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ABSTRACT 
Precision modeling and forecasting of soil moisture are essential for implementing smart irrigation 
systems and mitigating agricultural drought. Most agro-hydrological models are based on the 
standard Richards equation, a highly nonlinear, degenerate elliptic-parabolic partial differential 
equation (PDE) with first order time derivative. However, research has shown that standard Rich-
ards equation is unable to model preferential flow in soil with fractal structure. In such a scenario, 
the soil exhibits anomalous non-Boltzmann scaling behavior. Incorporating the anomalous non-
Boltzmann scaling behavior into the Richards equation leads to a generalized, time-fractional Rich-
ards equation based on fractional time derivatives. As expected, solving the time-fractional Rich-
ards equation for accurate modeling of water flow dynamics in soil faces extensive computational 
challenges. To target these challenges, we propose a novel numerical method that integrates finite 
volume method (FVM), adaptive fixed point iteration scheme, and neural network to solve the time-
fractional Richards equation. Specifically, we develop an adaptive fixed point iteration scheme to 
solve the FVM-discretized equation iteratively, which avoids the stability issues when directly 
solving a stiff and sparse matrix equation. To improve the solution quality which is influenced by 
numerical errors and computational constraints during actual implementation, we propose to use 
neural networks that resemble an encoder-decoder architecture to map soil moisture profiles into 
a latent space and reconstruct them back. Through 1-D examples, we illustrate the accuracy and 
computational efficiency of our proposed physics-based, data-driven numerical method. Finally, 
we present a Markov chain Monte Carlo (MCMC) approach to solve the inverse problem to obtain 
soil-specific parameters given soil moisture solutions. 

Keywords: Machine Learning, Modelling and Simulations, Numerical Methods, Water, Sustainability 

INTRODUCTION 
With increasing demand for food and the resulting 

food-energy-water nexus challenges from the growing 
population, there is an increasing interest among process 
systems engineering (PSE) researchers to design the 
next-generation food and agricultural systems that are 
sustainable, resource-efficient, and resilient. Along this 
line, by leveraging real-time soil monitoring technologies, 
sensor-based digital agriculture for sustainable and effi-
cient use of water is essential for improving agricultural 
production and crop productivity and reducing agricul-
tural droughts. To simulate the root-zone (top 1m of soil) 
soil moisture content, agro-hydrological models, which 

describe irrigation, precipitation, evapotranspiration, run-
off, and drainage dynamics inside the soil, are widely 
used. Most existing agro-hydrological models are based 
on the standard Richards equation [1], which is a highly 
nonlinear, degenerate elliptic-parabolic partial differen-
tial equation (PDE) with first order time derivative with 
the form: 

∂𝑡𝑡𝜃𝜃(𝜓𝜓) + ∇ ∙ 𝒒𝒒 = 0,    (1) 

𝒒𝒒 = −(𝐶𝐶(𝜃𝜃)∇𝜃𝜃 + 𝐾𝐾(𝜃𝜃)∇𝑧𝑧),    (2) 

where 𝜃𝜃  denotes the soil moisture content (in, e.g., 
m3 m3⁄ ), 𝒒𝒒 represents the water flux (in, e.g., m3 m2 ∙ s⁄ ), 
𝐾𝐾(𝜃𝜃) is unsaturated hydraulic water conductivity (in, e.g., 
m s⁄  ), 𝐶𝐶(𝜃𝜃)  is soil moisture diffusivity (in, e.g., m2 s⁄  ), 𝑡𝑡 ∈
[0, 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡] denotes the time (in, e.g., s), and z corresponds 
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to the vertical depth (in, e.g., m). For this study, without 
loss of generality of our proposed numerical framework, 
we ignore the sink term in Equation (1) associated with 
root water uptake. The Richards equation is a nonlinear 
convection-diffusion equation, where the convection 
term is due to gravity and the diffusion term is originated 
from Darcy’s law. For unsaturated flow, both 𝐶𝐶 and 𝐾𝐾 are 
highly nonlinear functions of soil moisture content and 
soil parameters, thereby posing significant computational 
challenges for solving the standard Richards equation it-
self [2]. The integral form of the standard Richards equa-
tion is simply given by: 

𝜃𝜃(𝑡𝑡,⋅) − 𝜃𝜃(0,⋅) = ∫ ∇ ∙ (𝐶𝐶(𝜃𝜃)∇𝜃𝜃 + 𝐾𝐾(𝜃𝜃)∇𝑧𝑧)d𝑡𝑡𝑡𝑡
0 , (3) 

Besides being computationally difficult to solve, 
standard Richards equation is also limited when it comes 
to modeling realistic soil systems. For example, it has 
been experimentally shown that the anomalous non-
Boltzmann scaling behavior is exhibited in porous media 
with fractal structure [3,4]. For soils exhibiting non-Boltz-
mann scaling behavior, the soil moisture content is a 
function of 𝒙𝒙

𝑡𝑡
𝛼𝛼
2
, where 𝒙𝒙 is the position vector, and 𝛼𝛼 is a 

soil-dependent parameter indicating subdiffusion ( 0 <
𝛼𝛼 < 1) or superdiffusion (1 < 𝛼𝛼 < 2) [5]. Incorporating this 
anomalous flow behavior into the Richards equation 
leads to a generalized, time-fractional Richards equation: 

∂𝑡𝑡𝛼𝛼𝜃𝜃 + ∇ ∙ 𝒒𝒒 = 0,    (4) 

which is even more computationally challenging due to 
the presence of time-fractional derivative ∂𝑡𝑡𝛼𝛼𝜃𝜃. Naïve im-
plementations for solving Equation (4) typically involves 
discretizing the time-fractional Richards equation using 
finite difference method (FDM). However, this often 
causes numerical stability issues [6]. To ensure numerical 
stability in solving time-fractional PDEs, recent work fea-
tures using a hybrid method, in which the FDM and finite 
element method (FEM) will be used to discretize the time 
and spatial domains, respectively [7]. Nevertheless, this 
approach was only used to solve the time-fractional 
fourth-order reaction-diffusion equation, where the only 
nonlinearity originates from the sink term. For solving the 
time-fractional Richards equation, a finite point method 
(FPM) was recently proposed to improve stability and ac-
curacy [8]. However, this approach relies on solving the 
FPM scheme in matrix form, whose matrix is often stiff 
and sparse and hence can be difficult to solve.  

To address the limitations of prevailing research, in 
this work, we propose a novel physics-based, data-
driven numerical framework to solve time-fractional 
Richards equation. This framework discretizes Equation 
(4) using finite volume method (FVM), which inherently 
enforces mass conservation at the discretized level. To 
solve the FVM-discretized fractional Richards equation, 
instead of converting the discretized equations into a 

matrix equation, we adopt methods such as fixed point 
iteration  scheme to convert the discretized equation 
system into an explicit scheme which can be solved iter-
atively. To enhance solution accuracy and stability, we 
introduce an adaptive fixed point iteration scheme that 
automatically selects a proper linearization constant for 
every iteration, time step, and discretized cell for time-
fractional Richards equation based on our recent work 
[2]. Finally, this numerical scheme is synergistically inte-
grated with an encoder-decoder-type architecture using 
simple neural networks, and the resulting data-driven, 
physics-embedded numerical framework achieves 
higher solution accuracy. This data-driven approach 
serves two major purposes that common numerical solv-
ers often overlook. First, by training the neural networks 
using solutions obtained from solvers employing static 
fixed point iteration scheme under different settings 
(e.g., number of iterations), the encoder-decoder archi-
tecture can systematically capture and account for the 
numerical errors associated with realistic computational 
constraints (e.g., not being able to run for an infinite 
amount of time on a perfect computer) during actual im-
plementation of the numerical scheme, thereby improv-
ing solution accuracy and robustness. Second, the use of 
data-driven approach is attractive also because it pro-
vides new opportunities for integrating physics-based 
modeling with online in situ soil moisture measurements 
for sensor-driven soil monitoring and precision agricul-
ture applications. Commercial soil moisture sensors are 
not perfect and instrumental errors will always be present 
in their measurements. Furthermore, environmental fac-
tors (e.g., wind, temperature, evapotranspiration) and im-
perfect installation and maintenance will bring additional 
uncertainties to online soil sensing data. Thus, the data-
driven approach in our numerical framework makes it 
amenable to leverage uncertainty-embedded dataset 
produced by in situ soil sensors in field environment for 
predictive modeling of root-zone soil moisture profiles. 

Lastly, accurate estimation of soil parameters (e.g., 
𝛼𝛼 and 𝐶𝐶) from direct sensor measurements, also known 
as the inverse problem of physics-based models, is gen-
erally ill-posed due to insufficient and inaccurate meas-
urements. Deterministic methods, which solve the in-
verse problem as a nonlinear optimization problem, tend 
to be trapped in local optima and are sensitive to data 
noise. Therefore, in this work, we present a probabilistic 
method based on Markov chain Monte Carlo (MCMC) [9] 
for identifying the optimal soil parameters 𝛼𝛼  and 𝐶𝐶  in 
time-fractional Richards equation given soil moisture 
content information as a preliminary study. Through a 1-
D case study, we illustrate the effectiveness of our pro-
posed approaches. 

THE DATA-DRIVEN NUMERICAL 
FRAMEWORK 
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Approximation of time-fractional derivatives 
When it comes to representing time-fractional de-

rivatives in Equation (4), there are several options, such 
as Riemann-Liouville fractional integral [10,11], Caputo 
fractional derivative [12], fractal derivative [13], and so 
on. In this work, we would like to adopt the Riemann-Li-
ouville fractional integral of the following form: 

I0+
𝛼𝛼 f(𝑡𝑡) = 1

Γ(𝛼𝛼)∫ (𝑡𝑡 − 𝑢𝑢)𝛼𝛼−1f(𝑢𝑢) d𝑢𝑢𝑡𝑡
0 ,  (5)    

where Γ(∙) is the gamma function. With this, the integral 
form of time-fractional Richards equation can be ex-
pressed as: 

𝜃𝜃(𝑡𝑡,⋅) − 𝜃𝜃(0,⋅) = I0+
𝛼𝛼 [∇ ∙ (𝐶𝐶(𝜃𝜃)∇𝜃𝜃 + 𝐾𝐾(𝜃𝜃)∇𝑧𝑧)], (6) 

where 𝛼𝛼 > 0. Note that the integral form of the standard 
Richards equation, Equation (3), is just a special case of 
Equation (6) by setting 𝛼𝛼 = 1. 

FVM Discretization 
 First, we adopt an implicit Euler scheme to discretize 
Equation (6) in the spatial domain: 

𝜃𝜃(𝑡𝑡𝑚𝑚+1,⋅) − θ(𝑡𝑡m,⋅) = I0+
𝛼𝛼 �∇ ∙ �𝐶𝐶∇𝜃𝜃(𝑡𝑡𝑚𝑚+1,⋅) +

𝐾𝐾�𝜃𝜃(𝑡𝑡𝑚𝑚+1,⋅)�∇𝑧𝑧�� − I0+
𝛼𝛼 �∇ ∙ �𝐶𝐶∇𝜃𝜃(𝑡𝑡𝑚𝑚,⋅) + 𝐾𝐾�𝜃𝜃(𝑡𝑡𝑚𝑚,⋅)�∇𝑧𝑧��,

 (7) 

where time step 𝑚𝑚 = 1,⋯ , �𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡
∆𝑡𝑡

�. Next, in order to discre-
tize Equation (6), one needs to accurately approximate 
Equation (5). Here, we adopt the trapezoidal quadrature 
formula [14] and express I0+

𝛼𝛼 f(𝑡𝑡𝑚𝑚+1) as: 

 I0+
𝛼𝛼 f(𝑡𝑡𝑚𝑚+1) ≈ (∆𝑡𝑡)𝛼𝛼

𝛼𝛼(𝛼𝛼+1)Γ(𝛼𝛼)
∑ 𝑎𝑎𝑘𝑘,𝑚𝑚+1f(𝑡𝑡𝑚𝑚+1)𝑚𝑚+1
𝑘𝑘=0 ,   (8) 

where the coefficient 𝑎𝑎𝑘𝑘,𝑚𝑚+1 follows: 

𝑎𝑎𝑘𝑘,𝑚𝑚+1 =

�
𝑚𝑚𝛼𝛼+1 − (𝑚𝑚− 𝛼𝛼)(𝑚𝑚 + 1)𝛼𝛼 ,     if 𝑘𝑘 = 0  

(𝑚𝑚 − 𝑘𝑘 + 2)𝛼𝛼+1 + (𝑚𝑚 − 𝑘𝑘)𝛼𝛼+1 − 2(𝑚𝑚 − 𝑘𝑘 + 1)𝛼𝛼+1,     if 1 ≤ 𝑘𝑘 ≤ 𝑚𝑚
1,     if 𝑘𝑘 = 𝑚𝑚 + 1  

  (9) 

To adopt FVM, we first integrate both sides of Equa-
tion (7) over the control volume 𝑉𝑉: 

∫ 𝜃𝜃(𝑡𝑡𝑚𝑚+1,⋅) − 𝜃𝜃(𝑡𝑡𝑚𝑚,∙) 
𝑉𝑉 d𝑉𝑉 = I0+

𝛼𝛼 �∫ [∇ ∙ (𝐶𝐶(𝜃𝜃)∇𝜃𝜃(𝑡𝑡𝑚𝑚+1,⋅) + 
𝑉𝑉

𝐾𝐾(𝜃𝜃)∇𝑧𝑧)] d𝑉𝑉� − I0+
𝛼𝛼 �∫ [∇ ∙ (𝐶𝐶(𝜃𝜃)∇𝜃𝜃(𝑡𝑡𝑚𝑚,∙) + 𝐾𝐾(𝜃𝜃)∇𝑧𝑧)] 

𝑉𝑉 d𝑉𝑉�.
 (10) 

Then, one can apply divergence theorem on the 
RHS of Equation (10), followed by discretizing the control 
volume 𝑉𝑉 into cells 𝑉𝑉𝑖𝑖, where 𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑖𝑖. Each 𝑉𝑉𝑖𝑖 is as-
sociated with surfaces 𝜔𝜔𝑖𝑖,𝑗𝑗 for 𝑗𝑗 = 1, 2,⋯ ,𝑁𝑁𝜔𝜔𝑖𝑖, whose sur-
face area is given by 𝐴𝐴𝜔𝜔𝑖𝑖,𝑗𝑗. This would lead to the follow-
ing FVM-discretized version of Equation (10): 

�𝜃𝜃𝑖𝑖𝑚𝑚+1 − 𝜃𝜃𝑖𝑖𝑚𝑚�vol(𝑉𝑉𝑖𝑖) = I0+
𝛼𝛼 �∑ (𝐶𝐶(𝜃𝜃)∇𝜃𝜃 +

𝑁𝑁𝜔𝜔𝑖𝑖
𝑗𝑗=1

𝐾𝐾(𝜃𝜃)∇𝑧𝑧)|𝜔𝜔𝑖𝑖,𝑗𝑗
𝑚𝑚+1 ⋅ 𝑛𝑛�𝜔𝜔𝑖𝑖,𝑗𝑗𝐴𝐴𝜔𝜔𝑖𝑖,𝑗𝑗� − I0+

𝛼𝛼 �∑ (𝐶𝐶(𝜃𝜃)∇𝜃𝜃 + 𝐾𝐾(𝜃𝜃)∇𝑧𝑧)|𝜔𝜔𝑖𝑖,𝑗𝑗
𝑚𝑚 ⋅

𝑁𝑁𝜔𝜔𝑖𝑖
𝑗𝑗=1

𝑛𝑛�𝜔𝜔𝑖𝑖,𝑗𝑗𝐴𝐴𝜔𝜔𝑖𝑖,𝑗𝑗�, (11) 

where 𝜃𝜃𝑖𝑖𝑚𝑚 is a shorthand notation for the soil moisture at 
cell 𝑖𝑖  and time step 𝑚𝑚 , |𝜔𝜔𝑖𝑖,𝑗𝑗

𝑚𝑚   operates on surface 𝜔𝜔𝑖𝑖,𝑗𝑗  and 
time step 𝑚𝑚, and 𝑛𝑛�𝜔𝜔𝑖𝑖,𝑗𝑗denotes the outward pointing unit 
normal vector associated with surface 𝜔𝜔𝑖𝑖,𝑗𝑗. Equation (8) 
will be used to evaluate I0+

𝛼𝛼 [⋅] in Equation (11). 

Adaptive fixed point iteration scheme 
In fixed point iteration scheme, for every cell 𝑖𝑖 and 

time step 𝑚𝑚 + 1, one would multiply the fixed linearization 
parameter 𝛾𝛾  to Equation (11) and then add the term 
𝜃𝜃𝑖𝑖
𝑚𝑚+1,𝑠𝑠+1 − 𝜃𝜃𝑖𝑖

𝑚𝑚+1,𝑠𝑠  to either side of Equation (11), so that 
the Richards equation can be solved in an iterative man-
ner to obtain the soil moisture solution upon conver-
gence. Since 𝛾𝛾 is a static constant, a trial-and-error pro-
cedure is typically required to obtain an appropriate 𝛾𝛾 
value that avoids convergence issues. Not only is this 
search procedure tedious to implement, the solutions ob-
tained are also less accurate most of the time (to be 
shown in the case study) as the ground truth solutions 
are not known to us a priori. Thus, inspired by previous 
works [15], we introduce a novel adaptive fixed point it-
eration scheme that replaces the static fixed linearization 
parameter 𝛾𝛾  with 𝛾𝛾𝑖𝑖

𝑚𝑚+1,𝑠𝑠 , which adjusts itself for each 
specific discretized cell, time step, and iteration count s. 
Specifically, we introduce the term 𝜃𝜃𝑖𝑖

𝑚𝑚+1,𝑠𝑠+1 − 𝜃𝜃𝑖𝑖
𝑚𝑚+1,𝑠𝑠  to 

the LHS of Equation (11). When the scheme converges for 
sufficiently large s, this term vanishes, which preserves 
the equality of Equation (11). In our previous work focus-
ing on solving standard Richards equation [2,17], we de-
veloped a systematic procedure for choosing 𝛾𝛾𝑖𝑖

𝑚𝑚+1,𝑠𝑠 that 
would guarantee convergence and stability of the numer-
ical scheme. In this work, we follow the same procedure 
for choosing the appropriate 𝛾𝛾𝑖𝑖

𝑚𝑚+1,𝑠𝑠. 

Encoder-decoder-type data-driven 
framework 
 Once our adaptive linearization scheme of the FVM-
discretized time-fractional Richards equation is estab-
lished, we will obtain soil moisture solutions 𝜃𝜃𝑖𝑖

𝑚𝑚+1,𝑠𝑠  for 
every cell, time step, and iteration. Through the encode-
decoder-type architecture, these solutions will first be 
mapped to their corresponding variables denoted as 
𝜇𝜇𝑖𝑖
𝑚𝑚+1,𝑠𝑠 in a latent space via a trained neural network fNN 

(i.e., fNN: 𝜃𝜃𝑖𝑖
𝑚𝑚+1,𝑠𝑠 → 𝜇𝜇𝑖𝑖

𝑚𝑚+1,𝑠𝑠 ), followed by applying inverse 
mapping from the latent space back to the soil moisture 
solutions 𝜃𝜃�𝑖𝑖

𝑚𝑚+1,𝑠𝑠 (which are expected to be more accurate 
than 𝜃𝜃𝑖𝑖

𝑚𝑚+1,𝑠𝑠 ) via another trained neural network 
fNN−1:𝜇𝜇𝑖𝑖

𝑚𝑚+1,𝑠𝑠 → 𝜃𝜃�𝑖𝑖
𝑚𝑚+1,𝑠𝑠.  

The dataset used to train the two neural networks 
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will come from two different sources/solvers. For exam-
ple, during neural network training, 𝜃𝜃 solutions could be 
soil moisture solutions obtained from fixed point iteration 
scheme under different choices of linearization parame-
ters and total iteration counts that cover their ranges ex-
pected during the actual solution process, whereas the 𝜇𝜇 
solutions may come from direct sensor measurements or 
a simple finite difference based solver. Furthermore, we 
apply data augmentation to these “reference solutions” 
by adding zero-mean Gaussian noise with different vari-
ances [4]. After data augmentation, the resulting ex-
panded set of reference solutions will be used for neural 
network training. This data augmentation step not only 
increases the size of the training dataset without having 
to actually solve the numerical schemes (thereby saving 
significant computational time), but also reflects the 
characteristics of actual soil sensing data, which are sub-
ject to various measurement uncertainties due to instru-
mental error, environmental uncertainties, and imperfect 
installation and maintenance. It turns out that introducing 
Gaussian noise can greatly reduce the biases of refer-
ence solutions and enhance generalization performance, 
thereby significantly improving the accuracy of numerical 
solutions. 

Our data-driven adaptive fixed point iteration 
scheme works as follows. For a given time step m and it-
eration count s, fNN first maps the 𝜃𝜃𝑖𝑖

𝑚𝑚+1,𝑠𝑠 to a latent space 
where 𝜇𝜇𝑖𝑖

𝑚𝑚+1,𝑠𝑠 = fNN�𝜃𝜃𝑖𝑖
𝑚𝑚+1,𝑠𝑠� lies upon. The resulting adap-

tive linearization scheme of FVM-discretized time-frac-
tional Richards equation in terms of μi

m+1,s is given by: 

𝜇𝜇𝑖𝑖
𝑚𝑚+1,𝑠𝑠+1 − 𝜇𝜇𝑖𝑖

𝑚𝑚+1,𝑠𝑠 = 1
𝛾𝛾𝑖𝑖
𝑚𝑚+1,𝑠𝑠 �I0+

𝛼𝛼 �∑ (𝐶𝐶∇𝜇𝜇)𝜔𝜔𝑖𝑖,𝑗𝑗
𝑚𝑚+1 ⋅

𝑁𝑁𝜔𝜔𝑖𝑖
𝑗𝑗=1

𝑛𝑛�𝜔𝜔𝑖𝑖,𝑗𝑗𝐴𝐴𝜔𝜔𝑖𝑖,𝑗𝑗� − I0+
𝛼𝛼 �∑ (𝐶𝐶∇𝜇𝜇)𝜔𝜔𝑖𝑖,𝑗𝑗

𝑚𝑚 ⋅ 𝑛𝑛�𝜔𝜔𝑖𝑖,𝑗𝑗𝐴𝐴𝜔𝜔𝑖𝑖,𝑗𝑗

𝑁𝑁𝜔𝜔𝑖𝑖
𝑗𝑗=1 �� + 1

𝛾𝛾𝑖𝑖
𝑚𝑚+1,𝑠𝑠 fNN(𝐽𝐽),               

(12) 

where the quantity J is given by: 
𝐽𝐽 = (𝜃𝜃𝑖𝑖𝑚𝑚 − 𝜃𝜃𝑖𝑖

𝑚𝑚+1,𝑠𝑠)vol(𝑉𝑉𝑖𝑖) + I0+
𝛼𝛼 �∑ (𝐾𝐾(𝜃𝜃)∇𝑧𝑧)𝜔𝜔𝑖𝑖,𝑗𝑗

𝑚𝑚+1 ⋅
𝑁𝑁𝜔𝜔𝑖𝑖
𝑗𝑗=1

𝑛𝑛�𝜔𝜔𝑖𝑖,𝑗𝑗𝐴𝐴𝜔𝜔𝑖𝑖,𝑗𝑗� − I0+
𝛼𝛼 �∑ (𝐾𝐾(𝜃𝜃)∇𝑧𝑧)𝜔𝜔𝑖𝑖,𝑗𝑗

𝑚𝑚 ⋅ 𝑛𝑛�𝜔𝜔𝑖𝑖,𝑗𝑗𝐴𝐴𝜔𝜔𝑖𝑖,𝑗𝑗

𝑁𝑁𝜔𝜔𝑖𝑖
𝑗𝑗=1 �. 

Once 𝜇𝜇𝑖𝑖
𝑚𝑚+1,𝑠𝑠+1  is obtained by solving Equation (12) 

(which is an explicit scheme) provided 𝜇𝜇𝑖𝑖
𝑚𝑚+1,𝑠𝑠, we will ap-

ply the inverse mapping fNN−1  to transform 𝜇𝜇𝑖𝑖
𝑚𝑚+1,𝑠𝑠+1  from 

the latent space back to its original space 𝜃𝜃�𝑖𝑖
𝑚𝑚+1,𝑠𝑠+1 =

fNN−1�𝜇𝜇𝑖𝑖
𝑚𝑚+1,𝑠𝑠+1�. And the entire solution process iterates it-

self until a stopping criterion is reached. A commonly 
used stopping criterion is the relative error, which is es-

timated as 𝜀𝜀 = max
i

�fNN−1 �𝜇𝜇𝑖𝑖
𝑚𝑚+1,𝑠𝑠+1�−fNN−1 �𝜇𝜇𝑖𝑖

𝑚𝑚+1,𝑠𝑠��
�fNN−1 �𝜇𝜇𝑖𝑖

𝑚𝑚+1,𝑠𝑠+1��
 . Or, one can 

specify the total number of iterations needed for each 
time step and cell (which is what we use for the case 
study). 

We remark that, the two neural networks fNN and fNN−1 
can be treated as encoder and decoder, respectively, 
and Equation (12) essentially employs the “message 

passing” idea [16] via our numerical scheme. 

Solving inverse problem using MCMC 
approach 
 To solve the inverse problem of identifying soil pa-
rameters, we adopt a simple MCMC approach with Me-
tropolis-Hasting (M-H) algorithm [9]. The algorithm be-
gins by selecting an initial set of parameters 𝛼𝛼0. For each 
iteration, a candidate 𝑦𝑦 is drawn from the proposal den-
sity 𝑞𝑞(∙ |𝛼𝛼𝑡𝑡) . The acceptance probability ℎ(𝛼𝛼𝑡𝑡|𝑦𝑦)  is then 
computed. If a randomly drawn value 𝑟𝑟 from the uniform 
distribution 𝒰𝒰([0, 1]) is less than ℎ(𝛼𝛼𝑡𝑡|𝑦𝑦), the candidate 𝑦𝑦 
is accepted, and 𝛼𝛼𝑡𝑡+1 is updated to 𝑦𝑦. Otherwise, the cur-
rent parameter 𝛼𝛼𝑡𝑡is retained, setting 𝛼𝛼𝑡𝑡+1 = 𝛼𝛼𝑡𝑡. This pro-
cess continues iteratively to explore the parameter 
space. 

AN ILLUSTRATIVE EXAMPLE 
In this section, we test and validate our proposed 

numerical framework on 1-D benchmark problem pre-
sented in [11], which features both classical and anoma-
lous diffusion, by comparing our numerical solution with 
the analytical solution as well as solution obtained using 
fixed point iteration scheme. 

1-D Classical Diffusion 
For the classical diffusion problem, the parameter 𝛼𝛼 

is set to be 1. A constant soil moisture diffusivity 𝐶𝐶 =
24 × 10−5 cm2min−1 is used. The boundary condition is 
given by 𝜃𝜃(0, 𝑡𝑡) = 0.5 and 𝜃𝜃(∞, 𝑡𝑡) < ∞. The initial condition 

is given by 𝜃𝜃(𝑧𝑧, 0) = �0.5, if 𝑧𝑧 = 0
0.1, if 𝑧𝑧 > 0 . The analytical solution 

for this problem is 𝜃𝜃(𝑧𝑧, 𝑡𝑡) = 0.4 ∙ erfc�� 𝑧𝑧2

4𝐶𝐶𝐶𝐶
� + 0.1.  

Overall, we generate an augmented training dataset 
containing 84,480 pairs of noise-added solutions from 
solvers employing fixed point iteration scheme and our 
previously developed solver [2]. Two neural networks fNN 
and fNN−1, each adopting 5 layers with 32, 64, 128, 64, 32 
neurons per layer and (leaky) ReLU activation function, 
are trained for 10000 epochs by Adam optimizer with a 
learning rate of 0.001. 

From the results in Figure 1 and Table 1, one can 
make several observations. First, solution accuracy 
highly depends on the choice of linearization parameters, 
and without the prior knowledge about where the ground 
truth solution lies, it will be challenging for fixed point it-
eration scheme to correctly identify the optimal lineariza-
tion parameter to use by itself. Second, for this specific 
problem, since the solution quality of fixed point iteration 
scheme changes as 1

𝛾𝛾
 varies from 1 to 500, a trial-and-

error process, which is both tedious and computationally 
expensive, will be required for identifying the optimal lin-
earization parameter. Our proposed framework, on the 



 

Song et al. / LAPSE:2025.0536 Syst Control Trans 4:2391-2397 (2025) 2395  

other hand, does not require such trial-and-error proce-
dure. Third, our proposed numerical framework closely 
matches with the analytical solution quite well, thanks to 
the adoption of adaptive fixed point iteration scheme and 
the integrated data-driven approach. 

 
Figure 1. Numerical solutions obtained from fixed point 
iteration scheme and our numerical framework by setting 
2,000 iterations as the stopping criterion for each time 
step and cell. In this example, we study the soil moisture 
profile across a 12-cm deep soil when ttotal = 200 min. 

Table 1. Mean Squared Error (MSE) measuring the dis-
crepancy between numerical solutions and the analytical 
solution. 

Method 1
𝛾𝛾
 value MSE 

FVM with a static 
fixed linearization 
parameter 
 

 0.0487 
 0.0239 
 0.0121 
 0.0085 
 0.0050 
 0.0017 
 0.0009 

Our work N/A 2.4731 × 10−5 

1-D Anomalous Diffusion 
We consider the case of subdiffusion (0 < 𝛼𝛼 < 1) for 

anomalous diffusion problem. Again, a constant soil 
moisture diffusivity 𝐶𝐶 = 24 × 10−5 cm2min−α  is used. 
Other the boundary and initial conditions are the same as 
in classical diffusion problem. The analytical solution for 
this problem is given by 𝜃𝜃(𝑧𝑧, 𝑡𝑡) = 0.4 ∙

H1,1
1,0 �� 𝑧𝑧2

4𝐶𝐶𝑡𝑡𝛼𝛼
� �1,𝛼𝛼 2� �

(0,1) � + 0.1, where H1,1
1,0(∙) is the Fox function 

(see [11] for more details).  
First, we solve the forward problem by considering 

α = 0.6. We are mainly interested in the top 1.2 cm of soil, 

where the soil moisture changes significantly. From Fig-
ure 2, it is clear that, compared to the asymptote solution 
presented in [11], our numerical framework achieves re-
markable accuracy even when simulating the region 
where soil moisture changes the most. Second, we inves-
tigate the performance of numerical framework in solving 
inverse problem when it is integrated with MCMC ap-
proach. Without informing our solver, we set the soil pa-
rameters as 𝛼𝛼 = 0.13 and 𝐶𝐶 = 24 × 10−5 cm2min−α. We ex-
amine two scenarios, one at 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3 min and the other 
at 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 300  min. Due to the ill-posedness of this in-
verse problem, we impose upper and lower bounds for 
the two parameters 0 < 𝛼𝛼 < 1  and 0 < 𝐶𝐶 < 30 ×
10−5 cm2min−α . The results in Figure 3 shows that the 
MCMC approach can estimate the soil parameters rea-
sonably well (<20% and <1% relative discrepancy for 𝛼𝛼 
and 𝐶𝐶, respectively). Furthermore, it provides an error bar 
for the parameters being estimated, which provides basis 
for uncertainty quantification. 

 
Figure 2. Solutions obtained from our numerical frame-
work (stopping criterion: 2,000 iterations for each time 
step and cell) comparing to asymptote solution and ana-
lytical solution [11]. In this example, we examine the soil 
moisture profile across a 1.2-cm deep soil when 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =
200 min. Here, 𝛼𝛼 = 0.6. Note that the MSE between nu-
merical solutions from our numerical framework and an-
alytical solution is 3.9130 × 10−6, while that of asymptote 
solution is 6.7163 × 10−5. 
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Figure 3. Numerical solutions obtained using the param-
eters identified by MCMC approach. Here, we conduct 
1000 samplings. The resulting parameters are 𝛼𝛼 =
0.13071 ± 3.7310 × 10−5  and 𝐶𝐶 = 23.808 × 10−5 ± 3.232 ×
10−12cm2min−α . Note that the MSE between numerical 
solutions and desired solutions are 2.8096 × 10−8  and 
7.6698 × 10−9  for 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 3 min  and 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = 300 min , re-
spectively. 

CONCLUSION 
In this work, we develop a novel physics-based, 

data-driven numerical framework for simulating anoma-
lous diffusion of water in porous media such as soil, 
which is characterized by the highly nonlinear time-frac-
tional Richards equation. To address the computational 
challenges associated with existing solvers, we integrate 
neural networks and adaptive fixed point iteration 
scheme in a FVM discretization framework. These inno-
vative approaches not only improves solution accuracy 
and robustness, but also open opportunities for integrat-
ing physics-based models with in situ soil moisture sens-
ing technologies for precision agriculture applications. 
We also briefly introduce a systematic approach to solve 
the inverse problem using MCMC. Preliminary results ob-
tained on a 1-D benchmark problem indicate that our pro-
posed forward and inverse problem solvers can be highly 
accurate and useful. Nevertheless, we notice that one 
limitation of the MCMC approach for solving the inverse 
problem is that its accuracy highly depends on the selec-
tion of parameter bounds. In our future work, we plan to 
investigate other probabilistic methods that are more 
scalable and robust for solving inverse problems (i.e., 
model parameter estimation and uncertainty quantifica-
tion given in situ soil moisture measurements). Overall, it 
is expected that this numerical framework would be inte-
grated in an irrigation control mechanism to provide 
farmers with quantitative insights and recommendations 

regarding when to irrigate, where to irrigate, and how 
much to irrigate [18]. 
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