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Abstract

Root-zone soil moisture monitoring is essential for sensor-based smart irrigation and agricul-
tural drought prevention. Modeling the spatiotemporal water flow dynamics in porous media
such as soil is typically achieved by solving an agro-hydrological model, the most important
of which being the Richards equation. In this paper, we present a novel data-driven solution
algorithm named the DRW (Data-driven global Random Walk) algorithm, which holistically
integrates adaptive linearization scheme, neural networks, and global random walk in a finite
volume discretization framework. We discuss the need and benefits of introducing these com-
ponents to achieve synergistic improvements in solution accuracy and numerical stability. We
show that the DRW algorithm can accurately solve n-dimensional Richards equation with guar-
anteed convergence under reasonable assumptions. Through examples, we also demonstrate
that the DRW algorithm can better preserve the underlying physics and mass conservation of
the Richards equation compared to state-of-the-art solution algorithms and commercial solver.

Keywords: Soil moisture; sustainable agriculture; hydrological modeling; global random
walk; neural network

1 Introduction

With increasing demand for food and the resulting food-energy-water nexus challenges from the
growing population, there is an increasing interest among chemical engineering researchers, espe-
cially those in process systems engineering (PSE), to design the next-generation food and agricul-
tural systems that are sustainable, resource-efficient, and resilient. In particular, the development
of new PSE tools that provide “sustainable engineering solutions for food and water” is prominently
featured by the National Academies as one of the “key research priorities and new directions in
chemical engineering” [1].

Along this line, sensor-based digital agriculture for sustainable and efficient use of water by
leveraging real-time soil monitoring is essential for improving agricultural production and crop
productivity, providing basis for precision irrigation and agriculture, preventing leaching of agro-
chemicals and soil nutrients into groundwater, and predicting agricultural droughts [2]. Recent
studies reveal that adjusting irrigation activities based on root-zone soil moisture information can
reduce irrigation water consumption by 40-60% [3] and increase farmer’s revenue by 20-60% [4].
Modeling the spatiotemporal behavior of root zone soil moisture from precipitation and surface
soil moisture data is typically achieved by solving an agro-hydrological model that describes water
movement through unsaturated soils. Nowadays, most existing agro-hydrological models are based
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on the Richards equation [5], which captures irrigation, precipitation, evapotranspiration, runoff,
and drainage dynamics in soil:

∂tθ(ψ) +∇ · q = −S(ψ),
q = −K(θ(ψ))∇(ψ + z),

(1)

where ψ stands for pressure head (in, e.g., m), q represents the water flux (in, e.g., m3/m2 · s),
S is the sink term associated with root water uptake (in, e.g., s−1), θ denotes the soil moisture
content (in, e.g., m3/m3), K is unsaturated hydraulic water conductivity (in, e.g., m/s), t ∈ [0, T ]
denotes the time (in, e.g., s), and z corresponds to the vertical depth (in, e.g., m). The Richards
equation is a nonlinear convection-diffusion equation [6], in which the convection term is due to
gravity and the diffusive term comes from Darcy’s law [7]. For unsaturated flow, both θ and K are
highly nonlinear functions of pressure head ψ and soil properties, making Equation (1) challenging
to solve. Specifically, θ(ψ) and K(ψ) (or K(θ), depending on the model) are commonly referred
to as the water retention curve (WRC) and hydraulic conductivity function (HCF), respectively.
Several empirical models have been developed for WRC and HCF for major soil types, among which
some of the widely adopted ones are summarized in Table 1.

Model HCF (K(ψ) or K(θ)) WRC (θ(ψ))

Haverkamp [8] Ks
A

A+|ψ|γ θr +
α(θs−θr)
α+|ψ|β

Mualem-van Genuchten [9, 10] Ks

√
θ−θr
θs−θr

1−
[
1−

(
θ−θr
θs−θr

) l
l−1

] l−1
l


2

θr +
θs−θr[

1+(α|ψ|)n
]n−1

n

Gardner [11] Kse
αψ θr + (θs − θr)e

αψ

Table 1: Some of the widely used HCF and WRC models. In these models, A, γ, α, β, n, θs, and
θr are soil-specific parameters.

Due to the high nonlinearity of WRC and HCF, analytical solutions to the Richards equation
do not exist in general [12]. Thus, the Richards equation is typically solved by numerically, which
almost always requires some form of discretization. Consider the discretized version of Equation
(1), whose control volume V ⊂ Rd (d = 1, 2, 3) is dicretized into N small cells V1, . . . , VN . Using
implicit Euler method on the time domain with a time step size of ∆t, the discretized Richards
equation at time step m = 0, 1, . . . , ⌈ T∆t⌉ − 1 can be expressed as:

θ(ψm+1
i )− θ(ψmi )−∆t∇ ·

[
K

(
θ(ψm+1

i )
)
∇
(
ψm+1
i + z

) ]
+ S(ψm+1

i ) = 0,

Dirichlet boundary condition: ψj(·) = 0 for all Vj ⊂ ∂V,

Initial condition: ψ(0, ·) = ψ0(·),

(2)

where ψmi is the pressure head in cell Vi and time step m, and ψ0(·) denotes the initial condition at
t = 0.

The performance of a numerical partial differential equation (PDE) solver depends theoretically
on the well-posedness of the PDE [13], which is an essential property that certifies the accuracy and
reliability of numerical solutions to the PDE. A PDE is said to be well-posed if its weak solution
exists, is unique, and depends continuously on the problem’s initial conditions [13, 14]. The weak
solution of Equation (2) is formally defined as:

Definition 1.1. Given ψmi ∈ H1
0 (V ), if for any v ∈ H1

0 (V ) and v(T, ·) = 0,〈(
θ(ψm+1)− θ(ψm)

)
, v
〉
Vi

+∆t
〈
K

(
θ(ψm+1)

)
∇(ψm+1 + z),∇v

〉
Vi

+
〈
S(ψm+1), v

〉
Vi

= 0 (3)
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holds, then ψm+1
i is a weak solution of the discretized Richards equation.

Note that in Definition 1.1, an inner product ⟨·, ·⟩Vi : L
2
(
[0, T ], H1

0 (V )
)
→ L2

(
[0, T ], H1

0 (V )
)

is
defined as ⟨f, g⟩Vi :=

∫
Vi
fg dV . When Vi is sufficiently small,

∫
Vi
fg dV = (fg)ivol(Vi), in which

(fg)i denotes the value of fg evaluated at cell Vi, and ∥f∥2 := ⟨f, f⟩Vi = (f2)ivol(Vi). In particular,
we point out that Equation (3) is originated from Equation (2) as:

⟨∇ · [K
(
Θ(ψm+1)

)
∇
(
ψm+1 + z

)
], v⟩Vi =

∫
Vi

∇ ·
[
K

(
Θ(ψm+1)

)
∇
(
ψm+1 + z

) ]
v dV

=

∫
∂Vi

K
(
Θ(ψm+1)

)
∇
(
ψm+1 + z

)
v dS −

∫
Vi

K
(
Θ(ψm+1)

)
∇
(
ψm+1 + z

)
∇v dV

= −⟨K
(
Θ(ψm+1)

)
∇(ψm+1 + z),∇v⟩Vi ,

in which we use integration by parts for higher dimensions and the fact that the surface integral over
∂Vi is 0. We remark that, in the context of the Richards equation, the existence and uniqueness
of its weak solution have been rigorously established and carefully studied [15, 16, 17], laying the
theoretical foundation for developing an efficient solution algorithm to solve the discretized Richards
equation numerically.

2 Literature Review

Among existing solution algorithms for the Richards equation, methods based on finite difference and
finite element discretizations [18, 19] have been studied and implemented the most [20]. However,
these methods often face challenges when handling large-scale problems and suffer from instability
issues such as oscillations [21]. Recently, Ireson et al. [22] used the method of lines to convert
the 1-D Richards equation into an ordinary differential equation (ODE), which was then solved
by finite difference method. Despite these advancements, finite difference- and finite element-based
methods generally require high mesh resolution to satisfy the local equilibrium condition [23, 24, 25].
Furthermore, they tend to fail to preserve global mass balance [26] and other important underlying
physical relations connecting soil moisture, pressure head, and water flux [27, 28], which further
deteriorates solution accuracy.

Meanwhile, finite volume discretization method (FVM) has demonstrated promising potential
in achieving high solution accuracy and preserving the mass conservation when solving the Richards
equation [29]. For example, Lai and Ogden [30] obtained a family of mass-conservative finite volume
predictor-corrector solutions for the 1-D Richards equation. A second-order accurate monotone
FVM was also proposed by Misiats and Lipnikov [16] for solving the 1-D Richards equation. Several
other FVM-based numerical methods have also been developed to solve 1-D and 2-D Richards
equations [31, 32, 33]. However, like finite difference- and finite element-based methods, conventional
FVM typically converts the discretized Richards equation into a large, stiff matrix equation, which
can be challenging to solve.

Thus, instead of following the standard practice of converting the discretized equations into a
matrix equation, methods such as the linearization scheme attempt to solve the discretized Richards
equations iteratively. A few notable linearization scheme implementations include Bergamaschi and
Putti [34] and Pop et al. [35]. In standard linearization schemes, a fixed linearization parameter
L is used for all time steps and discretized cells. However, choosing an appropriate static value of
L is not straightforward, as soil moisture content and pressure head exhibit strong spatiotemporal
patterns. To addresss this drawback, Mitra and Pop [36] modified the standard linearization scheme
for solving 1-D nonlinear diffusion equations by allowing L to be adaptive with respect to space

3



and time. More recently, Albuja and Avila [37] modified the Newton-type scheme and proposed a
new linearization scheme for solving the 1-D Richards equation with guaranteed global convergence.
Nevertheless, some of the existing adaptive linearization schemes have been reported to be suffered
from numerical oscillations [38]. And so far, no adaptive linearization scheme has been established
for solving the 3-D Richards equation.

On the other hand, as a promising approach to enhance the accuracy and stability of numerical
algorithms, stochastic methods such as the random walk model have been introduced and incor-
porated in discretization-based methods. In the random walk model, particles, in this case water
molecules, can move to their neighboring discretized cells following certain probabilities. Further-
more, random walks are memoryless, meaning that the current movements of particles are inde-
pendent of their past movements. These properties makes the random walk model attractive for
solving various transport problems [39], including the Richards equation (e.g., [40]). Having said
that, in conventional random walk model, only one particle can move at a time. To overcome this
, the global random walk (GRW) model was recently proposed [41, 42], allowing all particles to
move and/or stay at the same time. The GRW model has been successfully implemented to model
groundwater transport [41, 43], diffusion process [44, 43], and 1-D and 2-D Richards equation [42].
Furthermore, the GRW model has been recently coupled with the linearization scheme for the first
time [42], despite that a static constant L was adopted. Nevertheless, a key assumption commonly
used in state-of-the-art GRW models for the Richards equation is that the pressure head in each
discretized cell at any time step is proportional to the number of particles in the same cell and time
step, which is yet to be validated. Furthermore, successful implementation of GRW model to the
3-D Richards equation has not be explored in the literature.

Leveraging these new advancements, we recently proposed a novel solution algorithm, which
we named as the data-driven global random walk (DRW) algorithm, for 1-D and 2-D Richards
equations [27, 28]. Our DRW algorithm outperforms state-of-the-art Richards equation solvers for
in terms of solution accuracy and the ability to capture underlying physics. In particular, we find
that the use of neural networks to explicitly characterize the relationship between pressure head
and the number of water molecules in the DRW framework significantly enhances the solution
accuracy. In this article, we further improve the numerical accuracy and computational efficiency
of our DRW algorithmic framework by introducing several innovative approaches. Specifically, we
will formally present our DRW algorithm for solving any d-dimensional Richards equation, provide
rigorous theoretical justification of the convergence behavior of our DRW algorithm, and conduct
systematic case studies and in-depth analyses involving 1- through 3-D problems. Some of the new
contributions to the previously established DRW framework are highlighted as follows:

• We generalize our prior works [28, 27] for any d-dimensional (d = 1, 2, 3) Richards equation, and
demonstrate that the our new DRW algorithm can be versatilely adopted to modeling different
realistic scenarios (e.g., layered soil, actual precipitation).

• We introduce a “coarse-to-fine” approach to enhance the solution accuracy of our DRW algorithm
without requiring a large amount of high-accuracy, fine-mesh training data. We demonstrate
that this coarse-to-fine approach maintains a good balance between computational efficiency and
solution accuracy.

• We show that, by synergistically integrating our novel adaptive linearization scheme, global ran-
dom walk, and neural network, our new DRW algorithmic framework significantly enhances the
performance of FVM-based solver in preserving the underlying physical relationships and mass
conservation associated with the Richards equation.
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We organize the subsequent sections of the paper as follows. In Section 3, we derive the FVM-
based adaptive linearization scheme formulation and prove its global convergence. Then, in Section
4, we incorporate the adaptive linearization scheme formulation in the DRW algorithm. To compare
the performance of our DRW algorithm with state-of-the-art solvers, we conduct case studies and
discuss key findings in Section 5. Finally, we summarize the results and discuss future directions in
Section 7.

3 Adaptive Linearization Scheme of Discretized Richards Equation

In this section, we will formally introduce the adaptive linearization scheme formulation of the
Richards equation discretized by FVM. We will also derive necessary conditions for the linearization
parameter to ensure convergence. Furthermore, we will analyze the convergence behavior of the
resulting sequence of solutions {ψm+1,s

i }s, where s is the iteration count.

3.1 Adaptive linearization scheme for the Richards Equation

We present the key steps involved in the discretization of the Richards equation using FVM, followed
by introducing adaptive linearization scheme to solve the discretized equation iteratively. First,
integrating both sides of Equation (1) over V gives:∫

V
[∂tθ(ψ) + S(ψ)] dV =

∫
V
∇ ·

[
K(θ)∇(ψ + z)

]
dV. (4)

Then, we apply the divergence theorem to Equation (4), which converts the volume integral on
the RHS into a surface integral:

[∂tθ(ψ) + S(ψ)] vol(V ) =

∮
SV

K(θ)∇(ψ + z) · ndSV , (5)

where vol(V ) is the volume of V , SV is the surface of V and n is the outward pointing unit normal
to the boundary ∂V . The common surface shared by cell Vi and cell Vj is denoted as ωi,j . With
this, we can rewrite the operator K(·)∇(·) and the outward pointing unit normal vector n on ωi,j
as

[
K(·)∇(·)

]
ωi,j

and nωi,j , respectively. With this, the spatial discretization of Equation (5) is
expressed as:

∂tθivol(Vi) + S(ψi)vol(Vi) =
∑
j∈Ni

[
K(θ)∇(ψ + z)

]
ωi,j

· nωi,jAωi,j ∀i = 1, . . . , N, (6)

where ∂tθi refers to the time derivative ∂tθ(ψi) in cell Vi, Ni denotes the index set of all the
neighboring cells sharing a common surface with Vi, and Aωi,j is the area of surface ωi,j .

In standard linearization scheme, for every cell Vi and time step m + 1, one would add the
term L(ψm+1,s+1

i − ψm+1,s
i ) to either side of Equation (6), so that the Richards equation can be

solved in an iterative manner and the pressure head solution ψmi is the fixed-point solution of this
iterative procedure. In standard linearization schemes, in which L is a static constant, a trial-
and-error procedure is typically required to obtain an appropriate L value that avoids convergence
issues. Not only is this search procedure tedious to implement, the solutions obtained are also less
accurate most of the time as we will show in Section 5.1. Thus, inspired by previous works [36, 37],
we proposed a novel adaptive linearization scheme that replaces the static L with Lm+1,s

i , which
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adjusts itself for each specific discretized cell, time step, and iteration count. We then introduce the
term Lm+1,s

i (ψm+1,s+1
i − ψm+1,s

i ) to the LHS of Equation (6), which leads to:

ψm+1,s+1
i =ψm+1,s

i +
1

Lm+1,s
i

∑
j∈Ni

[
K(θ)∇(ψ + z)

]m+1,s

ωi,j
· nωi,jAωi,j

− 1

Lm+1,s
i

[
∂tθ

m+1,s
i + S(ψm+1,s

i )
]
vol(Vi),

(7)

By discretizing ∂tθ
m+1,s
i using implicit Euler scheme as θ(ψm+1,s

i )−θ(ψm
i )

∆t , we can obtain the adap-
tive linearization scheme of the Richards equation that is discretized by FVM:

ψm+1,s+1
i = ψm+1,s

i +
1

Lm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

(ψ + z)m+1,s
j − (ψ + z)m+1,s

i

dist(Vj , Vi)
e · nωi,jAωi,j

− 1

Lm+1,s
i

[
θ(ψm+1,s

i )− θ(ψmi )

∆t
+ S(ψm+1,s

i )

]
vol(Vi),

(8)

where e = (1, 1, 1) for the standard 3-D Cartesian coordinate system, and dist(·, ·) represents the
Euclidean distance function.

3.2 Choice of Adaptive Linearization Parameter

In adaptive linearization scheme, one needs to automatically select an appropriate linearization
parameter. We observe that Lm+1,s

i needs to be sufficiently large because otherwise, the RHS of
Equation (8) could approach infinity, which affects the convergence of adaptive linearization scheme.
In addition, the choice of Lm+1,s

i can impact the accuracy of solutions. Considering these aspects,
we propose a new way of selecting appropriate linearization parameter. First, to prevent Lm+1,s

i

from being too close to 0, we impose a user-specified global lower bound L0:

Lm+1,s
i ≥ L0.

In addition, we must ensure that ||ψm+1,s+1
i −ψm+1,s

i ||
||ψm+1,s

i ||
is no greater than a prespecified tolerance

ρ. In other words, we have:

||ψm+1,s+1
i − ψm+1,s

i ||
||ψm+1,s

i ||
=

1

Lm+1,s
i

||gm+1,s
i ||

||ψm+1,s
i ||

≤ ρ ∀s = 1, . . . , S,

where S is the user-specified total number of iterations for convergence, ρ should be no less than
the overall tolerance of convergence ϵ (to be discussed in Section 3.3), and:

gm+1,s
i =

∑
j∈Ni

Km+1,s
ωi,j

(ψ + z)m+1,s
j − (ψ + z)m+1,s

i

dist(Vj , Vi)
e · nωi,jAωi,j

−
θ(ψm+1,s

i )− θ(ψmi )

∆t
vol(Vi)− S(ψm+1,s

i )vol(Vi).

This implies that:

Lm+1,s
i ≥

(1 + ρ)||gm+1,s
i ||

ρ||ψm+1,s
i ||

∀s = 1, . . . , S, (9)
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whose RHS can be explicitly determined from the results of the previous iteration. In actual
implementation, we choose Lm+1,s

i based on:

Lm+1,s
i = max

{
L0,

(1 + ρ)||gm+1,s
i ||

ρ||ψm+1,s
i ||

}
∀s = 1, . . . , S. (10)

While Equation (10) gives an automated way to choose the linearization parameter, in the
meantime, we need to monitor the sensitivity of solutions obtained by adaptive linearization scheme
and make sure that the solutions do not change drastically with respect to small perturbations. To
do this, following Zarba [45] and Celia and Zarba [46], we explicitly write down Equation (8) for all
discretized cells in the form of a matrix equation:

Axm+1,s = b, (11)

where the ith element of vector xm+1,s is xm+1,s
i = ψm+1,s+1

i − ψm+1,s
i , which corresponds to cell

Vi. To evaluate the choice of Lm+1,s
i , we calculate the condition number of A based on the chosen

Lm+1,s
i . If the condition number is larger than a user-specified threshold, we will update L0 in

Equation (10) so that the condition number drops below the threshold. For 1-D problems, Zarba
[45] showed that A is a N×N asymmetric tridiagonal matrix. In this case, the condition number of
A can be determined by calculating its eigenvalues. On the other hand, for 2-D and 3-D problems, A
is a rectangular matrix, so that singular value decomposition will be used to determine its condition
number.

3.3 Convergence Analysis of Adaptive linearization scheme

Here, we study the the convergence behavior of our adaptive linearization scheme. From Berga-
maschi and Putti [34], as Lm+1,s

i approaches θ̇(ψm+1,s
i ), our adaptive linearization scheme essen-

tially becomes the Newton’s scheme, which exhibits quadratic convergence. In general, the con-
vergence of our adaptive linearization scheme formulation of Equation (8) is characterized in The-
orem 3.1. To show this, the idea is to leverage Definition 1.1 and find ψm+1,s+1

i ∈ H1
0 (V ) given

ψmi , ψ
m+1,s
i ∈ H1

0 (V ) such that:〈
θ(ψm+1,s+1)− θ(ψm), v

〉
Vi

+∆tLm+1,s
i (ψm+1,s+1

i − ψm+1,s
i )v +

〈
S(ψm+1,s+1), v

〉
Vi

= −∆t
〈
K

(
θ(ψm+1)

)
∇(ψm+1,s+1 + z),∇v

〉
Vi

(12)

holds for any v ∈ H1
0 (V ). We remark that, unlike previous proofs [36, 37] are based on several

restrictive assumptions, some of which may not be valid in reality, our proof of convergence follows
a distinct approach that is intuitive and flexible, as it does not involve any additional assumptions.

Theorem 3.1. {ψm+1,s
i }s converges to ψm+1

i ∈ H1
0 (V ) for m = 0, 1, . . . , ⌈ T∆t⌉−1 and i = 1, . . . , N .

Proof. First, we state two general observations for water infiltration in soil:

Observation 1: There exists a scaling factor 0 < γs,0 < ∞ such that ||ψm+1,s+1
i − ψm+1

i || <
γs,0||ψm+1,s

i − ψm+1
i ||. In other words, ||ψm+1,s+1

i − ψm+1
i || < +∞.

Observation 2: θ̇(ψ) = dθ
dψ |ψm+1,s

i
> 0, which is valid in most WRC models (see Table 1). Similarly,

Ṡ(ψ) = dS
dθ

dθ
dψ |ψm+1,s

i
≥ 0 in the region between the start and optimal root water

extraction [47, 48].
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First, we subtract Equation (3) from Equation (12) and obtain:〈
θ(ψm+1,s+1)− θ(ψm+1), v

〉
Vi

+∆tLm+1,s
i (ψm+1,s+1

i − ψm+1,s
i )v

+
〈
S(ψm+1,s+1)− S(ψm+1), v

〉
Vi

= −∆t
〈
K

(
θ(ψm+1)

)
∇(ψm+1,s+1 − ψm+1),∇v

〉
Vi
.

(13)

Since ψm+1,s+1
i −ψm+1,s

i = (ψm+1,s+1
i −ψm+1

i )− (ψm+1,s
i −ψm+1

i ), Equation (13) can be rewritten
as:

∆tLm+1,s
i (ψm+1,s

i − ψm+1
i )v =

〈
θ(ψm+1,s+1)− θ(ψm+1), v

〉
Vi

+
〈
S(ψm+1,s+1)− S(ψm+1), v

〉
Vi

∆tLm+1,s
i (ψm+1,s+1

i − ψm+1
i )v +∆t

〈
K

(
θ(ψm+1)

)
∇(ψm+1,s+1 − ψm+1),∇v

〉
Vi
.

(14)

Let v = ψm+1,s+1
i −ψm+1

i , then from Observation 1, the LHS of Equation (14) can be bounded by:

∆tLm+1,s
i (ψm+1,s

i − ψm+1
i )v = ∆tLm+1,s

i (ψm+1,s
i − ψm+1

i )(ψm+1,s+1
i − ψm+1

i )

<
γs,0∆tL

m+1,s
i

vol(Vi)
(ψm+1,s

i − ψm+1
i )2vol(Vi)

=
γs,0∆tL

m+1,s
i

vol(Vi)
||ψm+1,s

i − ψm+1
i ||2.

(15)

Similarly, for the third term on the RHS of Equation (14), we have:

∆tLm+1,s
i (ψm+1,s+1

i − ψm+1
i )v = ∆tLm+1,s

i (ψm+1,s+1
i − ψm+1

i )2

=
∆tLm+1,s

i

vol(Vi)
||ψm+1,s+1

i − ψm+1
i ||2.

(16)

By the mean value theorem, the first and second terms on the RHS of Equation (14) can be written
as:〈

θ(ψm+1,s+1)− θ(ψm+1), v
〉
Vi

= θ̇(ξθ)
〈
ψm+1,s+1 − ψm+1, v

〉
Vi

= θ̇(ξθ)||ψm+1,s+1
i − ψm+1

i ||2;〈
S(ψm+1,s+1)− S(ψm+1), v

〉
Vi

= Ṡ(ξS)||ψm+1,s+1
i − ψm+1

i ||2;
(17)

for ξθ, ξS ∈ (ψm+1,s+1
i , ψm+1

i ).
Lastly, for the last term on the RHS of Equation (14), we have:

∆t
〈
K

(
θ(ψm+1)

)
∇(ψm+1,s+1 − ψm+1),∇v

〉
Vi

= ∆tK
(
θ(ψm+1

i )
)
||∇ψm+1,s+1

i −∇ψm+1
i ||2. (18)

Combining Equations (15) through (18) leads to:

||ψm+1,s+1
i − ψm+1

i || <

√
γs,0L

m+1,s
i ∆t

Lm+1,s
i ∆t+ (θ̇(ξθ) + Ṡ(ξS))vol(Vi)

||ψm+1,s
i − ψm+1

i ||

<
√
γs,0||ψm+1,s

i − ψm+1
i ||.

(19)

Let γs,1 :=
√
γs,0 and replace γs,0 in Observation 1 by γs,1. One can repeat the derivations above

to obtain ||ψm+1,s+1
i − ψm+1

i || < √
γs,1||ψm+1,s

i − ψm+1
i ||. We can further define γs,2 =

√
γs,1, and

so on, until we obtain a scaling factor γs < 1 such that ||ψm+1,s+1
i −ψm+1

i || < γs||ψm+1,s
i −ψm+1

i ||.
With this, one can show that for a given tolerance ϵ > 0, there exists S ∈ N+ such that:

||ψm+1,s+1
i − ψm+1

i || < γs||ψm+1,s
i − ψm+1

i || < γsγs−1||ψm+1,s−1
i − ψm+1

i || < · · ·

<

s∏
k=1

γk||ψm+1,1
i − ψm+1

i || <
(
max
1≤k≤s

γk

)s
||ψm+1,1

i − ψm+1
i || < ϵ ∀s ≥ S,

which is consistent with the convergence criterion. This completes the proof.
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4 Data-driven Global Random Walk (DRW) Algorithm

Once the adaptive linearization scheme for the Richards equation is established, we integrate it
with our DRW algorithm to enhance the solution accuracy and mass conservation performance. In
this section, we discuss what DRW is and how it is implemented to solve the adaptive linearization
scheme formulation of the Richards equation discretized by FVM. In Section 5, we illustrate the
need and benefits of our DRW algorithm through case studies.

4.1 Formulation and Convergence of DRW Algorithm

To derive the DRW algorithm for the adaptively linearized Richards equation after it is discretized,
let nm,si be the number of water molecules in cell Vi at iteration step s and time step m, and δnm,si,j

be the number of particles moving from the cell Vi to the neighboring cell j ∈ Ni. Clearly, we have:

nm+1,s
i = δnm+1,s

i,i +
∑
j∈Ni

δnm+1,s
j,i . (20)

For instance, for the 1-D case, we can write nm+1,s
i = δnm+1,s

i,i + δnm+1,s
i+1,i + δnm+1,s

i−1,i for every
i = 1, . . . , N . Thus, as long as the relationship between pressure head ψm,si and the number
of particles nm,si is established, Equation (20) can be incorporated into our adaptive linearization
scheme formulation of Equation (8) to solve the Richards equation iteratively. As pointed out earlier,
existing global random walk (GRW) formulations (e.g., [42]) are based on the key assumption that
ψm,si is proportional to nm,si for any iteration s and time step m. Although this assumption is shown
to be valid for diffusion equations [44], the Richards equation is a convection-diffusion equation.
Thus, it remains theoretically unclear whether this assumption can be extended to the Richards
equation. In fact, we will show in Section 5 that, for the Richards equation, the actual relationship
between ψm,si and nm,si is not only nonlinear, but may also be nonsmooth or non-explicit.

Therefore, in this work, we propose a data-driven approach to accurately approximate the non-
linear map and inverse map between ψm,si and nm,si and integrate this approach with the GRW
framework. The resulting data-driven global random walk (DRW) algorithm uses two neural net-
works to learn the two relationships. A neural network is capable of approximating any function
provided that it contains enough neurons [49, 50]. Depending on the problem settings, the desired
choices of optimal optimizer, number of hidden layers, and activation functions can vary. Based on
our extensive research, we find that a simple three-layer neural network with 256 neurons in each
layer achieves the best performance for most 1-D through 3-D problems compared to other more
complex neural network architectures (e.g., LSTM). Also, we find that stochastic gradient decent
(SGD) optimizer often outperforms others (e.g., Adam or RMSProp). Overall, one neural network,
denoted as f̂NN, learns the map f : nm,si → ψm,si , whereas the other neural network, denoted as f̂−1

NN
learns the inverse map f−1 : ψm,si → nm,si .

When neural network training is complete, the following DRW formulation of the adaptive
linearization scheme of the Richards equation incorporates f̂−1

NN in Equation (8):

nm+1,s+1
i = nm+1,s

i +
1

Lm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

e · nωi,j

nm+1,s
j − nm+1,s

i

dist(Vj , Vi)
Aωi,j + f̂−1

NN(J), (21)

where J = 1

Lm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j e·nωi,j

zm+1,s
j −zm+1,s

i

dist(Vj ,Vi)
Aωi,j− 1

Lm+1,s
i

(
θm+1,s
i −θmi

∆t + S(ψm+1,s
i )

)
vol(Vi).

To solve Equation (21), we will adopt a similar strategy as in Equation (10) to automatically select
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the appropriate linearization parameter Lm+1,s
i . Note that in actual implementation, we typically

choose Lm+1,s
i at its lower bound.

Similarly, one can extend Theorem 3.1 and derive a similar convergence property for the sequence
{nm+1,s

i }s:

Theorem 4.1. {nm+1,s
i }s converges to nm+1

i ∈ H1
0 (V ) for m = 0, 1, . . . , ⌈ T∆t⌉− 1 and i = 1, . . . , N .

Once the converged solutions nm+1
i are obtained, they will be converted to ψm+1

i using f̂NN.

4.2 Implementation of DRW Algorithm

Two steps, namely neural network training and solution process, are involved in the DRW algorithm
to solve the discretized Richards equation. As discussed above, in neural network training, two
neural networks, namely f̂NN and f̂−1

NN, are trained to approximate f and f−1, respectively. First,
for each cell Vi and time step m, we obtain nm,Si from off-the-shelf or in-house developed GRW
solvers (e.g., [42]), which adopt standard linearization scheme using a static linearization parameter.
Here, S is the user-specified total iteration number. The corresponding ψm,Si solutions are obtained
from the adaptive linearization scheme of Equation (8). The resulting set of solution pairs, S ={(
ψm,Si , nm,Si

)}
i,m

, form the original set of “reference solutions”.
Next, we apply data augmentation to S to significantly increase the size of the training set. This

is achieved by introducing Gaussian noice Zq ∼ N (0, σ2q ) with different variances σ21, . . . , σ2Q to each
and every reference solution in S. In other words, ψm,Si,q := ψm,Si +Zq and nm,Si,q := nm,Si +Zq. After
data augmentation, the resulting expanded set of reference solutions

{
(ψm,Si,q , nm,Si,q )

}
i,m,q

, denoted as
S ′, will be used for neural network training. In Section 5.1, we will show that introducing Gaussian
noise can greatly reduce the biases of reference solutions and enhance generalization performance
[51], thereby significantly improving the accuracy of numerical solutions.

Once offline training (only one time) is complete, the initial and boundary conditions of the
Richards equation will be mapped to the number of particles using f̂−1

NN. Then, starting from m = 0

(initial condition), we can leverage f̂−1
NN and solve Equation (21) is solved iteratively to obtain a

sequence {nm+1,s
i }s for each new time step m + 1 and cell Vi. To monitor the convergence of

{nm+1,s
i }s, we define the relative error REs as:

REs :=

∣∣∣∣∣nm+1,s+1
i − nm+1,s

i

nm+1,s+1
i

∣∣∣∣∣ . (22)

Once REs is below a user-specified tolerance tol (typically in the order of 10−6), we declare
convergence of {nm+1,s

i }s to nm+1
i . With this, we can determine the converged ψm+1

i using f̂NN,
followed by obtaining other physical quantities such as soil moisture content θm+1

i and qm+1
i from

the WRC and HCF models (Table 1) and Equation (1).
Furthermore, it is worth mentioning that, when neural network training for a specific problem

setting (e.g., boundary condition and initial condition) is complete, the trained neural networks can
be saved as a pretrained model. As we encounter a new problem setting, the pretrained model can
be quickly trained with a small number of epochs (typically no more than 100) before it can be
deployed to solve the new problem.

5 Case Studies

We have now completed the formulation of our DRW-based solution algorithm for the Richards
equation. In this section, we systematically validate our DRW numerical framework on selected
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1-D through 3-D benchmark problems modified from the literature [19, 52, 53, 54, 55]. Specifically,
we extensively study the 1-D benchmark problem of Celia et al. [19] to demonstrate the need and
benefits of adaptive linearization scheme, data-driven global random walk, and data augmentation.
Also, using this problem as a benchmark, we demonstrate the accuracy of our solution algorithm
with respect to state-of-the-art solvers. In the 1-D layered soil case study proposed by Berardi et
al. [54], we show that our solution algorithm is capable of handling discontinuities in soil properties
and modeling the infiltration process through the interface of two different soils. In the 2-D case
study adopted from Gąsiorowski and Kolerski [52], we show that our DRW algorithm can better
satisfy mass balance embedded in the Richards equation. In the 3-D case study adopted from
Tracy [53] in which an analytical solution to the Richards equation exists, we show that our DRW
algorithm produces much more accurate solutions compared to GRW solvers. Finally, we study
a 3-D problem adopted from Orouskhani et al. [55] featuring an actual center-pivot system and
validate the accuracy and robustness of our DRW algorithm in modeling real-world precipitation
and irrigation scenarios for a long period of time.

5.1 A 1-D Benchmark Problem

Here, we study the 1-D benchmark problem over a 40 cm deep soil presented by Celia et al. [19].
The HCF and WRC adopt the model of Haverkamp et al. [8] (see Table 1). And the parameters are
listed in Table 5.1. The initial condition is given by ψ(z, 0) = −61.5 cm, whereas the two boundary
conditions are ψ(40 cm, t) = −20.7 cm, ψ(0, t) = −61.5 cm, respectively [8]. This benchmark
problem ignores the sink term.

Soil-specific Parameters Values Units

Saturated hydraulic conductivity, Ks 0.00944 cm/s
Saturated soil moisture content, θs 0.287 –
Residual soil moisture content, θr 0.075 –

α in Haverkamp’s model 1.611× 106 cm
A in Haverkamp’s model 1.175× 106 cm
β in Haverkamp’s model 3.96 –
γ in Haverkamp’s model 4.74 –

Total time, T 360 s

Table 2: soil-specific parameters and their values used in the 1-D case study of Celia et al. [19]
based on the empirical model developed by Haverkamp et al. [8].

Through this 1-D illustrative example, we will highlight the benefits of (a) adopting an adaptive
linearization scheme as opposed to standard linearization scheme, (b) implementing the DRW al-
gorithm as opposed to GRW algorithms, and (c) integrating the adaptive linearization scheme with
DRW in a holistic numerical framework.

5.1.1 The Need for Adaptive Linearization Scheme

To illustrate how adaptive linearization scheme improves convergence and accuracy of conventional
linearization schemes, we compare the pressure head solution profiles at t = T = 360 seconds
obtained by different linearization parameters after (a) S = 500 iterations and (b) S = 10, 000
iterations. We adopt a spatial grid containing 101 mesh points (∆z = 0.4 cm) and a temporal grid
of ∆t = 1 second. As shown in Figure 1, when using standard linearization scheme, the choice of
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(a) (b)
Figure 1: Comparison of pressure head solution profiles after (a) S = 500 and (b) S = 10000
iterations for the 1-D benchmark problem [19] using standard and our adaptive linearization schemes
(Equation (8)). The solutions obtained from Celia et al. [19] based on very fine space and time
steps are marked as the “ground truth solutions”.

linearization parameter and the total number of iterations can impact the solution accuracy and
algorithm stability significantly. For example, when the linearization parameter is too small (e.g.,
L = 0.5 for this problem), the stability of the linearization scheme can be severely affected (as
illustrated by the zigzag pressure head profile towards z = 40 cm). Another key observation is
that, increasing the total number of iterations sometimes deteriorates solution accuracy of standard
linearization schemes. These observations pose a practical challenge to use standard linearization
scheme for solving the Richards equation, especially when the ground truth solutions are absent,
as identifying the optimal linearization parameter and total number of iterations that would yield
accurate solutions will not be possible without referring to ground truth solutions.

Unlike standard linearization schemes, by implementing the adaptive linearization scheme of
Equation (8) (note that DRW algorithm is not yet introduced), we observe that the pressure head
solutions are close to the ground truth solutions even when only a limited number of iterations
(S = 500) is used. Furthermore, as the number of iterations increases, the solution accuracy actually
improves. This makes adaptive linearization scheme a robust and reliable numerical scheme that
produce solutions that are close to true solutions in one shot. Also, it is worth noting that our
adaptive linearization scheme successfully bypasses the singularity issue as Lm+1,s

i approaches to 0
and correctly calculates the pressure head solutions for z ∈ [0, 20 cm] where θ̇(ψ) becomes small.

5.1.2 The Need for Data-driven Global Random Walk

To generate the reference solutions, we consider a coarse spatial discretization containing 40 cells
(i.e., grid size ∆z = 1 cm) and solve for T = 40 seconds. Therefore, we obtain 1,640 pressure head
solutions (41 mesh points × 40 time steps) using the finite difference method developed by Celia et
al. [19]. On the other hand, the number of particles solutions are obtained from the GRW solver
developed by Suciu et al. [42] for different static linearization parameter values ranging from 0.5 to
15. To obtain the initial and boundary conditions in terms of the number of particles, we multiply
these conditions, originally represented in terms of pressure head, by a factor of 1010 particles per
cm of pressure head.
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Figure 2: The relationships between ψm,Si and the number of particles nm,Si at S = 20, 000 iterations
to be used by our DRW algorithm (black filled circles) and the GRW solver (red empty circles),
respectively.

As discussed earlier, a key underlying assumption underneath existing GRW solvers is that ψm,si

is proportional to nm,si . To validate this assumption, in Figure 2, we plot 1,640 original reference
solutions prior to performing data augmentation. It is clear from Figure 2 that, while the magnitude
of pressure head shows roughly an increasing trend with respect to the number of particles present in
a cell, the exact relationship between the number of particles and pressure head is neither smooth nor
explicit. Interestingly, we do observe close-to-linear trends in specific regions of pressure head values
(i.e., between −20 and −30 cm, and between −50 and −60 cm). By examining Figure 1, one can see
that these two regions correspond to the two ends of the spatial domain. Indeed, towards both ends,
∂ψ
∂z is close to 0, indicating that the advection term in Equation (1), ∇ · (K∇z) = ∂K

∂z = ∂K
∂ψ

∂ψ
∂z ,

vanishes. Thus, the Richards equation essentially becomes the diffusion equation, in which the
proportionality assumption between pressure head and the number of particles is shown to be valid
[44]. However, for the rest of the region where pressure head changes rapidly with respect to
depth, this assumption is no longer valid, calling for the use of data-driven methods, such as neural
network approximation used in our DRW algorithm, to effectively learn the mapping and inverse
maps between pressure head and the number of particles.

5.1.3 Improving DRW Algorithm Performance via Data Augmentation

To implement our DRW algorithm, we use two fully-connected neural networks, each containing 3
hidden layers and 256 neurons in each layer, to learn f and f−1. We use the leaky ReLU activation
function [56] and stochastic gradient descent (SGD) optimizer with a learning rate of 0.001. While
the original dataset used for neural network training contains 1,640 reference solutions, we also
perform data augmentation to increase dataset size. To do this, we use the GRW solver [42]
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Figure 3: Pressure head profiles synthesized using different numerical methods and different training
data. Specifically, curves named σ = 0, 0.5, 1 are calculated from our DRW algorithm, in which only
1,640 reference solutions (with Gaussian noise added for σ = 0.1, 0.5, 1) are used for neural network
training. The purple curve is the final DRW pressure head profile obtained by considering the full
17,104 data points for neural network training through data augmentation.

to obtain the number of particles solutions. We then make multiple copies of the pressure head
solutions and append each copy to the number of particles solutions obtained from the GRW solver
[42]. Finally, we add zero-mean Gaussian noises with standard deviation varying from 0.1 to 0.5
to these augmented reference solutions. Overall, this leads to a total of 17,104 sets of reference
solutions for neural network training and validation. Note that, as previously discussed, the original
and augmented reference solutions are generated using a coarse grid (∆z = 1 cm). Thus, they can
be obtained relatively efficiently. On the other hand, in the solution step, we will use a more refined
grid containing 101 mesh points (∆z = 0.4 cm).

To understand the impact of data augmentation to the solution quality of our DRW algorithm,
we examine several cases as illustrated in Figure 3. First, we observe that, compared to directly
using the original reference solutions for neural network training, simply introducing Gaussian noise
to the reference solutions can significantly improve the solution accuracy of our DRW algorithm.
Note that these augmented reference solutions come from from a small set of original reference
solutions generated from a coarse grid. This “coarse-to-fine” approach can therefore enhance the
solution accuracy of our DRW algorithm without requiring a large amount of high-accuracy, fine-
mesh training data. Furthermore, when augmented reference solutions are used for training, only
100 additional epochs are needed to retrain the neural networks that are already trained using
the original reference solutions . Second, we notice that that there is almost no difference in final
pressure head solution profile when Gaussian noises of different magnitudes are directly added to
the original reference solutions without augmenting them together. Third, increasing the size of
training data (from 1,640 to 17,104) via data augmentation of original reference solutions is an
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effective way to improve the solution accuracy of our DRW algorithm, as the pressure head profile
matches very well with the ground truth solution.

5.1.4 Incorporating Adaptive Linearization Scheme in GRW Framework

Figure 4: Comparison of pressure head solution profiles produced from adaptive linearization scheme
itself (Equation (8)) and from the integrated DRW framework coupled with adaptive linearization
scheme (Equation (21)).

From Figure 4, it is clear that incorporating adaptive linearization scheme in the DRW framework
synergistically improves the overall solution accuracy of the Richards equation, especially in the
region where pressure head changes rapidly with respect to depth (i.e., between z = 20 to 30 cm).
On the other hand, we observe slight discrepancy in pressure head solution close to z = 40 cm
when comparing our DRW algorithm with ground-truth solutions, whereas the solution produced
by adaptive linearization scheme alone matches perfectly with ground-truth solution at z = 40 cm,
which corresponds to one of the boundary conditions. Similar discrepancies have been observed in
Figure 3 as well. We believe that this is due to the fact that f̂NN and f̂−1

NN can only approximate the
nonlinear maps of f and f−1, respectively, and the resulting induced error causes discrepancies in
pressure head solutions even at the boundaries. To overcome this limitation, one way is to increase
the size of the augmented reference solutions for neural network training. This is supported by
the observations in Figure 3, in which the pressure head solutions get closer to the ground truth
solutions at z = 40 cm as data augmentation takes place. Another approach is to switch from DRW
(Equation (21)) to adaptive linearization scheme only (Equation (8)) when solving for the boundary
conditions. We leave this research for future work.

5.1.5 Comparison with Benchmark Solvers

We compare our DRW solver with benchmark algorithms based on computational performance and
solution accuracy under two scenarios. In Scenario 1, we set the error tolerance tol to be 3.2×10−5,
whereas in Scenario 2, we set the total number of iterations S = 500. In terms of computational
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efficiency, we use two metrics. The first metric is the relative error RE defined in Equation (22),
which measures speed of convergence. The second metric is the condition number of matrix A
defined in Equation (11), which measures the sensitivity of linearization scheme subject to small
perturbations. These results are summarized in Tables 3 through 6.

Algorithm Average number of iterations needed (Average final RE reached)
Standard linearization scheme Adaptive linearization scheme

GRW [42] 736 (3.1999× 10−5) 1 (9.2873× 10−6)
DRW 2 (3.1975× 10−5) 1 (8.5403× 10−6)

Table 3: Comparison of average number of iterations across all discretized cells and time steps
needed to reach the specified tol (Scenario 1) for GRW and DRW algorithms that implement stan-
dard or adaptive linearization scheme. In standard linearization scheme, we use the optimal static
linearization parameter of 3.5 identified by trial-and-error process.

Algorithm Average final RE reached
Standard linearization scheme Adaptive linearization scheme

GRW [42] 4.1130× 10−5 4.8824× 10−7

DRW 3.9287× 10−5 5.2006× 10−7

Table 4: Comparison of average RE after 500 iterations (Scenario 2) across all discretized cells
and time steps for GRW and DRW algorithms that implement standard or adaptive linearization
scheme. We also use the optimal static linearization parameter of 3.5 when implementing the
standard linearization scheme.

Algorithm Average condition number of A obtained from [45] (Scenario 1)
Standard linearization scheme Adaptive linearization scheme

GRW [42] 1.7666 1.0064
DRW 1.7472 1.0074

Table 5: Comparison of average condition number under Scenario 1 across all time steps (as Equation
(11) already considers all discretized cells) for GRW and DRW algorithms that implement standard
or adaptive linearization scheme.

Algorithm Average condition number of A obtained from [45] (Scenario 2)
Standard linearization scheme Adaptive linearization scheme

GRW [42] 1.7206 1.0064
DRW 1.7137 1.0074

Table 6: Comparison of average condition number under Scenario 2 across all time steps for GRW
and DRW algorithms that implement standard or adaptive linearization scheme.

From Tables 3 and 4, it is clear that, compared to using standard linearization scheme, imple-
menting adaptive linearization scheme can greatly accelerate convergence for both in GRW and DRW
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solvers. From Tables 5 and Table 6, we see that implementing adaptive linearization scheme also
significantly improves the stability of GRW and DRW based solvers, as matrix A is well-conditioned.
Both observations suggest that adaptivie linearization scheme outperforms standard linearization
in enhancing convergence behavior of both GRW and DRW algorithms and is a powerful iterative
procedure to solve the Richards equation.

In terms of accuracy, we also consider two metrics. The first metric is the discrepancy against
ground truth solutions of Celia et al. [19]. The comparison results are illustrated in Figure 5. And
the second metric is the solver’s performance in preserving the mass (moisture) balance, which is
quantified by the mass balance measure MB defined in [19]:

MB =
total additional mass in the domain

total water flux into the domain
. (23)

Figure 5: Pressure head profiles at t = T = 360 sec obtained by different algorithms under (left)
Scenario 1, and (right) Scenario 2. Our DRW algorithm incorporates adaptive linearization scheme,
while the GRW algorithm adopts the standard linearization scheme (as implemented in Suciu et al.
[42]). Note that physics-informed neural network (PINN) method is not an iterative method, thus
the solution profile is the same under both scenarios.

In Figure 5, we compare the pressure head profiles obtained from our DRW algorithm (which
implements adaptive linearization scheme), the GRW algorithm, and a state-of-the-art physics-
informed neural network (PINN) method based on the work of Bandai and Ghezzehei [57], against
the ground truth solution [19]. Clearly, as more iterations are used, both GRW and DRW solu-
tions move closer to ground truth solutions. However, in both scenarios, compared with the DRW
solutions, PINN and GRW solutions are further apart from ground truth solutions.

In our earlier work [28], we illustrated the DRW algorithm’s ability to accurately capture un-
derlying physics of water flow dynamics in soil, including the relationships among pressure head,
soil moisture, and water flux. Extending these observations, we compare the mass conservation
performance among various algorithms.

As summarized in Table 7, among all numerical methods studied, in both Scenarios 1 and 2, our
DRW algorithm achieves the highest MB values while using the coarsest time step, which is more
computationally efficient than using finer time steps. Similarly, Table 8 shows that, compared to
other numerical methods, our DRW algorithm achieves the highest MB values when fixing ∆t to be
the same. In addition, given more iterations, the MB value in all iterative methods will improve.
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Method used Scenario ∆t (sec) MB

GRW algorithm [42] 1 16.79 96.46%
DRW algorithm 1 18.68 98.92%98.92%98.92%
GRW algorithm 2 16.87 62.12%
DRW algorithm 2 18.20 99.28%99.28%99.28%
Celia et al. [19] N/A 10 95.00%

Table 7: MB results of different numerical methods. Note that here, ∆t is determined for each
method by the heuristic formula of Equation 5 in [42].

Method used Scenario MB (∆t = 10 sec)

GRW algorithm [42] 1 98.00%
DRW algorithm 1 99.47%99.47%99.47%
GRW algorithm 2 80.37%
DRW algorithm 2 99.85%99.85%99.85%
Celia et al. [19] N/A 95.00%

Table 8: MB results of different numerical methods, in which a common ∆t = 10 sec is used for all
numerical methods.

This is also consistent with how the accuracy of the pressure head profiles improves with increasing
iterations when comparing Figure 5a with 5b.

5.2 A 1-D Layered Soil Benchmark Problem

To investigate how robust our DRW algorithm is in handling realistic problems, we study the classic
Hills’ problem [58] that involves the 1-D water infiltration into two layers of very dry soil, each having
a depth of 30 cm. The top layer (layer 1) corresponds to Berino loamy fine sand and the bottom
layer (layer 2) corresponds to Gledale clay loam. The WRC and HCF follow the Mualem-van
Genutchen model. The soil-specific parameters are extracted from [58] and are listed in Table 9.
This benchmark problem also ignores the sink term.

As pointed out by Berardi et al. [54], the dry condition is the most challenging physical case
to model from a numerical point of view. The presence of discontinuous interface across the two
soil layers presents yet another complication to this problem. And we simulate the problem up to a
total time of T = 7.5 minutes. For neural network training, we generate a total of 30,500 reference
solutions by the GRW solver [42] using the optimal static linearization parameter of 5.

Soil θr θs α n Ks

Berino loamy fine sand 0.029 0.366 0.028 2.239 541.0
Gledale clay loam 0.106 0.469 0.010 1.395 13.10

Table 9: Soil-specific parameters and constants used in the layered soil problem of Hills et al. [58].

Figure 6 illustrates the soil moisture profile at three different times obtained using our DRW
algorithm, the GRW solver, and the Transversal Method of Lines (TMOL) [54] which is considered
the current state-of-the-art algorithm for this problem. All three approaches adopt the same dis-
cretized temporal (∆t = 1 second) and spatial steps (∆z = 1 cm). We set the REs = 10−5 as the
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common stopping criteria for every cell and time step. From Figure 6, we observe that our DRW
algorithm is capable of successfully simulating this challenging problem with discontinuities in soil
properties at the interface. The soil moisture solutions obtained by our DRW algorithm are also
consistent with existing solvers. In fact, compared to the GRW solver, the solutions produced by
our DRW algorithm are closer to the state-of-the-art TMOL solutions.

Figure 6: Comparison of soil moisture content profile obtained different methods with ∆z = 1 cm
under (left) DRW, GRW and TMOL at t = T = 3 sec and t = T = 2.5 min and (right) DRW, GRW
and TMOL at t = T = 7.5 min. Note that TMOL by Berardi et al. [54] is not an iterative method.
GRW and DRW are implemented for 500 iterations at every time step.

5.3 A 2-D Benchmark Problem

In the second example, we study the 2-D Richards equation for an infiltration process in a 1m× 1m
loam soil field [52]. The spatial steps in both horizontal (∆x) and vertical (∆z) directions are set to
be 0.02 m. And the time step used for this comparison study is ∆t = 10 seconds. The Mualem-van
Genuchten model (see Table 1) was used in this case study. And the soil-specific parameters, given
by Carsel and Parrish [59], are listed in Table 10. This problem also ignores the sink term.

Property Symbol Value Units

Saturated hydraulic conductivity Ks 2.89× 10−6 m/s
Saturated water content θs 0.43 –
Residual water content θr 0.078 –
van Genuchten Constant α 3.6 m−1

van Genuchten Constant n 1.56 –
Total time T 1.26× 104 s

Table 10: Soil-specific parameters and constants used in 2-D case study.

The initial and boundary conditions of this case study are given by:
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Initial condition: ψ(x, z, t = 0 s) =

{
0 m, x ∈ [0.46, 0.54] m, z = 0 m,

−10 m, otherwise.

Boundary condition: ψ(x ∈ [0.46, 0.54] m, z = 0, t) = 0 m, no slip conditions for other boundaries.

Note that the initial and boundary conditions are symmetric along x = 0.5 m. We first obtain
1,734 original reference solutions for neural network training from the 2-D GRW solver [42], which
implements the standard linearization scheme (optimal linearization parameter is 0.5) and a spatial
step of 0.05 m. Then, we apply data augmentation by adding Gaussian noises with σ2 values
ranging from 0.1 to 0.5 to generate a total of 26,010 reference solutions (which also contain the
original reference solutions). These reference solutions are used to train the two neural networks for
our DRW algorithm. Each neural network contains 2 hidden layers and 25 neurons in each layer.
ReLU activation function is adopted in each layer, and each neural network is trained by Levenberg-
Marquardt optimization for 1,000 epochs. We set the total iteration number to be S = 500, at which
the relative error calculated using Equation (22) for our DRW algorithm and the GRW solver are
given by 3.675 × 10−6 and 1.094 × 10−5, respectively. This indicates that our DRW algorithm
achieves faster convergence per iteration than the GRW solvers.

Meanwhile, we also simulate this 2-D problem using HYDRUS 2D software (version 5.0) [60] and
compare the pressure head results at t = T = 1.26×104 sec with our DRW algorithm and the GRW
solver. From Figure 7, we can draw two observations. First, the pressure head solution profiles for
both GRW and DRW algorithms appear to be symmetric along x = 0.5 m, whereas HYDRUS 2D
shows a clear asymmetric profile. As pointed out earlier, since the initial and boundary conditions
are symmetric along x = 0.5 m, symmetry in the pressure head solutions is expected. This suggests
that both GRW and DRW based solvers can capture some degree of underlying physics of the original
problem. Second, despite the assymetric behavior in pressure head profile, the size of isolines for
the HYDRUS 2D simulation result is more similar to our DRW solution than to the GRW solver
solution. This observation is also consistent with the information presented in Figure 9a. In fact,
both observations can be carried over to the soil moisture profile as well, as shown in Figures 8 and
9b.

Figure 7: Pressure head solution profile obtained from three numerical methods: (left) GRW solver
(linearization parameter = 0.5); (middle) HYDRUS 2D software; (right) our DRW algorithm.

On the other hand, when comparing the water flux results, we see from Figure 10 that the GRW
solution no longer preserves the symmetry of water flux profile along the horizontal direction. In
other words, among the three numerical methods considered in this case study, our DRW algorithm
achieves the best performance in terms of preserving the symmetry implied by the problem. This
result is also consistent with the mass conservation calculations using Equation (23), as our DRW
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Figure 8: Soil moisture solution profile obtained from three numerical methods: (left) GRW solver
(linearization parameter = 0.5); (middle) HYDRUS 2D software; (right) our DRW algorithm.

DRW DRW

Figure 9: Cross-sectional view (x = 0.5m) of: (left) the pressure head profile; (right) soil moisture
profile.

algorithm achieves significantly higher MB value compared to other benchmark solver (see Table
11).

Figure 10: Magnitude of water flux along the horizontal (x-axis) direction for three numerical
solvers: (left) GRW solver (linearization parameter = 0.5); (middle) HYDRUS 2D software; (right)
our DRW algorithm. Note that, along the horizontal direction, the water flux is negative in [0, 0.5]
m and positive in (0.5, 1] m.
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Figure 11: Magnitude of water flux along the vertical (z-axis) direction for three numerical solvers:
(left) GRW solver (linearization parameter = 0.5); (middle) HYDRUS 2D software; (right) our
DRW algorithm.

Method MB (∆t = 10 sec)

GRW algorithm 63.93%
HYDRUS 2D simulation 62.45%
DRW algorithm 73.07%73.07%73.07%

Table 11: MB results of three methods at x = 0.5 m.

5.4 A 3-D Benchmark Problem with Analytical Solutions

Lastly, we consider a 3-D water infiltration example where the analytical solution exists [53]. In
this example, V is a 3-D cuboid [0, a] × [0, b] × [0, c]. The hydraulic conductivity function follows
the Gardner’s model [11] (see Table 1). The initial condition is given by:

ψ(x, y, z, t = 0) = hr,

where hr is a constant. And the boundary condition is given by:

ψ(x, y, z = c, t) =
1

α
ln
[
exp (αhr) + h0 sin

πx

a
sin

πy

b

]
,

where h0 = 1− exp (αhr). Ignoring the sink term, the pressure head solution for this problem was
derived in [53] as:

ψ =
1

α
ln

{
exp (αhr) + h0 sin

πx

a
sin

πy

b
exp

(
α(c− z)

2

)[sinhβz
sinhβc

+
2

zd

∞∑
k=1

(−1)k
λk
γ

sin (λkz) exp (−rt)
]}
,

(25)

where d = α(θs−θr)
Ks

, λk = kπ
c , γ =

λ2k+β
2

c and β =
√

α2

4 + (πa )
2 + (πb )

2.
The infinite series in Equation (5.4) is convergent by alternating series test, and we consider only

the first 1000 terms of this series. Note from Equation (5.4) that the analytical solution depends
only on the saturated (θs) and residual soil moisture content (θs). And the Mualem-van Genuchten
correlation [9, 10] tabulated in Table 1 was used for the water retention curve θ(ψ). The constants
and parameters used in this case study are listed in Table 12.

Our goal is to compare the accuracy of our DRW algorithm with GRW solvers using this ana-
lytical solution as the benchmark. To the best of our knowledge, there exists no GRW solver for
3-D Richards equation in the literature. Thus, we develop our own 3-D GRW-based solver in house

22



Property Symbol Value Units

Saturated hydraulic conductivity Ks 1.1 m/s
Saturated soil moisture θs 0.5 –
Residual soil moisture θr 0 –
Parameter in Gardner’s model α 0.1 m−1

Parameter in intial and boundary conditions hr −15.24 m
Length of V a 2 m
Width of V b 2 m
Depth of V c 2 m
Total time T 86,400 sec

Table 12: Soil-specific parameters and constants used in the 3-D case study.

to allow for comparison. We obtain 1,734 original reference solutions using the in-house developed
3-D GRW solver [42] that implements the standard linearization scheme with the optimal static
linearization parameter of 0.5. Then, data augmentation is applied by introducing Gaussian noise,
resulting in a total of 8,820 data points (which include the original reference solutions) for neural
network training. For both GRW and DRW algorithms, we set the tolerance to be 10−9, which can
be achieved in less than 500 iterations for each time step.

Figure 12: Pressure head solution at z = 0.5 m of different methods: (A) analytical solution, (B)
DRW algorithm, (C) the relative error between analytical and DRW based solutions, (D) GRW
solver (L = 0.5) and (E) the relative error between analytical solution and GRW based solutions.

We examine and compare the pressure head solutions at z = 0.5 and 1m, which are shown in
Figure 12 and 13, respectively. We quantify the differences between the numerical solution and the
analytical solution by ψanalytical−ψnumerical

ψanalytical
. From the relative difference heat map of Figure 12c,e and

13c,e, we observe that, first, the magnitude of relative error of our DRW based solver is significantly
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Figure 13: Pressure head solution at z = 1.0 m of different methods: (A) analytical solution, (B)
DRW algorithm, (C) the relative error between analytical and DRW based solutions, (D) GRW
solver (L = 0.5) and (E) the relative error between analytical solution and GRW based solutions.

lower than that of GRW based solver. And second, the largest relative error of our DRW pressure
head solution occurs around the four corners of the x–y domain, whereas the largest relative error of
GRW solution occurs in the center of the x–y domain. Furthermore, in each cell, the relative error
of GRW-based pressure head solution is always non-positive, whereas that of DRW based pressure
head solution can be positive or negative.

Here, we provide some justifications to these observations. First, for conventional GRW solver
that embeds the standard linearization scheme formulation, we observe from Equations (8) that:

ψanalytical − ψnumerical ∝

∑
j∈Ni

[
K(ψ)∇(ψ + z)

]m+1,s

ωi,j
· nωi,jAωi,j − ∂tθ

m+1
i vol(Vi)

 ,

for any s, discretized cell Vi, and discretized time stepm. Since the hydraulic conductivity function is
positive and symmetric along x = 1 m and y = 1 m, and ∇ψ

∣∣
ω+:=[0,1]×[0,1]×z = −∇ψ

∣∣
ω−:=[1,2]×[1,2]×z,

we have
∑

j∈Ni

[
K(θ(ψ))∇(ψ + z)

]m+1,s

ωi,j
· nωi,jAωi,j > 0. Meanwhile, ∂tθm+1

i (ψ)vol(Vi) is typically
small due to the slow dynamics of water infiltration in soil and the fact that vol(Vi) is small. Thus,
we have ψanalytical − ψnumerical > 0 for GRW solution, which explains the negativity of the relative
error. On the other hand, for our DRW algorithm, the use of neural networks to approximate the
nonlinear maps f and f−1 complicates the behavior (including the sign) of the relative error.

Regarding the distribution of the magnitude of relative error in the GRW solver, since hydraulic
conductivity function is an increasing function of ψ, and ψ is at its maximum at the center of the
x–y plain, it is expected that

∑
j∈Ni

[
K(ψ)∇(ψ+ z)

]m+1,s

ωi,j
·nωi,jAωi,j , and hence the relative error,

is maximized at and around the center of the x-y plane. However, for the DRW based pressure
head solution, we suspect that the higher relative error at the four corners may be attributed to the
slight decrease in accuracy of neural networks in approximating f and f−1 near the boundaries of
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domain.
Finally, we evaluate the MSE by summing the individual MSE values over all cells at z = 0.5

m and z = 1 m. For z = 0.5 m, MSEDRW and MSEGRW are calculated to be 8.044 × 10−4 and
0.1972, respectively. For z = 1 m, MSEDRW and MSEGRW are 6.736×10−3 and 0.5052, respectively.
This indicates that the MSE of the GRW based pressure head solution is typically 1 to 2 orders of
magnitude higher than our DRW based solution.

6 A Realistic Case Study

Finally, we consider a real-world case study adopted from Orouskhani et al. [55], where infiltration,
irrigation, and root water extraction take place in circular agricultural field, equipped with a center-
pivot irrigation system with a radius of 50 m, located at Lethbridge, Alberta. Soil moisture sensors
are inserted at a depth of 25 cm across 20 different locations in this field to collect soil moisture
data every 30 min from June 19 to August 13, 2019. To validate our DRW algorithm in solving
3-D real-world applications, we select one of the 20 locations where the Mualem-van Genuchten
WRC and HCF model parameters are identified and given in [55]. We consider a cylindrical control
volume V with a radius of 0.1 m and depth of 25 cm. We discretize V into 6, 40 and 22 nodes in
the radial, azimuthal and axial directions, respectively. The time step size ∆t is determined using
the heuristic formula in [42]. Thus, we reformulate Equation (21) in cylindrical coordinate system
as:

nm+1,s+1
i = nm+1,s

i +
1

Lm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

êj · nωi,j

nm+1,s
j − nm+1,s

i

dist(Vj , Vi)
Aωi,j + f−1(J),

where êj = (1, 1
r2j
, 1)T and

J =
1

Lm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

êj · nωi,j

zm+1,s
j − zm+1,s

i

dist(Vj , Vi)
Aωi,j −

1

Lm+1,s
i

θm+1,s
i − θmi

∆t
vol(Vi)

− 1

Lm+1,s
i

S(ψm+1,s
i )vol(Vi).

(26)

Here, the sink term in S follows the Feddes model [61]:

S = σ(ψ)Smax, (27)

where Smax is the maximum possible root extraction rate and σ denotes a dimensionless water stress
reduction factor (see [48] for the detailed formulation).

The boundary conditions are given by:

∂ψ(r, ω, z)

∂r
= 0 at r = 0 m,

∂ψ(r, ω, z)

∂r
= 0 at r = 0.1 m,

∂ψ(r, ω, z)

∂z
= 0 at z = 0 cm,

∂ψ(r, ω, z)

∂z
= −1− uirr

K(ψ)
at z = 25 cm,

ψ(r, ω = 0, z) = ψ(r, ω = 2π, z),
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where uirr is the irrigation rate (in m/s). And the initial condition is simply:

ψ(x, y, z, t = 0) = hr,

where hr is the starting pressure head recording.
Note that the boundary conditions are time-dependent due to uirr. This poses a potential

computational challenge as the neural networks typically need to be retrained whenever the initial
or boundary conditions change [62, 63]. To overcome this practical challenge, we adopt a new
approach of training the two neural networks with 3,000 epochs based on the boundary conditions
for June 19, 2019 (no irrigation) when data collection began. Then, the trained weights within these
two neural networks serve as the starting point for retraining when a new set of boundary conditions
is adopted. This way, only 500 epochs are sufficient to retrain the neural networks. For each set of
boundary conditions, we obtain the training set containing 84,480 reference solutions. In addition,
the dataset provided by [55], after performing data augmentation by introducing Gaussian noises,
is also included in our training dataset. Each neural netowrk, which has 5 hidden layers with 256
neurons in each layer, is trained using SGD optimizer with a learning rate of 0.001. We set the
stopping criterion to be REs = 10−9, which can be achieved well within 500 iterations.

Figure 14: Comparison of pressure head profile at z = 25 cm in a selected 0.1-m radius region
(averaged for all 6× 40 = 240 cells at z = 25 cm) in the field.

For this problem, we simulate the pressure head from 1:00 am on June 19, 2019 to 5:00 pm on July
28, 2019. As mentioned in [55], there are two irrigation instances between this time frame, one is on
July 4 (the 15th day, 1.81 mm) and the other is on July 18 (the 30th day, 1.58 mm). Figure 14 shows
the pressure head solution profile obtained by our DRW algorithms compared to the experimental
measurements provided by Orouskhani et al. [55] over the course of 35 days. We observe that, most
of the time, the our DRW solutions match with the experimental measurements very well. The
only major mismatches between experimental measurements and DRW solutions occur on the 15th
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day and the 30th day, which correspond to the time when the irrigation takes place. We believe
both mismatches are a result of our simplifying assumption regarding the irrigation schedule. Due
to the limited information we have about the exact irrigation schedule and intensity, we have to
assume that both irrigation instances happened over the course of the entire day. Thus, we simply
divide the irrigation amount by 86,400 seconds to obtain uirr. However, in reality, the irrigation
may finish within 24 hours, thus causing the mismatches. With more accurate uirr model, our DRW
algorithm is expected to produce highly accurate solutions that closely match with experimental
measurements at all times. This makes our DRW algorithm an accurate and scalable numerical
framework to solve Richards equation over a long period of time.

7 Conclusion

In this work, we present a novel data-driven solution algorithm named DRW for accurately and
efficiently solving a general, d-dimensional Richards equation (d = 1, 2, 3). Our DRW algorithm
adopts an adaptive linearization scheme based on the FVM discretization of the Richards equation,
which significantly improves convergence and stability of the solution process. The DRW framework
then solves the adaptive linearization scheme formulation iteratively in a data-driven global random
walk model. The DRW algorithm also uses two neural networks to accurately learn the nonlinear
forward and inverse maps between pressure head and the number of particles in each cell. These
neural networks are incorporate in the global random walk model embedded in the DRW framework
to achieve synergistic improvement in solution accuracy. Furthermore, we also discuss effective ways,
such as the “coarse-to-fine” approach, to perform data augmentation to facilitate neural nework
training using just a small number of low-fidelity reference solutions as training set. Overall, these
innovative techniques work together seamlessly to improve the convergence and accuracy of DRW
algorithm in solving the Richards equation. Indeed, via several 1-D through 3-D case studies that
span across benchmark problems and real-world applications, we demonstrate that, compared to
state-of-the-art numerical solvers, our DRW algorithm not only achieves significantly improved
accuracy and convergence, but also better preserves the overall mass balance and conservation laws
while being computationally efficient to implement. Moreover, the proposed data-driven numerical
method is expected to be a generalizable computational framework for modeling a wide range
of applications, including fractional diffusion [64], fluid transport in fibrous porous materials [65,
66, 67], liquid extraction from saturated granular materials [68], water and hydrocarbon flow in
petroleum reservoirs [69], and so on.
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