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ABSTRACT

Precision modeling and forecasting of soil moisture are essential for implementing smart irrigation
systems and mitigating agricultural drought. Most agro-hydrological models are based on the
standard Richards equation, a highly nonlinear, degenerate elliptic-parabolic partial differential
equation (PDE) with first order time derivative. However, research has shown that standard Rich-
ards equation is unable to model preferential flow in soil with fractal structure. In such a scenario,
the soil exhibits anomalous non-Boltzmann scaling behavior. Incorporating the anomalous non-
Boltzmann scaling behavior into the Richards equation leads to a generalized, time-fractional Rich-
ards equation based on fractional time derivatives. As expected, solving the time-fractional Rich-
ards equation for accurate modeling of water flow dynamics in soil faces extensive computational
challenges. To target these challenges, we propose a novel numerical method that integrates finite
volume method (FVM), adaptive fixed point iteration scheme, and neural network to solve the time-
fractional Richards equation. Specifically, we develop an adaptive fixed point iteration scheme to
solve the FVM-discretized equation iteratively, which avoids the stability issues when directly
solving a stiff and sparse matrix equation. To improve the solution quality which is influenced by
numerical errors and computational constraints during actual implementation, we propose to use
neural networks that resemble an encoder-decoder architecture to map soil moisture profiles into
a latent space and reconstruct them back. Through 1-D examples, we illustrate the accuracy and
computational efficiency of our proposed physics-based, data-driven numerical method. Finally,
we present a Markov chain Monte Carlo (MCMC) approach to solve the inverse problem to obtain
soil-specific parameters given soil moisture solutions.

Keywords: Machine Learning, Modelling and Simulations, Numerical Methods, Water, Sustainability

INTRODUCTION

With increasing demand for food and the resulting
food-energy-water nexus challenges from the growing
population, there is an increasing interest among process
systems engineering (PSE) researchers to design the
next-generation food and agricultural systems that are
sustainable, resource-efficient, and resilient. Along this
line, by leveraging real-time soil monitoring technologies,
sensor-based digital agriculture for sustainable and effi-
cient use of water is essential for improving agricultural
production and crop productivity and reducing agricul-
tural droughts. To simulate the root-zone (top 1Tm of soil)
soil moisture content, agro-hydrological models, which
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describe irrigation, precipitation, evapotranspiration, run-
off, and drainage dynamics inside the soil, are widely
used. Most existing agro-hydrological models are based
on the standard Richards equation [1], which is a highly
nonlinear, degenerate elliptic-parabolic partial differen-
tial equation (PDE) with first order time derivative with
the form:

00W)+V-q=0, M

q=—-(C(6)VO + K(0)Vz), (2)
where 6 denotes the soil moisture content (in, e.g.,
m3/m3), q represents the water flux (in, e.g., m3/m?-s),
K (0) is unsaturated hydraulic water conductivity (in, e.g.,

m/s), C() is soil moisture diffusivity (in, e.g., m2/s), t €
[0, t;ota:] denotes the time (in, e.g., s), and z corresponds
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to the vertical depth (in, e.g., m). For this study, without
loss of generality of our proposed numerical framework,
we ignore the sink term in Equation (1) associated with
root water uptake. The Richards equation is a nonlinear
convection-diffusion equation, where the convection
term is due to gravity and the diffusion term is originated
from Darcy’s law. For unsaturated flow, both € and K are
highly nonlinear functions of soil moisture content and
soil parameters, thereby posing significant computational
challenges for solving the standard Richards equation it-
self [2]. The integral form of the standard Richards equa-
tion is simply given by:

6(t,) —6(0,) = [, V- (C(6)VO + K(O)Vz)dt,  (3)

Besides being computationally difficult to solve,
standard Richards equation is also limited when it comes
to modeling realistic soil systems. For example, it has
been experimentally shown that the anomalous non-
Boltzmann scaling behavior is exhibited in porous media
with fractal structure [3,4]. For soils exhibiting non-Boltz-
mann scaling behavior, the soil moisture content is a

function of %, where x is the position vector, and a is a
t2

soil-dependent parameter indicating subdiffusion (0 <
a < 1) or superdiffusion (1 < a < 2) [5]. Incorporating this
anomalous flow behavior into the Richards equation
leads to a generalized, time-fractional Richards equation:

%0 +V-q=0, (4)

which is even more computationally challenging due to
the presence of time-fractional derivative 0¢6. Naive im-
plementations for solving Equation (4) typically involves
discretizing the time-fractional Richards equation using
finite difference method (FDM). However, this often
causes numerical stability issues [6]. To ensure numerical
stability in solving time-fractional PDEs, recent work fea-
tures using a hybrid method, in which the FDM and finite
element method (FEM) will be used to discretize the time
and spatial domains, respectively [7]. Nevertheless, this
approach was only used to solve the time-fractional
fourth-order reaction-diffusion equation, where the only
nonlinearity originates from the sink term. For solving the
time-fractional Richards equation, a finite point method
(FPM) was recently proposed to improve stability and ac-
curacy [8]. However, this approach relies on solving the
FPM scheme in matrix form, whose matrix is often stiff
and sparse and hence can be difficult to solve.

To address the limitations of prevailing research, in
this work, we propose a novel physics-based, data-
driven numerical framework to solve time-fractional
Richards equation. This framework discretizes Equation
(4) using finite volume method (FVM), which inherently
enforces mass conservation at the discretized level. To
solve the FVM-discretized fractional Richards equation,
instead of converting the discretized equations into a
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matrix equation, we adopt methods such as fixed point
iteration scheme to convert the discretized equation
system into an explicit scheme which can be solved iter-
atively. To enhance solution accuracy and stability, we
introduce an adaptive fixed point iteration scheme that
automatically selects a proper linearization constant for
every iteration, time step, and discretized cell for time-
fractional Richards equation based on our recent work
[2]. Finally, this numerical scheme is synergistically inte-
grated with an encoder-decoder-type architecture using
simple neural networks, and the resulting data-driven,
physics-embedded numerical framework achieves
higher solution accuracy. This data-driven approach
serves two major purposes that common numerical solv-
ers often overlook. First, by training the neural networks
using solutions obtained from solvers employing static
fixed point iteration scheme under different settings
(e.g., number of iterations), the encoder-decoder archi-
tecture can systematically capture and account for the
numerical errors associated with realistic computational
constraints (e.g., not being able to run for an infinite
amount of time on a perfect computer) during actual im-
plementation of the numerical scheme, thereby improv-
ing solution accuracy and robustness. Second, the use of
data-driven approach is attractive also because it pro-
vides new opportunities for integrating physics-based
modeling with online in situ soil moisture measurements
for sensor-driven soil monitoring and precision agricul-
ture applications. Commercial soil moisture sensors are
not perfect and instrumental errors will always be present
in their measurements. Furthermore, environmental fac-
tors (e.g., wind, temperature, evapotranspiration) and im-
perfect installation and maintenance will bring additional
uncertainties to online soil sensing data. Thus, the data-
driven approach in our numerical framework makes it
amenable to leverage uncertainty-embedded dataset
produced by in situ soil sensors in field environment for
predictive modeling of root-zone soil moisture profiles.

Lastly, accurate estimation of soil parameters (e.g.,
a and C) from direct sensor measurements, also known
as the inverse problem of physics-based models, is gen-
erally ill-posed due to insufficient and inaccurate meas-
urements. Deterministic methods, which solve the in-
verse problem as a nonlinear optimization problem, tend
to be trapped in local optima and are sensitive to data
noise. Therefore, in this work, we present a probabilistic
method based on Markov chain Monte Carlo (MCMC) [9]
for identifying the optimal soil parameters a and C in
time-fractional Richards equation given soil moisture
content information as a preliminary study. Through a 1-
D case study, we illustrate the effectiveness of our pro-
posed approaches.

THE DATA-DRIVEN NUMERICAL

FRAMEWORK
2392



Approximation of time-fractional derivatives

When it comes to representing time-fractional de-
rivatives in Equation (4), there are several options, such
as Riemann-Liouville fractional integral [10,11], Caputo
fractional derivative [12], fractal derivative [13], and so
on. In this work, we would like to adopt the Riemann-Li-
ouville fractional integral of the following form:

I5+£8) = 15 Jy (6 = W (W) du, (5)

where I'(") is the gamma function. With this, the integral
form of time-fractional Richards equation can be ex-
pressed as:

0(t,) — 6(0,) = I%[V- (C(O)VO + K(6)Vz)],  (6)

where a > 0. Note that the integral form of the standard
Richards equation, Equation (3), is just a special case of
Equation (6) by setting a = 1.

FVM Discretization

First, we adopt an implicit Euler scheme to discretize
Equation (6) in the spatial domain:

0(tms1) — 0(tm,) = 15+ [V (CVO(tmsr,) +
K(8(tm+1.))V2)] = 15+ [V - (CVO(tm,) + K(6(tm,))V2)],
7)

where time step m =1, [%J Next, in order to discre-
tize Equation (6), one needs to accurately approximate
Equation (5). Here, we adopt the trapezoidal quadrature
formula [14] and express Ig+f(t;,+1) as:

@n“
o+ f(tme1) &~ s TS0 At f(Ema), (8)

where the coefficient ay ,+, follows:

Axm+1 =

mitl —(m—a)(m+ 1% ifk=0

A~ N{A)L
KOV|L - Ry Au, | = 16 [Z]21(COIV0 + KOV, -
Ay A, | (1)

where 6" is a shorthand notation for the soil moisture at
cell i and time step m, |2}”. operates on surface w;; and

time step m, and fi,,;;denotes the outward pointing unit
normal vector associated with surface w; ;. Equation (8)
will be used to evaluate I7+[-] in Equation (11).

Adaptive fixed point iteration scheme

In fixed point iteration scheme, for every cell i and
time step m + 1, one would multiply the fixed linearization
parameter y to Equation (11) and then add the term
g1+ — gt to either side of Equation (11), so that
the Richards equation can be solved in an iterative man-
ner to obtain the soil moisture solution upon conver-
gence. Since y is a static constant, a trial-and-error pro-
cedure is typically required to obtain an appropriate y
value that avoids convergence issues. Not only is this
search procedure tedious to implement, the solutions ob-
tained are also less accurate most of the time (to be
shown in the case study) as the ground truth solutions
are not known to us a priori. Thus, inspired by previous
works [15], we introduce a novel adaptive fixed point it-
eration scheme that replaces the static fixed linearization
parameter y with y/**"*, which adjusts itself for each
specific discretized cell, time step, and iteration count s.
Specifically, we introduce the term §/"*"*** — g7"+1* to
the LHS of Equation (11). When the scheme converges for
sufficiently large s, this term vanishes, which preserves
the equality of Equation (11). In our previous work focus-
ing on solving standard Richards equation [2,17], we de-
veloped a systematic procedure for choosing yim“'s that
would guarantee convergence and stability of the numer-

ical scheme. In this work, we follow the same procedure
m+1,s

(m =k +2)%1 4+ (m— k) —2(m —k + 1)*1, if1<k< mfor choosing the appropriate y; .

1, ifk=m+1
(9)

To adopt FVM, we first integrate both sides of Equa-
tion (7) over the control volume V:

Jy 0(tms1) = 0(tm) AV = I8 { [, [V - (C(OIVO(tms,) +
K(©)V2)]dV} = I§{[, [V - (C(OIVO(ty, ) + K(6)V2)] dV}.
(10)

Then, one can apply divergence theorem on the
RHS of Equation (10), followed by discretizing the control
volume V into cells V;, wherei = 1,2,---,N;. Each V; is as-
sociated with surfaces w;; for j = 1,2,---,N,,,, whose sur-
face area is given by Ay, This would lead to the follow-
ing FVM-discretized version of Equation (10):

(67" — 7" vol(Vy) = 18 [X“4(C(8)Ve +
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Encoder-decoder-type data-driven
framework

Once our adaptive linearization scheme of the FVM-
discretized time-fractional Richards equation is estab-
lished, we will obtain soil moisture solutions 6/**"* for
every cell, time step, and iteration. Through the encode-
decoder-type architecture, these solutions will first be
mapped to their corresponding variables denoted as
u{”“'s in a latent space via a trained neural network fyy
(i.e., fan: 67" - u"*1), followed by applying inverse
mapping from the latent space back to the soil moisture
solutions 9{”“'5 (which are expected to be more accurate

than 6"*™* ) via another trained neural network

fl\TI:\ll:/l;n_'—l'S N 9im+1,s.
The dataset used to train the two neural networks
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will come from two different sources/solvers. For exam-
ple, during neural network training, 8 solutions could be
soil moisture solutions obtained from fixed point iteration
scheme under different choices of linearization parame-
ters and total iteration counts that cover their ranges ex-
pected during the actual solution process, whereas the u
solutions may come from direct sensor measurements or
a simple finite difference based solver. Furthermore, we
apply data augmentation to these “reference solutions”
by adding zero-mean Gaussian noise with different vari-
ances [4]. After data augmentation, the resulting ex-
panded set of reference solutions will be used for neural
network training. This data augmentation step not only
increases the size of the training dataset without having
to actually solve the numerical schemes (thereby saving
significant computational time), but also reflects the
characteristics of actual soil sensing data, which are sub-
ject to various measurement uncertainties due to instru-
mental error, environmental uncertainties, and imperfect
installation and maintenance. It turns out that introducing
Gaussian noise can greatly reduce the biases of refer-
ence solutions and enhance generalization performance,
thereby significantly improving the accuracy of numerical
solutions.

Our data-driven adaptive fixed point iteration
scheme works as follows. For a given time step m and it-
eration count s, fyy first maps the Him“'s to a latent space
where @™ = fyn(6"") lies upon. The resulting adap-
tive linearization scheme of FVM-discretized time-frac-
tional Richards equation in terms of u™*** is given by:

i

m+1,5+1

s 1 Ny
= s = i [T

Nmi ~
& 22OV, - i, Auy |} + st (),
(12)

N
nmi,).Awi,). -

where the quantity ] is given by:

J = (8" — 6" ¥ )vol(V)) + 1 [ (K(O)V2)TH -
Ay Ay, | — 18 [S K OV, Ay Ay |-

Once pu™*™**! is obtained by solving Equation (12)
(which is an explicit scheme) provided p****, we will ap-
ply the inverse mapping fyi to transform u{”“'”l from
the latent space back to its original space §"*"**! =
fam (" °*1). And the entire solution process iterates it-
self until a stopping criterion is reached. A commonly
used stopping criterion is the relative error, which is es-
[ e o i ()|

It (™)
specify the total number of iterations needed for each
time step and cell (which is what we use for the case
study).

We remark that, the two neural networks fyy and fyy
can be treated as encoder and decoder, respectively,
and Equation (12) essentially employs the “message

timated as & = max . Or, one can
1

Song et al. / LAPSE:2025.0536

Syst Control Trans 4:2391-2397 (2025)

passing” idea [16] via our numerical scheme.

Solving inverse problem using MCMC
approach

To solve the inverse problem of identifying soil pa-
rameters, we adopt a simple MCMC approach with Me-
tropolis-Hasting (M-H) algorithm [9]. The algorithm be-
gins by selecting an initial set of parameters «,. For each
iteration, a candidate y is drawn from the proposal den-
sity q(- la;). The acceptance probability h(a.|y) is then
computed. If a randomly drawn value r from the uniform
distribution U([0,1]) is less than h(a.|y), the candidate y
is accepted, and a,,, is updated to y. Otherwise, the cur-
rent parameter a.is retained, setting a;,, = a;. This pro-
cess continues iteratively to explore the parameter
space.

AN ILLUSTRATIVE EXAMPLE

In this section, we test and validate our proposed
numerical framework on 1-D benchmark problem pre-
sented in [11], which features both classical and anoma-
lous diffusion, by comparing our numerical solution with
the analytical solution as well as solution obtained using
fixed point iteration scheme.

1-D Classical Diffusion

For the classical diffusion problem, the parameter a
is set to be 1. A constant soil moisture diffusivity ¢ =
24 x 1075 cm®min~'is used. The boundary condition is
given by 6(0,t) = 0.5 and (oo, t) < o. The initial condition
0.5,ifz=0

01ifz> 0" The analytical solution

is given by 6(z,0) = {

for this problem is 6(z,t) = 0.4 - erfc( :—;) +0.1.

Overall, we generate an augmented training dataset
containing 84,480 pairs of noise-added solutions from
solvers employing fixed point iteration scheme and our
previously developed solver [2]. Two neural networks fyy
and fgy, each adopting 5 layers with 32, 64, 128, 64, 32
neurons per layer and (leaky) ReLU activation function,
are trained for 10000 epochs by Adam optimizer with a
learning rate of 0.001.

From the results in Figure 1 and Table 1, one can
make several observations. First, solution accuracy
highly depends on the choice of linearization parameters,
and without the prior knowledge about where the ground
truth solution lies, it will be challenging for fixed point it-
eration scheme to correctly identify the optimal lineariza-
tion parameter to use by itself. Second, for this specific
problem, since the solution quality of fixed point iteration

scheme changes as%varies from 1 to 500, a trial-and-

error process, which is both tedious and computationally
expensive, will be required for identifying the optimal lin-
earization parameter. Our proposed framework, on the
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other hand, does not require such trial-and-error proce-
dure. Third, our proposed numerical framework closely
matches with the analytical solution quite well, thanks to
the adoption of adaptive fixed point iteration scheme and
the integrated data-driven approach.

=== FV/M solution (
=== FVM solution (
=== FV/M solution (
(
(

)
10)

0.5+

30)
=== FV/M solution
=== F\/M solution

T
1
1
l 50)
1 = 100)

FVM solution (% = 300)

FVM solution (2 = s00)
= Analytical solution (Gerolymatou et al., 2006)
= = Ourwork

o
IS
1

Soil moisture content
o =]
N w
1 1

0.1+

0 2 4 6 8 10 12
Depth (cm)
Figure 1. Numerical solutions obtained from fixed point
iteration scheme and our numerical framework by setting
2,000 iterations as the stopping criterion for each time
step and cell. In this example, we study the soil moisture
profile across a 12-cm deep soil when tyi,; = 200 min.

Table 1. Mean Squared Error (MSE) measuring the dis-
crepancy between numerical solutions and the analytical
solution.

Method % value MSE
FVM with a static 1 0.0487
fixed linearization 10 0.0239
parameter 30 0.0121
50 0.0085
100 0.0050
300 0.0017
500 0.0009

Our work N/A 24731 x107°

1-D Anomalous Diffusion

We consider the case of subdiffusion (0 < a < 1) for
anomalous diffusion problem. Again, a constant soil
moisture diffusivity € =24 x 1075 cm®min™® is used.
Other the boundary and initial conditions are the same as
in classical diffusion problem. The analytical solution for
this problem is given by 0(z,t) =04-
HyY <\/§ (1(:{)2)> + 0.1, where H}’J () is the Fox function
(see [11] for more details).

First, we solve the forward problem by considering
a = 0.6. We are mainly interested in the top 1.2 cm of saill,
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where the soil moisture changes significantly. From Fig-
ure 2, itis clear that, compared to the asymptote solution
presented in [11], our numerical framework achieves re-
markable accuracy even when simulating the region
where soil moisture changes the most. Second, we inves-
tigate the performance of numerical framework in solving
inverse problem when it is integrated with MCMC ap-
proach. Without informing our solver, we set the soil pa-
rameters as @ = 0.13 and € = 24 x 107> cm?min~*. We ex-
amine two scenarios, one at t,,;q; = 3 Min and the other
at tiorar = 300 min. Due to the ill-posedness of this in-
verse problem, we impose upper and lower bounds for
the two parameters 0<a<1 and 0<(C<30x
1075 cm®min~%. The results in Figure 3 shows that the
MCMC approach can estimate the soil parameters rea-
sonably well (<20% and <1% relative discrepancy for a
and C, respectively). Furthermore, it provides an error bar
for the parameters being estimated, which provides basis
for uncertainty quantification.

Analytical solution (Gerolymatou et al., 2006) '
= Our work 7

= = Asymptote solution (Gerolymatou et al., 2006) |

0.5

o
IS
1

Soil moisture content
o
w
1

0.1+ —

0.0 0.2 0.4 06 0.8 1.0 1.2
Depth (cm)

Figure 2. Solutions obtained from our numerical frame-
work (stopping criterion: 2,000 iterations for each time
step and cell) comparing to asymptote solution and ana-
lytical solution [11]. In this example, we examine the soil
moisture profile across a 1.2-cm deep soil when t;y:q =
200 min. Here, a = 0.6. Note that the MSE between nu-
merical solutions from our numerical framework and an-
alytical solution is 3.9130 x 10~¢, while that of asymptote
solution is 6.7163 x 1075.
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Ground truth solutions (tttar = 3 min)
MCMC solutions ( tioter = 300 min)

0_5 . i o

\
‘qc: 0.4 4 \ Ground truth solutions ( ¢;otz= 300 min)||
=
s]
o
g
S 0.3+ e
ki
3]
- i
5 0.2 4
A 0.2

0.0 0.2 0.4 06 0.8 1.0 1.2

Depth (cm)
Figure 3. Numerical solutions obtained using the param-
eters identified by MCMC approach. Here, we conduct
1000 samplings. The resulting parameters are a =
0.13071+3.7310 x 1075 and C =23.808 x 1075 + 3.232 X
1072cm?min~%. Note that the MSE between numerical
solutions and desired solutions are 2.8096 x 108 and
7.6698 X 107° for tioeq; = 3 min and tppq; = 300 min, re-
spectively.

CONCLUSION

In this work, we develop a novel physics-based,
data-driven numerical framework for simulating anoma-
lous diffusion of water in porous media such as sail,
which is characterized by the highly nonlinear time-frac-
tional Richards equation. To address the computational
challenges associated with existing solvers, we integrate
neural networks and adaptive fixed point iteration
scheme in a FVM discretization framework. These inno-
vative approaches not only improves solution accuracy
and robustness, but also open opportunities for integrat-
ing physics-based models with in situ soil moisture sens-
ing technologies for precision agriculture applications.
We also briefly introduce a systematic approach to solve
the inverse problem using MCMC. Preliminary results ob-
tained on a 1-D benchmark problem indicate that our pro-
posed forward and inverse problem solvers can be highly
accurate and useful. Nevertheless, we notice that one
limitation of the MCMC approach for solving the inverse
problem is that its accuracy highly depends on the selec-
tion of parameter bounds. In our future work, we plan to
investigate other probabilistic methods that are more
scalable and robust for solving inverse problems (i.e.,
model parameter estimation and uncertainty quantifica-
tion given in situ soil moisture measurements). Overall, it
is expected that this numerical framework would be inte-
grated in an irrigation control mechanism to provide
farmers with quantitative insights and recommendations

Song et al. / LAPSE:2025.0536
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regarding when to irrigate, where to irrigate, and how
much to irrigate [18].
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