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ABSTRACT

An essential problem in precision agriculture is to accurately model and predict root-zone (top 1
m of soil) soil moisture profile given soil properties and precipitation and evapotranspiration infor-
mation. This is typically achieved by solving agro-hydrological models. Nowadays, most of these
models are based on the standard Richards equation (RE), a highly nonlinear, degenerate elliptic-
parabolic partial differential equation that describes irrigation, precipitation, evapotranspiration,
runoff, and drainage through soils. Recently, the standard RE has been generalized to time-frac-
tional RE with any fractional order between 0 and 2. Such generalization allows the characteriza-
tion of anomalous soil exhibiting non-Boltzmann behavior due to the presence of preferential flow.
In this work, we focus on inverse modeling of time-fractional RE; that is, how to accurately estimate
the fractional order and soil property parameters of the fractional RE given soil moisture content
measurements. Specifically, we introduce a novel Bayesian variational autoencoder (BVAE) frame-
work that synergistically integrates our in-house developed fractional RE solver and adaptive Fou-
rier decomposition (AFD) to accurately estimate the parameters of time-fractional RE. Our pro-
posed AFD-enhanced BVAE framework consists of a probabilistic encoder, latent-to-kernel neural
networks and convolutional neural networks. The BVAE framework is theoretically explainable and
enhanced by the AFD theory, a novel signal processing technique that achieves superior compu-
tationally efficiency. Through illustrative examples, we demonstrate the efficiency and reliability
of our AFD-enhanced BVAE framework.
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INTRODUCTION

Precision modeling and forecasting of soil moisture
are essential for implementing smart irrigation systems
and mitigating agricultural drought. Most agro-hydrolog-
ical models are based on the standard Richards equation
[1], a highly nonlinear, degenerate elliptic-parabolic par-
tial differential equation (PDE) with first order time deriv-
ative. However, standard RE is limited by its incapability
of characterizing preferential flow in anomalous soil ex-
hibiting non-Boltzmann behavior, a common and realistic
scenario. To overcome this limitation, time-fractional RE
of the following form [2] is developed and employed to
model water flow dynamics in real soil systems:

0f0+V-q=S5, (1)
q = —(C(B)Ve + K(8)Vz). (2)

https://doi.org/10.69997/sct.113662

where 6 denotes the soil moisture content (in, e.g.,
m3/m3), q represents the water flux (in, e.g., m3/m?-s), S
denotes the sink term measuring water uptake rate by
roots, K(0) is unsaturated hydraulic water conductivity
(in, e.g., m/s), C(0) is soil moisture diffusivity (in, e.g.,
m?/s), t € [0,T] denotes the time (in, e.g., s), z corre-
sponds to the vertical depth (in, e.g., m), and « is a soil-
dependent parameter indicating subdiffusion (0 < a < 1)
and superdiffusion (1 < a < 2) [2]. For unsaturated flow,
both C and K are highly nonlinear functions of soil mois-
ture content and soil parameters, thereby posing signifi-
cant computational challenges for solving the standard
Richards equation itself [3]. Thus, most existing research
focuses on developing accurate and efficient numerical
solvers for the time-fractional RE given soil parameters
[2], which is also known as solving the forward problem.
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Figure 1. Our proposed AFD-enhanced BVAE architecture consists of two major components: an encoder that
maps input x = {x®}' € D into a latent variable z = , + 0,®¢ and a decoder that reconstruct & = {&®}  from z.
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Meanwhile, an equally important problem, which is to ac-
curately estimate soil parameters given the soil moisture
profile, is known as the inverse problem and is often less
studied. This is primarily because inverse problems are
generally ill-posed due to insufficient and/or inaccurate
information (e.g., soil moisture solutions) and thus face
significant computational challenges. Nevertheless, with
recent advancements in soil sensing technologies and in-
creasing adoption of in situ soil moisture sensors, farmers
now have real-time access to massive arrays of root-
zone soil moisture data. This poses great need and op-
portunity to develop more accurate and computationally
efficient algorithms for solving inverse problems of time-
fractional RE, so that one can extrapolate soil parameters
estimated from local in situ soil sensing measurements to
model field-wide soil moisture profiles.

Existing approaches to solve inverse problem for
standard and/or time-fractional RE can be categorized
into deterministic or probabilistic methods. Deterministic
methods, which solve the inverse problem as a nonlinear
optimization problem [4-6], tend to be trapped in local
optima and are sensitive to data noise. Meanwhile, prob-
abilistic methods, such as Markov chain Monte Carlo
(MCMC) [7] or variational autoencoder (VAE) [8], can ex-
plore the entire solution space. However, state-of-the-
art probabilistic methods scale poorly as problem size
(e.g., the number of parameters to be estimated) in-
creases, leading to scalability issues [9].

To address these challenges, in this work, we pro-
pose a novel Bayesian variational autoencoder (VAE)
framework that is built upon our in-house developed
time-fractional RE solver [11] and the adaptive Fourier
decomposition (AFD) techniques [12,13]. This integration
enables precise parameter estimation for time-fractional
RE. The AFD-enhanced BVAE framework consists of a
probabilistic encoder, latent-to-kernel neural networks,
and convolutional neural networks. The probabilistic en-
coder will map the input data (i.e., soil moisture measure-
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ments) to a latent space. To preserve useful mathemati-
cal properties and physical insights, we further restrict
the latent space to its reproducing kernel Hilbert space
(RKHS) via the use of latent-to-kernel neural networks.
The AFD-based convolutional neural networks are then
applied to the resulting RKHS as decoder for parameter
estimation. These neural networks are trained end to
end, in which the training data are soil moisture profiles
produced by our time-fractional RE solver. Through a
simple 3-D time-fractional RE example, we demonstrate
the accuracy of our AFD-enhanced BVAE framework in
solving inverse problems by comparing it with conven-
tional BVAE approach whose decoder structure is not
specially designed.

AN EXPLAINABLE BAYESIAN
FRAMEWORK

Bayesian VAE framework

Here, we first provide a brief overview of the BVAE
framework. The standard variational autoencoder (VAE)
is a generative model that learns a structured latent
space while reconstructing input data. As shown in Figure
1, VAE consists of two primary components, an encoder
that maps input x € D into a set of latent variables z, and
a decoder that reconstruct x from z.

VAE defines the marginal likelihood as the probabil-
ity of the observation x under the generative model.
Given latent variables z, the marginal likelihood is ex-
pressed as:

p(x) = [ p(xl2)p(2) dz, (3)

where p(z) is the prior distribution over latent variables
(often a standard Gaussian). Since direct computation of
the RHS of Equation (3) is intractable, VAE approximates
the true posterior p(z|x) using a variational distribution
q(zlx, ) , and maximizes the Evidence Lower Bound
(ELBO):
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Figure 2. The decoder structure of our AFD-enhanced BVAE framework, which consists of two primary compo-

nents: 1) latent-to-kernel neural networks which will map the latent variables z to X = {i(i)}il lying on an RKHS,

and 2) dynamic convolutional kernel network that will reconstruct & = {®}

Lggo = Yxep Lo, (), (4)

L4 () = Eq(zpy, ¢) l0g (12 ©) — Dy [a(zlx, ) Ip(@)]
(5)

where the first term of Equation (5) ensures accurate re-
construction and the second term regularizes the latent
space by minimizing the Kullback-Leibler (KL) divergence
between the approximate posterior and the prior distri-
bution.

On the other hand, the BVAE framework extends
this by placing priors not only on the latent variables z but
also on the model parameters 6, resulting in a Bayesian
formulation:

p(6|D) o p(D|©)p(6).

The likelihood function is then defined as:
p(xlz,D) = [ p(x|z ©)p(©ID) d®

and the marginal likelihood as:
p(xID) = [f p(xlz D)p(z) dzp(®|D) de. (8)

The BVAE enables more robust parameter estima-
tion and improved uncertainty quantification. Instead of
relying on a single point estimate for ®, BVAE marginal-
izes over its posterior distribution, leading to better gen-
eralization and reliability in low-data regimes. By jointly
inferring p(z|x, D) and p(®|D), BVAE offers a fundamental
way to incorporate uncertainty into both data represen-
tation and model parameters, making it particularly useful
for applications requiring high-confidence decision-mak-
ing.

(6)

(7)
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A novel, explainable encoder structure in our
AFD-enhanced BVAE framework

One common way to enhance the explainability of a
neural network is to modify its structure based on the ap-
proximation theory (e.g., the universal approximation
theorem [14]). In this work, we propose to achieve this by
adopting AFD, a novel signal decomposition method that
adopts adaptive orthogonal bases and thus leads to
higher accuracy and significant computational speedup
compared to conventional Fourier decomposition [12,13].
Specifically, as shown in Figure 2, we innovate the de-
coder structure by combining latent-to-kernel neural
network with mathematically interpretable dynamic con-
volutional kernel network (CKN). In terms of latent-to-
kernel network, our proposed structure consists of a
multi-layer neural network that will first take the latent
parameters z obtained from the encoder and generate

%= {X(i)}:\il, which belongs to the Hilbert space H of the

same manifold M that z belong to. Next, the latent-to-
kernel network consists of feature maps FM(X) that pro-
ject x to its reproducing kernel Hilbert space (RKHS) [15].
This way, our latent-to-kernel network will try to learn the
feature maps from H(M) to its nearest RKHS, where the
convolutional Kernel is unique and satisfies the repro-
ducing property [16]. This naturally brings in dynamic
CKN for local feature extraction, which is mathematically
grounded in the RKHS framework. Furthermore, the dy-
namic CKN structure shown in Figure 2 mathematically
resembles AFD in the sense that each dynamic convolu-
tional layer performs cross-correlation between FM(X)
and the orthogonal reproducing kernels B, i.e., FM(X) * B;.
With this, the final output of the dynamic CKN, assuming
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Figure 3. The error is obtained by substituting the parameters estimated by our proposed AFD-enhanced BVAE
framework (Left) and conventional BVAE (Right) into the time-fractional RE solver [11] and taking the difference
the numerical solution with the analytical solution of Equation (12). Ground truth value for the parameters are a =
0.5 and a = 0.001. The parameters estimated by our proposed AFD-enhanced BVAE framework are a = 0.496 +
0.005 and a=0.00102+ 7 x 10~%, while those of conventional BVAE are o = 0.440 + 0.004 and a = 0.00094 +

N .. an=0

that there are a total of N convolutional layers, is given
by:

%= 3L, pi(FM(R) * B)Bisry (9)

where p; € (0,1) are scaling factors and t; can choose
between 0 to N —i for layer i. The choices of p; and the
orthogonal reproducing kernels must satisfy weak maxi-
mal selection principle and convergence theorem [10,12],
respectively.

It can be shown that Equation (9) is equivalent to
AFD operation [10,12,13]. Thus, with a specially designed
structure, the AFD-type dynamic CKN will enjoy signifi-
cant computational speedup and rigorous performance
guarantees just like the AFD. The full AFD-enhanced
BVAE model will be trained end to end by minimizing the
following total loss function:

L= ”X - 7’2”1%1(]\/[) + ”5Z - FM()?)”}Z{(M) +
wDgL[q(zlx, §)llp(2)], (10)

where w is a regularization parameter.

Using AFD-enhanced BVAE framework to
solve inverse problems

Here, we describe the procedure for applying our
AFD-enhanced BVAE framework to solve the inverse
problem. That is, we would like to reconstruct or estimate
the soil-dependent parameters, including « and parame-
ters of hydraulic conductivity function and water reten-
tion curve, from soil moisture content profiles through di-
rect sensor measurements. Without loss of generality, we
denote those parameters and the corresponding soil
moisture content as y and 0, respectively. To train the
model, various sets of soil parameters y will be sent to
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our in-house developed fractional RE solver to generate
a set of soil moisture profile solutions. These solutions
and their associated soil parameters y will then be sent
to the encoder to extract latent parameters z, which are
then used by the decoder to reconstruct soil parameters
9. During the training process, the total loss function of
Equation (10) will be minimized such that the output of
the decoder, ¥, shall match with the given y as closely as
possible.

Once training is complete, our AFD-enhanced BVAE
model will only take the actual soil moisture measure-
ments or solution profiles 6 as input and produce the
soil-specific parameter estimates ¥ as output, which can
be used by the fractional RE solver for extrapolation and
field-wide soil moisture modeling.

AN ILLUSTRATIVE EXAMPLE

Here, we present a proof-of-concept example to
demonstrate the accuracy enhancement of our proposed
AFD-enhanced BVAE framework by considering a simple
3-D time-fractional RE where K=6and C = a(8 + 1). The
width, length as well as depth are 1. The boundary con-
ditions are zero at all boundaries and the initial condition
is given by:

0(x,y,2,0) = (x—x*)(y — y*)(z — z°). (1)

Fora= 0.1 and a = 0.5, the problem has an analyti-
cal solution and is given by:

8(xy, 20 = tx—x*)(y —y*)(z — z?). (12)

Assuming that we do not know the values of vy (i.e.,
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a and a), we generate a total of 10,000 sets of (8,y) so-
lutions using our in-house developed fractional RE solver.
Both AFD-enhanced BVAE and conventional BVAE mod-
els contains three hidden layers and 256 neurons per
layer. The Adam optimizer and ReLU activation function
are used for training. Figure 3 shows the error of soil
moisture profiles between analytical solution and the nu-
merical solution obtained from substituting the estimated
soil parameters into our fractional RE solver, where the
solution across two dimensions (width and length) are
drawn better visualization. For the third dimension
(depth), the error employs a similar behavior due to sym-
metry of this problem. Our AFD-enhanced BVAE model
not only produces more accurate parameter estimates,
but also enhances the accuracy of our fractional RE
solver by at least an order of magnitude compared to
conventional BVAE model. This illustrates the synergistic
improvement in model accuracy when combining ad-
vanced numerical solver (for solving the forward prob-
lem) with our AFD-enhanced BVAE model (for solving the
inverse problem). Furthermore, the data-driven nature of
our proposed framework makes it particularly suitable for
integrating in situ soil moisture sensing technologies to
equip farmers with accurate tools that will bring “eyes in-
side the soil”.

For comparison, we also implement a simple Kalman
filter (KF) algorithm as a benchmark method to solve the
same inverse problem. The results of KF are a = 0.517
and a = 0.00114, which are further away from the ground
truth solutions compared to our AFD-enhanced BVAE
model.

Lastly, we point out that, unlike MCMC approach,
our AFD-enhanced BVAE algorithm does not experience
a significant increase in computational time as the num-
ber of unknown parameters to be estimated grows. This
suggests that the BVAE-type approaches are quite scal-
able with respect to the dimensionality of the parameter
space [17].

CONCLUSIONS

In this work, we propose a novel AFD-enhanced
BVAE framework to accurately solve the inverse problem
of time-fractional Richards equation. Our proposed
framework synergistically integrates BVAE, neural net-
work, dynamic convolutions, and AFD theory to offer
computational speedup and great mathematical explain-
ability. Furthermore, by designing a tailored decoder
structure that resembles AFD operation, our new frame-
work significantly improves soil parameter estimation ac-
curacy. In addition, by using this framework in conjunc-
tion with our accurate time-fractional RE solver [11], we
can achieve synergistic advancement in root-zone soil
moisture modeling. Moreover, we remark that our pro-
posed AFD-enhanced BVAE model is a generalized
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framework that can be leveraged in solving various in-
verse problems in large-scale and/or complex partial dif-
ferential equation systems (e.g., convection-diffusion
equation, Schrodinger equation, etc.), as well as in other
fields such as image processing, data analytics, and so
on. We will explore these aspects in our future works.
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