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ABSTRACT 
An essential problem in precision agriculture is to accurately model and predict root-zone (top 1 
m of soil) soil moisture profile given soil properties and precipitation and evapotranspiration infor-
mation. This is typically achieved by solving agro-hydrological models. Nowadays, most of these 
models are based on the standard Richards equation (RE), a highly nonlinear, degenerate elliptic-
parabolic partial differential equation that describes irrigation, precipitation, evapotranspiration, 
runoff, and drainage through soils. Recently, the standard RE has been generalized to time-frac-
tional RE with any fractional order between 0 and 2. Such generalization allows the characteriza-
tion of anomalous soil exhibiting non-Boltzmann behavior due to the presence of preferential flow. 
In this work, we focus on inverse modeling of time-fractional RE; that is, how to accurately estimate 
the fractional order and soil property parameters of the fractional RE given soil moisture content 
measurements. Specifically, we introduce a novel Bayesian variational autoencoder (BVAE) frame-
work that synergistically integrates our in-house developed fractional RE solver and adaptive Fou-
rier decomposition (AFD) to accurately estimate the parameters of time-fractional RE. Our pro-
posed AFD-enhanced BVAE framework consists of a probabilistic encoder, latent-to-kernel neural 
networks and convolutional neural networks. The BVAE framework is theoretically explainable and 
enhanced by the AFD theory, a novel signal processing technique that achieves superior compu-
tationally efficiency. Through illustrative examples, we demonstrate the efficiency and reliability 
of our AFD-enhanced BVAE framework. 
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INTRODUCTION 
Precision modeling and forecasting of soil moisture 

are essential for implementing smart irrigation systems 
and mitigating agricultural drought. Most agro-hydrolog-
ical models are based on the standard Richards equation 
[1], a highly nonlinear, degenerate elliptic-parabolic par-
tial differential equation (PDE) with first order time deriv-
ative. However, standard RE is limited by its incapability 
of characterizing preferential flow in anomalous soil ex-
hibiting non-Boltzmann behavior, a common and realistic 
scenario. To overcome this limitation, time-fractional RE 
of the following form [2] is developed and employed to 
model water flow dynamics in real soil systems: 

∂tαθ + ∇ ∙ 𝐪𝐪 = S, (1) 

𝐪𝐪 = −(C(θ)∇θ + K(θ)∇z).  (2) 

where θ  denotes the soil moisture content (in, e.g., 
m3 m3⁄ ), 𝐪𝐪 represents the water flux (in, e.g., m3 m2 ∙ s⁄ ), S 
denotes the sink term measuring water uptake rate by 
roots, K(θ)  is unsaturated hydraulic water conductivity 
(in, e.g., m s⁄  ), C(θ)  is soil moisture diffusivity (in, e.g., 
m2 s⁄  ), t ∈ [0, T]  denotes the time (in, e.g., s ), z  corre-
sponds to the vertical depth (in, e.g., m), and α is a soil-
dependent parameter indicating subdiffusion (0 < α < 1) 
and superdiffusion (1 < α < 2) [2]. For unsaturated flow, 
both C and K are highly nonlinear functions of soil mois-
ture content and soil parameters, thereby posing signifi-
cant computational challenges for solving the standard 
Richards equation itself [3]. Thus, most existing research 
focuses on developing accurate and efficient numerical 
solvers for the time-fractional RE given soil parameters 
[2], which is also known as solving the forward problem. 
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Meanwhile, an equally important problem, which is to ac-
curately estimate soil parameters given the soil moisture 
profile, is known as the inverse problem and is often less 
studied. This is primarily because inverse problems are 
generally ill-posed due to insufficient and/or inaccurate 
information (e.g., soil moisture solutions) and thus face 
significant computational challenges. Nevertheless, with 
recent advancements in soil sensing technologies and in-
creasing adoption of in situ soil moisture sensors, farmers 
now have real-time access to massive arrays of root-
zone soil moisture data. This poses great need and op-
portunity to develop more accurate and computationally 
efficient algorithms for solving inverse problems of time-
fractional RE, so that one can extrapolate soil parameters 
estimated from local in situ soil sensing measurements to 
model field-wide soil moisture profiles. 

Existing approaches to solve inverse problem for 
standard and/or time-fractional RE can be categorized 
into deterministic or probabilistic methods. Deterministic 
methods, which solve the inverse problem as a nonlinear 
optimization problem [4-6], tend to be trapped in local 
optima and are sensitive to data noise. Meanwhile, prob-
abilistic methods, such as Markov chain Monte Carlo 
(MCMC) [7] or variational autoencoder (VAE) [8], can ex-
plore the entire solution space. However, state-of-the-
art probabilistic methods scale poorly as problem size 
(e.g., the number of parameters to be estimated) in-
creases, leading to scalability issues [9].  

To address these challenges, in this work, we pro-
pose a novel Bayesian variational autoencoder (VAE) 
framework that is built upon our in-house developed 
time-fractional RE solver [11] and the adaptive Fourier 
decomposition (AFD) techniques [12,13]. This integration 
enables precise parameter estimation for time-fractional 
RE. The AFD-enhanced BVAE framework consists of a 
probabilistic encoder, latent-to-kernel neural networks, 
and convolutional neural networks. The probabilistic en-
coder will map the input data (i.e., soil moisture measure-

ments) to a latent space. To preserve useful mathemati-
cal properties and physical insights, we further restrict 
the latent space to its reproducing kernel Hilbert space 
(RKHS) via the use of latent-to-kernel neural networks. 
The AFD-based convolutional neural networks are then 
applied to the resulting RKHS as decoder for parameter 
estimation. These neural networks are trained end to 
end, in which the training data are soil moisture profiles 
produced by our time-fractional RE solver. Through a 
simple 3-D time-fractional RE example, we demonstrate 
the accuracy of our AFD-enhanced BVAE framework in 
solving inverse problems by comparing it with conven-
tional BVAE approach whose decoder structure is not 
specially designed. 

AN EXPLAINABLE BAYESIAN 
FRAMEWORK 

Bayesian VAE framework 
Here, we first provide a brief overview of the BVAE 

framework. The standard variational autoencoder (VAE) 
is a generative model that learns a structured latent 
space while reconstructing input data. As shown in Figure 
1, VAE consists of two primary components, an encoder 
that maps input x ∈ D into a set of latent variables z, and 
a decoder that reconstruct x from z.  

VAE defines the marginal likelihood as the probabil-
ity of the observation x  under the generative model. 
Given latent variables z , the marginal likelihood is ex-
pressed as: 

p(x) = ∫p(x|z)p(z) dz ,  (3) 

where p(z) is the prior distribution over latent variables 
(often a standard Gaussian). Since direct computation of 
the RHS of Equation (3) is intractable, VAE approximates 
the true posterior p(z|x)  using a variational distribution 
q(z|x,ϕ) , and maximizes the Evidence Lower Bound 
(ELBO): 

 
Figure 1. Our proposed AFD-enhanced BVAE architecture consists of two major components: an encoder that 
maps input x = �x(i)�i=1

N ∈ D into a latent variable z = μz + σz⨀ε and a decoder that reconstruct x� = �x�(i)�i=1
N  from z.  
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ℒELBO = ∑ ℒΘ,ϕx∈D (x),   (4) 

ℒΘ,ϕ(x) = 𝔼𝔼q�z�x,ϕ� log p(x|z,Θ) − DKL[q(z|x,ϕ)‖p(z)]

 (5) 

where the first term of Equation (5) ensures accurate re-
construction and the second term regularizes the latent 
space by minimizing the Kullback-Leibler (KL) divergence 
between the approximate posterior and the prior distri-
bution. 
 On the other hand, the BVAE framework extends 
this by placing priors not only on the latent variables z but 
also on the model parameters θ, resulting in a Bayesian 
formulation: 

p(Θ|D) ∝ p(D|Θ)p(Θ).    (6) 

The likelihood function is then defined as: 

p(x|z, D) = ∫ p(x|z,Θ)p(Θ|D) dΘ  (7) 

and the marginal likelihood as: 

p(x|D) = ∬ p(x|z, D)p(z) dz p(Θ|D) dΘ.  (8) 

The BVAE enables more robust parameter estima-
tion and improved uncertainty quantification. Instead of 
relying on a single point estimate for Θ, BVAE marginal-
izes over its posterior distribution, leading to better gen-
eralization and reliability in low-data regimes. By jointly 
inferring p(z|x, D) and p(Θ|D), BVAE offers a fundamental 
way to incorporate uncertainty into both data represen-
tation and model parameters, making it particularly useful 
for applications requiring high-confidence decision-mak-
ing. 

A novel, explainable encoder structure in our 
AFD-enhanced BVAE framework 

One common way to enhance the explainability of a 
neural network is to modify its structure based on the ap-
proximation theory (e.g., the universal approximation 
theorem [14]). In this work, we propose to achieve this by 
adopting AFD, a novel signal decomposition method that 
adopts adaptive orthogonal bases and thus leads to 
higher accuracy and significant computational speedup 
compared to conventional Fourier decomposition [12,13]. 
Specifically, as shown in Figure 2, we innovate the de-
coder structure by combining latent-to-kernel neural 
network with mathematically interpretable dynamic con-
volutional kernel network (CKN). In terms of latent-to-
kernel network, our proposed structure consists of a 
multi-layer neural network that will first take the latent 
parameters z  obtained from the encoder and generate 
x� = �x�(i)�i=1

N , which belongs to the Hilbert space H of the 
same manifold ℳ  that z  belong to. Next, the latent-to-
kernel network consists of feature maps FM(x�) that pro-
ject x� to its reproducing kernel Hilbert space (RKHS) [15]. 
This way, our latent-to-kernel network will try to learn the 
feature maps from H(ℳ) to its nearest RKHS, where the 
convolutional Kernel  is unique and satisfies the repro-
ducing property [16]. This naturally brings in dynamic 
CKN for local feature extraction, which is mathematically 
grounded in the RKHS framework. Furthermore, the dy-
namic CKN structure shown in Figure 2 mathematically 
resembles AFD in the sense that each dynamic convolu-
tional layer performs cross-correlation between FM(x�) 
and the orthogonal reproducing kernels β, i.e., FM(x�) ⋆ βi. 
With this, the final output of the dynamic CKN, assuming 

 
Figure 2. The decoder structure of our AFD-enhanced BVAE framework, which consists of two primary compo-
nents: 1) latent-to-kernel neural networks which will map the latent variables z to x� = �x�(i)�i=1

N  lying on an RKHS, 

and 2) dynamic convolutional kernel network that will reconstruct x� = �x�(i)�i=1
N . 
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that there are a total of N convolutional layers, is given 
by: 

x� = ∑ ρi(FM(x�) ⋆ βi)βi+τi
𝑁𝑁
𝑖𝑖=1 ,  (9) 

where ρi ∈ (0,1)  are scaling factors and τi  can choose 
between 0 to N − i for layer i. The choices of ρi and the 
orthogonal reproducing kernels must satisfy weak maxi-
mal selection principle and convergence theorem [10,12], 
respectively. 

It can be shown that Equation (9) is equivalent to 
AFD operation [10,12,13]. Thus, with a specially designed 
structure, the AFD-type dynamic CKN will enjoy signifi-
cant computational speedup and rigorous performance 
guarantees just like the AFD. The full AFD-enhanced 
BVAE model will be trained end to end by minimizing the 
following total loss function: 

ℒ = ‖x −  x�‖H(ℳ)
2 + ‖x� − FM(x�)‖H(ℳ)

2 +
wDKL[q(z|x,ϕ)‖p(z)], (10) 

where w is a regularization parameter. 

Using  AFD-enhanced BVAE framework to 
solve inverse problems  
 Here, we describe the procedure for applying our 
AFD-enhanced BVAE framework to solve the inverse 
problem. That is, we would like to reconstruct or estimate 
the soil-dependent parameters, including α and parame-
ters of hydraulic conductivity function and water reten-
tion curve, from soil moisture content profiles through di-
rect sensor measurements. Without loss of generality, we 
denote those parameters and the corresponding soil 
moisture content as γ  and θ , respectively. To train the 
model, various sets of soil parameters γ will be sent to 

our in-house developed fractional RE solver to generate 
a set of soil moisture profile solutions. These solutions 
and their associated soil parameters γ will then be sent 
to the encoder to extract latent parameters z, which are 
then used by the decoder to reconstruct soil parameters 
γ�. During the training process, the total loss function of 
Equation (10) will be minimized such that the output of 
the decoder, γ�, shall match with the given γ as closely as 
possible. 

Once training is complete, our AFD-enhanced BVAE 
model will only take the actual soil moisture measure-
ments  or solution profiles θ  as input and produce the 
soil-specific parameter estimates γ� as output, which can 
be used by the fractional RE solver for extrapolation and 
field-wide soil moisture modeling. 

AN ILLUSTRATIVE EXAMPLE 
Here, we present a proof-of-concept example to 

demonstrate the accuracy enhancement of our proposed 
AFD-enhanced BVAE framework by considering a simple 
3-D time-fractional RE where K = θ and C = a(θ + 1). The 
width, length as well as depth are 1. The boundary con-
ditions are zero at all boundaries and the initial condition 
is given by: 

θ(x, y, z, 0) = (x − x2)(y − y2)(z − z2).  (11) 

For a = 0.1 and α = 0.5, the problem has an analyti-
cal solution and is given by: 

θ(x, y, z, t) = t(x − x2)(y − y2)(z − z2).  (12) 

Assuming that we do not know the values of  γ (i.e., 

 
Figure 3. The error is obtained by substituting the parameters estimated by our proposed AFD-enhanced BVAE 
framework (Left) and conventional BVAE (Right) into the time-fractional RE solver [11] and taking the difference 
the numerical solution with the analytical solution of Equation (12). Ground truth value for the parameters are α =
0.5  and a = 0.001 . The parameters estimated by our proposed AFD-enhanced BVAE framework are α = 0.496 ±
0.005   and a = 0.00102 ± 7 × 10−9 , while those of conventional BVAE are α = 0.440 ± 0.004  and a = 0.00094 ±
3 × 10−9   
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α and a), we generate a total of 10,000 sets of (θ, γ) so-
lutions using our in-house developed fractional RE solver. 
Both AFD-enhanced BVAE and conventional BVAE mod-
els contains three hidden layers and 256 neurons per 
layer. The Adam optimizer and ReLU activation function 
are used for training. Figure 3 shows the error of soil 
moisture profiles between analytical solution and the nu-
merical solution obtained from substituting the estimated 
soil parameters into our fractional RE solver, where the 
solution across two dimensions (width and length) are 
drawn better visualization. For the third dimension 
(depth), the error employs a similar behavior due to sym-
metry of this problem. Our AFD-enhanced BVAE model 
not only produces more accurate parameter estimates, 
but also enhances the accuracy of our fractional RE 
solver by at least an order of magnitude compared to 
conventional BVAE model. This illustrates the synergistic 
improvement in model accuracy when combining ad-
vanced numerical solver (for solving the forward prob-
lem) with our AFD-enhanced BVAE model (for solving the 
inverse problem). Furthermore, the data-driven nature of 
our proposed framework makes it particularly suitable for 
integrating in situ soil moisture sensing technologies to 
equip farmers with accurate tools that will bring “eyes in-
side the soil”. 

For comparison, we also implement a simple Kalman 
filter (KF) algorithm as a benchmark method to solve the 
same inverse problem. The results of KF are α = 0.517 
and a = 0.00114, which are further away from the ground 
truth solutions compared to our AFD-enhanced BVAE 
model.  

Lastly, we point out that, unlike MCMC approach, 
our AFD-enhanced BVAE algorithm does not experience 
a significant increase in computational time as the num-
ber of unknown parameters to be estimated grows. This 
suggests that the BVAE-type approaches are quite scal-
able with respect to the dimensionality of the parameter 
space [17]. 

CONCLUSIONS 
In this work, we propose a novel AFD-enhanced 

BVAE framework to accurately solve the inverse problem 
of time-fractional Richards equation. Our proposed 
framework synergistically integrates BVAE, neural net-
work, dynamic convolutions, and AFD theory to offer 
computational speedup and great mathematical explain-
ability. Furthermore, by designing a tailored decoder 
structure that resembles AFD operation, our new frame-
work significantly improves soil parameter estimation ac-
curacy. In addition, by using this framework in conjunc-
tion with our accurate time-fractional RE solver [11], we 
can achieve synergistic advancement in root-zone soil 
moisture modeling. Moreover, we remark that our pro-
posed AFD-enhanced BVAE model is a generalized 

framework that can be leveraged in solving various in-
verse problems in large-scale and/or complex partial dif-
ferential equation systems (e.g., convection-diffusion 
equation, Schrödinger equation, etc.), as well as in other 
fields such as image processing, data analytics, and so 
on. We will explore these aspects in our future works. 
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