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Abstract 

Modeling and predicting soil moisture is essential for precision agriculture, smart 

irrigation, drought prevention, etc. Estimating root zone soil moisture from surface or 

near-surface soil moisture data is typically achieved by solving a hydrological model that 

describes water movement through soils. Advanced agro-hydrological models today use 

the Richards equation, a highly nonlinear, degenerate elliptic-parabolic partial differential 

equation that captures irrigation, precipitation, evapotranspiration, runoff, and drainage. 

State-of-the-art Richards equation solvers employ either a finite difference, finite 

element, or finite volume discretization framework in space. In this paper, we introduce 

a novel computational framework to solve generic 𝑛-dimensional Richards equation by 

introducing global random walk and deep neural network to a modified finite volume 

method (FVM). Furthermore, for 𝑛-dimensional Richards equation, we introduce multi-

point flux approximation to the FVM framework. Through these innovations, our novel 

computational framework effectively utilizes the underlying physics behind the Richards 

equation, which enhances the speed and accuracy of the solution process. Through an 

illustrative case study, we demonstrate the efficiency and effectiveness of our 

computational framework and show that it correctly characterizes the physical 

relationships among soil moisture content, pressure head, and flux. 
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1. Introduction 

Soil moisture is a key hydrological parameter that has significant importance to human 

society and environment. Accurate modeling and monitoring of soil moisture in crop 

fields, especially in the root zone (top 100 cm of soil), is essential for improving 

agricultural production and crop yield with the help of precision irrigation and farming 

tools. Recent studies also show that monitoring root zone soil moisture at suitable 

locations and adjusting irrigation schedules accordingly can reduce water use by 40-60% 

(Sadler et al., 2005). Improved irrigation infrastructures based on soil moisture 

knowledge could also prevent more than $30 billion/year in drought related agricultural 

losses in the US (Khand et al., 2018). This is especially important to US states like 

Oklahoma, where 41% of total water use goes directly to agricultural irrigation and almost 

90% of the land area suffers from drought throughout the year (Droughts.gov, 2022). 

Estimating root zone soil moisture is typically achieved by solving a hydrological model 

that describes water movement through soils. Most of the advanced agro-hydrological 

models today incorporate the Richards equation (Richards, 1931), which captures 

irrigation, precipitation, evapotranspiration, runoff, and drainage dynamics of water in 

saturated and unsaturated porous medium such as soil: 
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∂θ(φ)

∂t
= ∇ ∙ [𝐾(𝜃)∇(𝜑 + 𝑧)] − 𝑆 (1) 

where φ stands for pressure head, θ denotes the soil moisture content, K is unsaturated 

hydraulic water conductivity, t ∈ [0, T] denotes the time, z denotes the vertical depth, and 

𝑆 is the sink term associated with root water extraction, which we ignore without loss of 

generality. The flux is given by the Darcy’s law: q = −𝐾(𝜃)∇(𝜑 + 𝑧). For unsaturated 

flow, both K and θ are highly nonlinear functions of φ. For instance, the widely used van 

Genuchten-Mualem correlations (van Genuchten, 1980) for θ(φ)and K(θ) are: 

θ(φ) = {

θs − θr

[1 + (α|φ|)n]
n−1
n

+ θr, φ < 0

θs, φ ≥ 0

 

K(θ) = Ks√
θ − θr
θs − θr

{
 

 

1 − [1 − (
θ − θr
θs − θr

)

n
n−1

]

n−1
n

}
 

 
2

 

(2) 

where α and n are van Genuchten parameters characterizing different soils, and θs, Ks 
and θr denote saturation soil moisture, residual water content, and saturated hydraulic 

conductivity, respectively. As a result, exact analytical solutions to Equation (1) often do 

not exist, and numerical solutions rely on discretization of spatial and temporal domains. 

In particular, the finite volume method (FVM) adopts an integral form of the Richards 

equation, which captures some valuable physical insights about water flow dynamics 

(Rathfelder and Abriola, 1994). In addition, FVM is a flexible framework that can be 

coupled with various other techniques such as the predictor-corrector method (Lai and 

Ogden, 2015), linearization scheme (Radu et al., 2015), and global random walk approach 

(Vamos, 2013). Recently, we developed a computationally efficient FVM-based 

framework for solving the Richards equation by integrating it with adaptive linearization 

scheme, global random walk method, and multi-layer neural networks (Song and Jiang, 

2023). In an illustrative example, we showed that our novel data-driven framework not 

only generated fast and accurate solutions to the 1-D Richards equation, but also 

implicitly captured the underlying physical relationships among soil moisture content, 

pressure head, and flux. In this work, we generalize this computational framework to 

successfully solving 3-D Richards equation for the first time in the literature. 

2. FVM Discretization 

To apply FVM to Richards equation, we first integrate both sides of Equation (1) to obtain 

an integral form of the Richards equation over a higher-dimensional control V: 

∫
∂θ(φ)

∂t
d𝑉

 

𝑉

= ∫𝛻 ∙ [𝐾(𝜃)𝛻(𝜑 + 𝑧)]d𝑉
 

𝑉

 (3) 

Next, we can apply the divergence theorem to convert the volume integral on the RHS of 

Equation (3) into a surface integral over 𝑆𝑉 by introducing the outward pointing unit 

normal vector denoted as 𝐧: 

∫
∂θ(φ)

∂t
d𝑉

 

𝑉

= ∫ [𝐾(𝜃)𝛻(𝜑 + 𝑧)] ∙ 𝐧 d𝑆𝑉

 

𝑆𝑉

 (4) 

By doing so, FVM is able to incorporate conservation laws, whereas other discretization 

methods cannot. Specifically, to obtain the discretized version of Equation (4) using FVM, 
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we discretize the volume integral on the LHS of Equation (4) into a total of 𝑁𝑉 small 

cells  𝑉𝑖  with 𝑖 = 1,⋯ 𝑁𝜔  whose volume is denoted as 𝜗𝑖 . Each 𝑉𝑖  is associated with 

surfaces 𝜔𝑖,𝑗  for 𝑗 = 1,⋯ 𝑁𝜔𝑖  on the RHS of Equation (4) whose area is denoted as 

𝒜(𝜔𝑖,𝑗) , and we use [∙]𝜔𝑖 and 𝐧𝜔𝑖  respectively to denote the operator and outward 

pointing unit normal vector associated with 𝜔𝑖,𝑗 upon discretization. Next, to discretize 

the time domain, we approximate the time derivative ∂θ(φ)  as 
𝜃𝑖
𝑚+1,𝑠+1

−𝜃𝑖
𝑚

Δ𝑡
, where 

𝜃𝑖
𝑚+1,𝑠+1

 represents the discretized 𝜃 in the 𝑖th small cell at the next time step 𝑚 + 1 and 

iteration step 𝑠 + 1, whereas 𝜃𝑖
𝑚  is the converged 𝜃  value in the 𝑖th small cell at the 

current time step 𝑚 . With this, the discretized version of Equation (4) using FVM 

becomes: 

𝜃𝑖
𝑚+1,𝑠+1 − 𝜃𝑖

𝑚

Δ𝑡
𝜗𝑖 =∑[𝐾(𝜃)𝛻(𝜑 + 𝑧)]𝜔𝑖,𝑗

𝑁𝜔𝑖

𝑗=1

∙ 𝐧𝜔𝑖,𝑗𝒜(𝜔𝑖,𝑗) (5) 

3. Data-Driven Global Random Walk Algorithm 

In this section, we introduce a data-driven global random walk (DGRW) approach that 

seeks to implicitly encapsulate the physical knowledge describing particle movement and 

conservation within a control volume. Global random walk allows particles to move to 

neighboring cells simultaneously on any direction or stay in their current cells with a 

given probability. Thus, in 3-D case, there are a total of seven options for every particle. 

Let 𝔫𝑖,𝑗,𝑘
𝑚,𝑠

 be the number of particles in the cell (𝑖, 𝑗, 𝑘) at fixed-point iteration step 𝑠 and 

time step 𝑚 . Correspondingly, δ𝔫
𝑖′,𝑗′,𝑘′
𝑚,𝑠

, where 𝑖′ = 𝑖 − 1, 𝑖, 𝑖 + 1, 𝑗′ = 𝑗 − 1, 𝑗, 𝑗 + 1 , 

and 𝑘′ = 𝑘 − 1, 𝑘, 𝑘 + 1, denotes the number of particles moving from cell (𝑖′, 𝑗′ , 𝑘′) to 

cell (𝑖, 𝑗, 𝑘). Explicitly, we can write: 

𝔫𝑖,𝑗,𝑘
𝑚,𝑠+1 = δ𝔫𝑖+1,𝑗,𝑘

𝑚,𝑠 + δ𝔫𝑖−1,𝑗,𝑘
𝑚,𝑠 + δ𝔫𝑖,𝑗+1,𝑘

𝑚,𝑠 + δ𝔫𝑖,𝑗−1,𝑘
𝑚,𝑠 + δ𝔫𝑖,𝑗,𝑘+1

𝑚,𝑠 + δ𝔫𝑖,𝑗,𝑘−1
𝑚,𝑠 + δ𝔫𝑖,𝑗,𝑘

𝑚,𝑠
 (6) 

As we may expect, having such physical knowledge is important for solving Richards 

equation, which governs the movement of water molecules in unsaturated and saturated 

soil systems. In fact, Suciu et al. (2021) adopted global random walk concepts and 

proposed a numerical framework for solving 1- and 2-D Richards equation. In their 

numerical framework, the authors assumed that the pressure head φ is proportional to the 

number of particles 𝔫 in a cell or control volume. With this assumption, soil moisture 

content in the cell of interest is simply proportional to the arithmetic mean of the number 

of particles. While this assumption is valid for diffusion equations (Vamoş et al., 2001), 

Richards equation is a highly nonlinear convection-diffusion equation, and the exact 

relationship between φ and 𝔫 remains unclear. In fact, we have shown that the numerical 

framework proposed by Suciu et al. (2021) failed to obtain an accurate solution for 1-D 

Richards equation (Song and Jiang, 2023). 

Since the relationship between φ and 𝔫 may not be describable by any basic function, we 

decide to model the relationship using two multi-layer neural networks (MNNs). 

Although deep neural network with more layers and neurons could also be used, it is not 

required as MNN with less number of layers (e.g., 3) is sufficient for learning the 

relationship between φ  and 𝔫  given enough neurons in the neural network (Hornik, 

1991). In one of the MNNs, we approximate φ as a function of 𝔫, φ𝑖,𝑗,𝑘 = 𝑓(𝔫𝑖,𝑗,𝑘), at 

each fixed time step and iteration step. In the other MNN, we learn the inverse mapping 
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𝑓−1  from pressure head information to the number of particles, 𝔫𝑖,𝑗,𝑘 = 𝑓−1(φ𝑖,𝑗,𝑘) . 

During offline training, we first obtain reference solutions from the global random walk 

solvers developed by Sucui et al. (2021) (code available at GitHub repository: 

https://github.com/PMFlow/FlowBenchmark). We then add Gaussian noise to these 

reference solutions to 1) account for the possibly nonlinear relationship between φ and 

𝔫, and 2) enhance its generalization performance and the quality of solution obtained 

(Song and Jiang, 2023). Once offline training is complete, we substitute 𝑓 to Equation (5) 

and derive the following data-driven random walk formulation for the discretized 

Richards equation: 

𝔫𝑖,𝑗,𝑘
𝑚,𝑠+1 = [1 − (𝑟

𝑖+
1
2
,𝑗,𝑘

𝑚,𝑠 + 𝑟
𝑖−
1
2
,𝑗,𝑘

𝑚,𝑠 + 𝑟
𝑖,𝑗+

1
2
,𝑘

𝑚,𝑠 + 𝑟
𝑖,𝑗−

1
2
,𝑘

𝑚,𝑠 + 𝑟
𝑖,𝑗,𝑘+

1
2

𝑚,𝑠 + 𝑟
𝑖,𝑗,𝑘−

1
2

𝑚,𝑠 )] 𝔫𝑖,𝑗,𝑘
𝑚,𝑠

+ 𝑟
𝑖+
1
2
,𝑗,𝑘

𝑚,𝑠 𝔫𝑖+1,𝑗,𝑘
𝑚,𝑠 + 𝑟

𝑖−
1
2
,𝑗,𝑘

𝑚,𝑠 𝔫𝑖−1,𝑗,𝑘
𝑚,𝑠 + 𝑟

𝑖,𝑗+
1
2
,𝑘

𝑚,𝑠 𝔫𝑖,𝑗+1,𝑘
𝑚,𝑠 + 𝑟

𝑖,𝑗−
1
2
,𝑘

𝑚,𝑠 𝔫𝑖,𝑗−1,𝑘
𝑚,𝑠

+ 𝑟
𝑖,𝑗,𝑘+

1
2

𝑚,𝑠 𝔫𝑖,𝑗,𝑘+1
𝑚,𝑠 + 𝑟

𝑖,𝑗,𝑘−
1
2

𝑚,𝑠 𝔫𝑖,𝑗,𝑘−1
𝑚,𝑠

+ 𝑓−1 ((𝑟
𝑖,𝑗,𝑘+

1
2

𝑚,𝑠 − 𝑟
𝑖,𝑗,𝑘−

1
2

𝑚,𝑠 )Δ𝑧 −
𝜃𝑚,𝑠(𝔫𝑖,𝑗,𝑘

𝑚,𝑠 ) − 𝜃𝑚−1(𝔫𝑖,𝑗,𝑘
𝑚−1,𝑠)

𝐿𝑖,𝑗,𝑘
𝑚,𝑠 ) 

(6) 

where 𝑟
𝑖±
1

2
,𝑗,𝑘

𝑚,𝑠 =

𝐾(𝜃(φ
𝑖±
1
2,𝑗,𝑘

𝑚,𝑠
))Δ𝑡

(Δ𝑥)2𝐿
𝑖±
1
2,𝑗,𝑘

𝑚,𝑠 , 𝑟
𝑖,𝑗±

1

2
,𝑘

𝑚,𝑠 =

𝐾(𝜃(φ
𝑖,𝑗±

1
2,𝑘

𝑚,𝑠
))Δ𝑡

(Δ𝑦)2𝐿
𝑖,𝑗±

1
2,𝑘

𝑚,𝑠 , and 𝑟
𝑖,𝑗,𝑘±

1

2

𝑚,𝑠 =

𝐾(𝜃(φ
𝑖,𝑗,𝑘±

1
2

𝑚,𝑠
))Δ𝑡

(Δ𝑧)2𝐿
𝑖,𝑗,𝑘±

1
2

𝑚,𝑠 . Here, we adopt an adaptive linearization scheme inspired by Mitra and 

Pop (2019) by adding the term 𝐿𝑖,𝑗,𝑘
𝑚,𝑠 (φ𝑖,𝑗,𝑘

𝑚,𝑠+1 − φ𝑖,𝑗,𝑘
𝑚,𝑠 ) on the LHS of Equation (5). 

In DGRW algorithm, Equation (6) passes through the inverse mapping 𝑓−1 learned from 

MNN to generate Richards equation solutions in terms of the particle distribution in each 

cell, 𝔫𝑖,𝑗,𝑘 . To convert these solutions to physically meaningful solutions such as the 

pressure head, flux, and soil moisture content, we apply the trained mapping 𝑓−1 and 

Equation (2). We have proven that the DGRW algorithm is convergent, and the total error 

can be estimated using ε = max
i
{
‖f(𝔫i,j,k

m,s+1)−f(𝔫i,j,k
m,s)‖

F

‖f(𝔫i,j,k
m,s+1)‖

F

} = max
𝑖
{
‖ψi,j,k

m,s+1
−ψi,j,k

m,s
‖
F

‖ψi,j,k
m,s+1‖

F

} , where 

‖∙‖F is the Frobenius norm. 

4. An Illustrative Case Study 

We modify the 2-D benchmark problem of Havercamp (1977) that describes groundwater 

reservoir recharge from a drainage trench by extending it to 3-D. The boundary conditions 

of the problem are set up as Ω = [0m, 2m]3, and ΓD = ΓD1 ⋃ΓD2 ⋃ΓD3 ⋃ΓD4, in which: 

ΓD1 = {(x, y, z) ∈ ∂Ω|x ∈ [0m, 1m]⋀ y ∈ Ω⋀z = 2m}, 

ΓD2 = {(x, y, z) ∈ ∂Ω|x ∈ Ω ⋀ y ∈ [0m, 1m]⋀ z = 2m}, 

ΓD3 = {(x, y, z) ∈ ∂Ω| x = 2m ⋀ y ∈ Ω ⋀ z = [0m, 1m]}, 

ΓD4 = {(x, y, z) ∈ ∂Ω| x ∈ Ω ⋀ y = 2m ⋀ z = [0m, 1m]}. 

 

The Dirichlet boundary condition on ΓD  results in the drainage process, whereas the 

Neumann boundary condition is applied on ΓN = ∂Ω ∖ ΓD . The z-direction is point 
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downward into the ground. The initial conditions describing hydrostatic equilibrium are 

modified as follows: 

φ(x, y, z, t) =

{
 

 −2 + 2.2
𝑡

Δ𝑡D
 on ΓD1  and ΓD2 , 𝑇 ≤ Δ𝑡D,

0.2 on ΓD1  and ΓD2 , 𝑇 > Δ𝑡D,

1 − 𝑧 on ΓD3  and ΓD4 ,

 

q(x, y, z, t) = 0 on ΓN, 

φ(x, y, z, 0) = {
1 − z on Ω\ΓD
−2 on ΓD

. 

 

We use the parameters listed in List (2016) to represent water flow dynamics in silt loam 

soil, in which θs = 0.396 , θr = 0.131 , α = 0.423 , n = 2.06 , and Ks = 0.0496  in 

Equation (2). We choose ΔtD =
1

16
d , Δt =

1

48
d, and T =

3

16
d. A rectangular 3-D mesh 

with 9261 nodes is used, where Δx = Δy = Δz = 0.1. The convergence tolerance ε0 is 

set to be 10−5. Each MNN contains 3 layers and 10 neurons. Overall, 9261 noise-added 

reference solutions from global random walk solvers developed by Suciu et al. (2021) 

were obtained, with 70%, 15%, and 15% of them being used for training, validation, and 

testing, respectively. Bayesian regularization is used to train both MNNs. 

 
Figure 1. Pressure head obtained from (a) GRW algorithm, and (b) DGRW approach. 

 
Figure 2. Pressure head obtained from (a) DGRW algorithm, and (b) GRW approach. 

Figures 1 and 2 illustrate the pressure head and soil moisture results obtained using the 

GRW algorithm of Suciu et al. (2021) and our DGRW framework at y = 1.7m and 𝑡 =

T =
3

16
d. In general, our DGRW results show excellent agreement with the GRW results. 

Nevertheless, we observe that the GRW solutions did not produce jumps in pressure head 

and soil moisture content in the z-direction as 𝑥  approaches 1m (ΓD1 ), whereas our 

(a) (b)

(a) (b)
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DGRW did predict these jumps. As the total simulated time is greater than ΔtD, the initial 

condition for pressure head should be 0.2m for x = [0m, 1m] and -2m for x = [1m, 2m] 
(Figure 1b). Similarly, jumps in soil moisture and flux in the z-direction are expected at 

x = 1m  as well. Therefore, by effectively characterizing the complex relationship 

between pressure head and the number of particles, our DGRW approach is capable of 

capturing the water flow dynamics embedded in the Richards equation. 

5. Conclusion 

In this work, we propose a novel data-driven DGRW framework to accurately solve 3-D 

Richards equation for the first time. DGRW synergistically integrates data-driven global 

random walk theory and FVM to encapsulate physical knowledge and insights describing 

water flow dynamics in soil systems. We compare the solutions of our DGRW framework 

and state-of-the-art GRW approach on a 3-D benchmark problem and successfully 

validate the accuracy and usefulness of our approach in capturing the underlying physics 

of water flow dynamics. 
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