. Comparison of soil moisture content profile obtained different methods with Az = 1 cm under (left) MP-FVM, FVM and TMOL at r = T = 3 sec and
t =T =2.5 min and (right) MP-FVM, FVM and TMOL at t = T = 7.5 min. Note that TMOL by Berardi et al. (2018) is not an iterative method. FVM and MP-FVM

are implemented for 500 iterations at every time step.

Table 8

Soil-specific parameters and constants used in 2-D case study.
Property Symbol Value Units
Saturated hydraulic conductivity K, 2.89 x 1070 m/s
Saturated water content 0, 0.43 -
Residual water content 0, 0.078 -
van Genuchten Constant a 3.6 m~!
van Genuchten Constant n 1.56 -
Total time T 1.26 x 10* s

Table 9

Om,
—10m,

x € [0.46,0.54]m, z = Om,

Initial condition:y(x, z,7 = 0s) = .
otherwise.

Boundary condition:y (x € [0.46,0.54]m, z = 0,¢) = Om,

no slip conditions for other boundaries.

Note that the initial and boundary conditions are symmetric along
x = 0.5m. We first obtain 9 sets of original reference solutions (y, u),
where each y or u is a 51 x 51 array. Here, y solutions are obtained
from the conventional 2-D FVM solver (which implements the static
fixed-point iteration scheme) that uses a spatial step of 0.02 m under
three different fixed-point parameters r = 2, 2.22 and 2.5 and three
total iteration counts § 300, 400 and 500. Then, we apply data
augmentation by adding Gaussian noises with o2 values ranging from
0.01 to 0.05 to generate a total of 400 reference solutions (which also
contain the original reference solutions). Meanwhile, u solutions are
obtained from the HYDRUS software (Simtnek et al., 2016). These
reference solutions are used to train the encoder-decoder networks for
our MP-FVM algorithm. Each neural network contains 3 hidden layers
and 256 neurons in each layer. ReLU activation function is adopted in
each layer, and each neural network is trained by Adam optimizer for
100 epochs. We set the total iteration number to be .S = 500. The total
computational time for our MP-FVM algorithm to run from scratch with
S =500 is 1473.5 s, whereas the FVM solver takes 876.6 s under the
same S.

Meanwhile, we also simulate this 2-D problem using HYDRUS soft-
ware (Simtinek et al., 2016) and compare the pressure head results at
t =T = 1.26 x 10* sec with our MP-FVM algorithm and the FVM solver
(the fixed-point parameter identified to be 1 by trial-and-error). From
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MB results of three methods at x = 0.5 m.

Method MB (4t = 10 sec)
FVM algorithm 63.12%
HYDRUS 2D simulation 62.45%
MP-FVM algorithm 71.74%

Fig. 9, we can draw two observations. First, the pressure head solution
profiles for both FVM and MP-FVM algorithms appear to be symmetric
along x = 0.5 m, whereas HYDRUS 2D shows a clear asymmetric profile.
As pointed out earlier, since the initial and boundary conditions are
symmetric along x = 0.5 m, symmetry in the pressure head solutions is
expected. This suggests that both FVM and MP-FVM based solvers can
capture some degree of underlying physics of the original problem. Sec-
ond, despite the asymmetric behavior in pressure head profile, the size
of isolines for the HYDRUS 2D simulation result is more similar to our
MP-FVM solution than to the FVM solver solution. This observation is
also consistent with the information presented in Fig. 11a. In fact, both
observations can also be carried over to the soil moisture profile, as
shown in Figs. 10 and 11b. Finally, in terms of mass conservation, our
MP-FVM algorithm achieves significantly higher MB value compared
to other benchmark solvers (see Table 9).

6.4. A 3-D benchmark problem with analytical solutions

Lastly, we consider a 3-D water infiltration example, in which the
analytical solution exists (Tracy, 2006). In this example, V is a 3-
D cuboid [0,a] X [0,b6] X [0,c]. The hydraulic conductivity function
follows the Gardner’s model (Gardner, 1958) (see Table 1). The initial
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Fig. 9. Pressure head solution profile obtained from three numerical methods: (left) FVM solver (fixed-point parameter r = 1); (middle) HYDRUS 2D software;

(right) our MP-FVM algorithm.
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Fig. 11. Cross-sectional view (x = 0.5 m) of: (left) the pressure head profile; (right) soil moisture profile.

v = éln{exp(ah,)+ﬁo sin%sin%}exp <‘1(CT_Z)> [ZEE‘Z?

2Nt _
= Zi( DFZE sin (A2 exp( rt)]},

i (26)

Box I.

condition is given by:
y(x,y,z,t=0)=h,
where A, is a constant. The boundary condition is given by:

w(x,y,z=c,t)= l In [exp (ah,)+ EO sin X sin %} N
a a

where hy, = 1 — exp(ah,). Ignoring the sink term, the pressure head
solution for this problem was derived in Tracy (20062) as (see Eq.
2

(26) in Box I): where d = and § =

ﬂz s a
Vi +EP+E2

km _ Ath
¢’ -

a(0;,—06,) _
KoM T

13

The infinite series in Eq. (26) is convergent by the alternating series
test, and we consider the first 1,000 terms of this series. Note from Eq.
(26) that the analytical solution depends only on the saturated (6,)
and residual soil moisture content (6,). The Mualem-van Genuchten
correlation (Mualem, 1976; Van Genuchten, 1980) tabulated in Table
1 was used for the water retention curve O(w). The constants and
parameters used in this case study are listed in Table 10.

Our goal is to compare the accuracy of our MP-FVM algorithm with
FVM solvers using this analytical solution as the benchmark. We use
our own in-house 3-D FVM solver, which implements the static fixed-
point iteration scheme of the FVM-discretized 3-D Richards equation,
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Table 10
Soil-specific parameters and constants used in the 3-D case study.
Property Symbol Value Units
Saturated hydraulic conductivity K, 1.1 m/s
Saturated soil moisture 0, 0.5 -
Residual soil moisture 0, 0 -
Parameter in Gardner’s model a 0.1 m™!
Parameter in initial and boundary conditions h, -15.24 m
Length of V a 2 m
Width of V b 2 m
Depth of V c 2 m
Total time T 86,400 sec
Pressure head (m) Relative difference
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Fig. 12. Pressure head solution at z = 0.5 m of different methods: (A) analytical solution, (B) MP-FVM algorithm, (C) the relative difference between analytical
and MP-FVM solutions, (D) conventional FVM solver (which implements static fixed-point iteration scheme with an optimal r = 2) and (E) the relative difference

between analytical solution and FVM solution.

to obtain 1,734 original reference solutions using a coarse grid of
Ax = Ay = Az = 0.4 m under two fixed-point parameters = 1 and 2
and five total iteration counts S = 100, 200, ..., 500, while excluding
any NaN values. Then, data augmentation is applied by introducing
Gaussian noise, resulting in a total of 8,820 data points (which include
the original reference solutions) for neural network training. For both
FVM and MP-FVM algorithms, we set the tolerance to 1 x 10™%, which
can be achieved in less than 500 iterations for each time step.

We examine and compare the pressure head solutions at z = 0.5 and
1 m, which are shown in Figs. 12 and 13, respectively. We quantify
the relative difference between the numerical and analytical solutions
by Yanalytical Viumerical - prom the relative difference heat map of Figs.
12c,e arl;/anally%-‘fél ,e, we observe that, first, the magnitude of relative
difference of our MP-FVM algorithm is significantly lower than that of
the conventional FVM solver. Second, the largest relative difference of
our MP-FVM pressure head solution occurs around the four corners of
the x-y domain, whereas the largest relative difference of FVM solution
occurs in the center of the x-y domain. Furthermore, in each cell, the
relative difference of FVM based pressure head solution is always non-
positive, whereas that of MP-FVM based solution can be positive or
negative.

Here, we provide some justifications for these observations. First,
for conventional FVM solver that embeds the static fixed-point iteration

14

scheme, we observe from Egs. (8) that:

]m+ls

A

(1)
@i j

@i,j

Wanalytical ~ ¥numerical & Z [K(V/)V(V/ +2) - (),G?H'IVOI(V;) R

JEN;

for any s, discretized cell V;, and discretized time step m. Since the
hydraulic conductivity function is positive and symmetric along x = 1
mand y =1 m, and Vy , we have

@t :=[0,1]x[0,1]xz - :=[1,21x[1,2]xz"

Tjen [KO@)V@+2]0 " m,, 4, >0, Meanwhile, 3,67 (wyvol(V;)
is typically small due to tile slow dynamics of water infiltration in soil
and the fact that vol(V;) is small. Thus, we have wynaiytical ~Wnumerical > 0
for the FVM solution, which explains why the relative difference is
non-positive. On the other hand, for our MP-FVM algorithm, the use
of neural networks to approximate f and f~' complicates the behavior
(including the sign) of the relative difference.

Regarding the distribution of the magnitude of relative difference in
the FVM solver, since hydraulic conductivity function is an increasing
function of y, and y is at its maximum at the center of the x-y plain, it
is expected that ;¢ v [K (W)V(w+z)] s ‘n,, A, (hence the relative
difference) is maximized at and around the center of the x-y plane.
However, for MP-FVM based pressure head solution, we suspect that
the higher relative difference at the four corners may be attributed to
the slight decrease in accuracy of neural networks in approximating f
and f~! near the domain boundaries.
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Fig. 13. Pressure head solution at z = 1.0 m of different methods: (A) analytical solution, (B) MP-FVM algorithm, (C) the relative difference between analytical
and MP-FVM solutions, (D) conventional FVM solver (which implements static fixed-point iteration scheme with an optimal r = 2) and (E) the relative difference

between analytical solution and FVM solution.

Finally, we evaluate the Mean Absolute Error (MAE) by averaging
the absolute errors between numerical and analytical pressure head
solutions across all cells on two vertical planes, z = 0.5 m and z = 1
m. For z 0.5 m, MAEyprym and MAEgyy are calculated to be
0.0146 and 0.3444, respectively. For z = 1 m, MAEy;p_gyy and MAEgyy
are 0.0375 and 0.5653, respectively. This indicates that the MAE of
the FVM solutions is typically 1 to 2 orders of magnitude higher
than the MP-FVM solutions, highlighting the accuracy of our MP-FVM
algorithm.

7. A realistic case study

Finally, we consider a real-world case study adopted from
Orouskhani et al. (2023), where infiltration, irrigation, and root water
extraction take place in circular agricultural field, equipped with a
center-pivot irrigation system with a radius of 50 m, located in Leth-
bridge, Alberta. Soil moisture sensors are inserted at a depth of 25 cm
across 20 different locations in this field to collect soil moisture data
every 30 min from June 19 to August 13, 2019. To validate our MP-
FVM algorithm in solving real-world 3-D applications, we select one
of the 20 locations where the Mualem-van Genuchten WRC and HCF
model parameters are identified and given in Orouskhani et al. (2023).
We consider a cylindrical control volume V" with a radius of 0.1 m and a
depth of 25 cm. We discretize V' into 6, 40 and 22 nodes in the radial,
azimuthal, and axial directions, respectively. The time step size 4t is
determined using the heuristic formula. Thus, we reformulate Equation
(23) in cylindrical coordinate system as:

m+l,s m+1,s
7

L, +/7'W),

m+1,s+1 m+l,s m+l,s m+l,s4
u =u. +7; E K" ¢ -n, -
i @i e dist(V;, V)

1 1
JEN;
A 1 T
whereej—(l,—z,l) and
re
J

7. — 2z m+1,s m

K"™'5g .om, —2 A gt Lvol(V,
@; j J @i j dlst(Vj,Vl) ; i ( 1)

___m+ls
J=r Y

JEN;
_ T‘.mH‘SS(l//‘.m“‘J)VOl(Vi).

(27)
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Here, the sink term in .S follows the Feddes model (Feddes and
Zaradny, 1978):

S = U(W)Smax,

where S, is the maximum possible root extraction rate and ¢ denotes
a dimensionless water stress reduction factor (see Agyeman et al.
(2020) for the detailed formulation).

The boundary conditions are given by:

(28)

w2 o o Om,
or
WD 6 atr=0.1m,
or
M =0 atz= Ocm’
0z
oy (r,, z) 1 Uirr atz = 25cm,
0z K(y)

v(r,o=0,z) =y o=2r,z),

where u;,, is the irrigation rate (in m/s). The initial condition is simply:
y(x,y,z,t=0)=h,,

where A, is the starting pressure head recording.

Note that the boundary conditions are time dependent due to u;..
This poses a potential computational challenge, as the neural networks
typically need to be retrained whenever initial and/or boundary con-
ditions change (Mattey and Ghosh, 2022; Brecht et al., 2023). To
overcome this practical challenge, we adopt a new approach of training
the two neural networks with 3,000 epochs based on the boundary con-
ditions for June 19, 2019 (no irrigation) when data collection began.
Then, the trained weights within these two neural networks serve as
the starting point for retraining when a new set of boundary conditions
is adopted. This way, only 500 epochs are sufficient to retrain the
neural networks. For each set of boundary conditions, we obtain the
training set containing 84,480 reference solutions. In addition, the
dataset provided by Orouskhani et al. (2023), after performing data
augmentation by introducing Gaussian noises, is also included in our
training dataset. Each neural network, which has 5 hidden layers with
256 neurons in each layer, is trained using SGD optimizer with a
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Fig. 14. Comparison of pressure head profile at z = 25 cm in a selected 0.1-m
radius region (averaged for all 6x40 = 240 cells at z = 25 cm) in the field. Note
that the standard FVM solver becomes highly inaccurate when the boundary
condition changes (15th day, 30th day, etc.). The flattening of true peaks
of pressure head solutions represents a nonphysical smoothing of the true
solution (Miller et al., 1998), which we suspect to come from the numerical
dispersion and inherent discrete maximum principle (DMP)-type peak clipping
behavior observed in standard FVM schemes (Njifenjou, 2025).

learning rate of 0.001. We set the stopping criterion to be 1 x 1072,
which can be achieved well within 500 iterations.

For this problem, we simulate the pressure head from 1:00 am on
June 19, 2019 to 5:00 pm on July 28, 2019. As mentioned
in Orouskhani et al. (2023), there are two irrigation instances between
this time frame, one is on July 4 (the 15th day, 1.81 mm) and the other
is on July 18 (the 30th day, 1.58 mm). Fig. 14 shows the pressure head
solution profile obtained by our MP-FVM algorithms compared to the
experimental measurements provided by Orouskhani et al. (2023) over
the course of 35 days. We observe that, most of the time, the MP-FVM
solutions match with the experimental measurements very well. The
only major mismatch between experimental measurements and MP-
FVM solutions occurs on the 30th day, which corresponds to the time
when the irrigation takes place. We believe that the mismatch is due
to our simplifying assumption regarding the irrigation schedule. Due
to the limited information we have on the exact irrigation schedule
and intensity, we have to assume that the irrigation instances occurred
throughout the day. Thus, we simply divide the irrigation amount by
86,400 s to obtain ;.. However, in reality, the irrigation could end in
less than 24 h. With more accurate ;. model, our MP-FVM algorithm is
expected to produce highly accurate solutions that match more closely
with experimental measurements at all times. This makes our MP-
FVM algorithm an accurate and scalable numerical framework to solve
Richards equation over a long period of time.

8. Conclusion

In this work, we present a novel message passing finite volume
method named the MP-FVM algorithm to accurately and efficiently
solve d-dimensional Richards equation (d = 1,2,3). Our MP-FVM algo-
rithm is inspired by the encoder-decoder network architecture (Ranade
et al,, 2021) and message passing neural PDE solvers (Brandstetter
et al., 2022). It adopts an adaptive fixed-point iteration scheme based
on the FVM discretization of the Richards equation and, therefore,
significantly improves the convergence and stability of the solution
process. To account for the numerical errors observed during actual
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implementation due to computational constraints and realistic simula-
tion settings, we introduce a data-driven approach to first learn the
forward and inverse maps between the solutions using two neural
networks, followed by integrating the trained neural networks with
the numerical scheme via the message passing mechanism to achieve
synergistic improvement in solution quality. Furthermore, we also dis-
cuss effective ways, such as the “coarse-to-fine” approach and Sobolev
training (Czarnecki et al., 2017), to perform data augmentation to
facilitate neural network training using only a small number of low-
fidelity reference solutions as training set. Overall, these innovative
techniques work seamlessly to improve the convergence and accuracy
of our MP-FVM algorithm in solving the Richards equation. Indeed,
via several 1-D through 3-D case studies that span across benchmark
problems and real-world applications, we demonstrate that, compared
to state-of-the-art numerical solvers, our MP-FVM algorithm not only
achieves significantly improved accuracy and convergence, but also
better preserves the overall mass balance and conservation laws while
being computationally efficient to implement. Finally, we remark that
our MP-FVM algorithm is expected to be a generalizable computational
framework for modeling a wide range of geotechnical applications,
including fractional diffusion (Gerolymatou et al., 2006; Zhang et al.,
2018; Zheng et al., 2025; Song and Jiang, 2025b) and its inverse prob-
lem (Song and Jiang, 2025a), saturated-unsaturated seepage (Sun et al.,
2024), in-field monitoring of soil suction profiles (Venkatesan et al.,
2021), transport in chemically reactive porous media (Saeedmonir
et al., 2024; Feng et al., 2024), and so on.

In terms of future work, we would like to address some of the
potential limitations of MP-FVM algorithm. First, since the encoder
and decoder networks only approximate the true mappings, small but
visible discrepancies may be introduced near the boundaries even
when the FVM-based fixed-point iteration scheme by itself matches
ground truth solutions. To mitigate this, as discussed previously, we
plan to experiment with a hybrid switch-solve approach, where we
adopt MP-FVM scheme in the interior of the domain, but fall back to
the adaptive fixed-point iteration scheme for boundary cells. Another
potential limitation of the current MP-FVM is related to the sensitivity
of solution quality to the Sobolev regularization parameter in the loss
functions of Egs. (21) and (22). One possible solution is to use staged
(homotopy) training, in which one can start by pre-training the model
with A = 0, followed by gradually ramping up 4 to introduce derivative
matching without over-smoothing.
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Appendix. Proof of Theorem 5.1
A.1. Lemmas

To prove Theorem 5.1, we first need to introduce the follow-
ing preliminary assumptions and results from Fontaine et al. (2021)
and Berner et al. (2019).

Assumption 1.
The objective function f is L-smooth.

Assumption 2. There exists a Polish probability space (Z, Z,z%) and
n > 0 such that one of the following conditions holds:

(a) There exists a function H : R? x Z — RY such that for any
x e R4,

/ H(x, 2)dn? (2) = V f(x), / IH (x,2) = VI, dn? (2) < 1.
z z

(b) There exists a function / : R? x Z — R such that for all
z€e Z, f(-,z) € C'(R?,R) is L-smooth. Furthermore, there exists
x* € R? such that, for any x € R?,

/ fx, 2)dn?(2) = f(x), / Vf(x,2)dn?(2) = Vf(x),
z z
[ 1976 Dlds @) <
z
In this case, we define H = V.

Assumption 3. There exists M > 0 such that for any x,y € R,

1202 = 22112 < Mllx = Yl 2

Assumption 4.
One of the following conditions holds:

(a) For Assumption 2(a): f is convex, i.e., for any x,y € R?,
(V) =V (). x—y) 20,

and there exists a minimizer x* € argmin,cpa f.
(b) For Assumption 2(b): For all z € Z, f(-,z) is convex, and there
exists a minimizer x* € argmin cpa f.

Under Assumptions 1 and 2, we introduce the sequence {X,},cn
starting from X,, € R? corresponding to SGD with non-increasing step
sizes for any n € N by:

Xrl+1 = Xn - }’(" + 1)_aH(Xna Zn+1)7

where y > 0, a € [0,1], and {Z,},cy is a sequence of independent
random variables on a probability space (2, F, P) valued in (Z, Z) such
that for any n € N, Z,, is distributed according to zZ. As Fontaine et al.
(2021) pointed out, the solution of the following SDE is a continuous
counterpart of {X,},en:

dX; = —(7 + 7OV f(Xdt + 7 (r + )7 2(X)/2dB,

where y, = y!/0-% and (B,), is a d-dimensional Brownian motion.
Given these preliminaries, we now leverage two established results
as lemmas:

Lemma A.1 (Theorem 6 of Fontaine et al. (2021)). Let a,y € (0,1), for
f € C*(R4,R), there exists C > 0 such that for any T > 1,

. (1 +log(T))?

E[fXp)] - min, f< Cw-
Lemma A.2 (Equation 35 of Berner et al. (2019)). Suppose f with an at
most polynomially growing derivative is the “true” function learned by the

17
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neural network. Let k > 0 be the polynomial growth rate, there exists D > 0
such that

17G0 = 7ol 2 < D (14111522

L2
holds.
A.2. Proof of Theorem 5.1

2
D552 ) = 2

With Lemmas A.1 and A.2, we are now ready to give the proof of
Theorem 5.1 which accounts for the convergence of SGD:

Proof. To start, we have:

st — ¥l o < E [”fANN(V/mH'SH,XT) - fNN(lI/MH’S»XT)”H]
<E [”J;NN(WMH'SH,XT) - f(ll/m+1’s+l)||L2]
+ I F @™ = F™ )] 2
+ E[If ™) = @™ Xyl 2] s

where Xy is the weights of fyy optimized by SGD optimizer, whose
process is assumed to be well-approximated by the SDE in Lemma A.1,
and f is the true function learned by fyy-

To bound the first and third terms, we define the objective function
for the SGD process for a given input y as f,,(x) = Il Aan v, )= F)ll 2-
We assume this function satisfies the conditions for Lemma A.1. The
terms we seek to bound are then precisely of the form E[ fyXrp)]. From
Lemma A.1, we have:

(1 + log(T))?

ELf, ()] < C—220

+ min X).
xeRd fy )
We assume the network is a good approximator, such that for a

given ¢ > 0 and for any relevant y, the minimum error satisfies
min, cgs f,,(x) < £. When the network is trained for a sufficiently large

=%
o 2 . .

T, we can ensure C (l;ﬁ—{:}) < é Thus, for both the first and third
terms, which correspond to y = y"+15+! and y = w15, we have the

bound:

R = € £ _ €
E [Il Aan s Xop) = F@)ll 2] < ste=73

Next, for the term || f(y"™+15*+1)— F(y™*1:%)|| 12, it can be bounded us-
ing Lemma A.2 and the result |jy™tlst] wmLs|| o

[3

< — - obtained from Theorem 4.1:
3D<1+”wm+l,s+l||ALz +||,‘,m+l.s||';2 )

7™ty — ™),

1,s+1 2 1, 2 1,s+1 1,
< D1+ ™I 2 )l

<&
<3
Therefore, it follows that
”Mm+1,s+1 _/4m+1,s”L2 < € + £ + £ _ €,

3 3 3
which completes the proof. []

Data availability

Data will be made available on request.
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