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ABSTRACT 

Precision modeling and forecasting of soil moisture are essential for implementing smart irrigation systems and 
mitigating agricultural drought. Most agro-hydrological models are based on the standard Richards equation, a 
highly nonlinear, degenerate elliptic-parabolic partial differential equation (PDE) with first order time derivative. 
However, research has shown that standard Richards equation is unable to model preferential flow in soil with 
fractal structure. In such a scenario, the soil exhibits anomalous non-Boltzmann scaling behavior. Incorporating 
the anomalous non-Boltzmann scaling behavior into the Richards equation leads to a generalized, time-fractional 
Richards equation based on fractional time derivatives. As expected, solving the time-fractional Richards equation 
for accurate modeling of water flow dynamics in soil faces extensive computational challenges. To target these 
challenges, we propose a novel numerical method that integrates finite volume method (FVM), adaptive fixed 
point iteration scheme, and neural network to solve the time-fractional Richards equation. Specifically, we develop 
an adaptive fixed point iteration scheme to solve the FVM-discretized equation iteratively, which avoids the sta-
bility issues when directly solving a stiff and sparse matrix equation. To improve the solution quality which is in-
fluenced by numerical errors and computational constraints during actual implementation, we propose to use 
neural networks that resemble an encoder-decoder architecture to map soil moisture profiles into a latent space 
and reconstruct them back. Through 1-D examples, we illustrate the accuracy and computational efficiency of our 
proposed physics-based, data-driven numerical method. Finally, we present a Markov chain Monte Carlo (MCMC) 
approach to solve the inverse problem to obtain soil-specific parameters given soil moisture solutions. 

Keywords: Machine Learning, Modelling and Simulations, Numerical Methods, Water, Sustainability 

INTRODUCTION 

With increasing demand for food and the resulting food-en-
ergy-water nexus challenges from the growing population, there is 
an increasing interest among process systems engineering (PSE) 
researchers to design the next-generation food and agricultural 
systems that are sustainable, resource-efficient, and resilient. 
Along this line, by leveraging real-time soil monitoring technolo-
gies, sensor-based digital agriculture for sustainable and efficient 
use of water is essential for improving agricultural production and 
crop productivity and reducing agricultural droughts. To simulate 
the root-zone (top 1m of soil) soil moisture content, agro-hydro-
logical models, which describe irrigation, precipitation, evapotran-
spiration, runoff, and drainage dynamics inside the soil, are widely 
used. Most existing agro-hydrological models are based on the 
standard Richards equation [1], which is a highly nonlinear, degen-
erate elliptic-parabolic partial differential equation (PDE) with first 
order time derivative with the form: 

∂!𝜃(𝜓) + ∇ ∙ 𝒒 = 0,    (1) 

𝒒 = −(𝐶(𝜃)∇𝜃 + 𝐾(𝜃)∇𝑧),	   (2) 

where 𝜃  denotes the soil moisture content (in, e.g., m" m"⁄ ), 𝒒 
represents the water flux (in, e.g., m" m# ∙ s⁄ ), 𝐾(𝜃)  is unsatu-
rated hydraulic water conductivity (in, e.g., m s⁄ ), 𝐶(𝜃)  is soil 
moisture diffusivity (in, e.g., m# s⁄ ), 𝑡 ∈ [0, 𝑡!$!%&]  denotes the 
time (in, e.g., s), and z corresponds to the vertical depth (in, e.g., 
m). For this study, without loss of generality of our proposed nu-
merical framework, we ignore the sink term in Equation (1) asso-
ciated with root water uptake. The Richards equation is a nonlin-
ear convection-diffusion equation, where the convection term is 
due to gravity and the diffusion term is originated from Darcy’s 
law. For unsaturated flow, both 𝐶 and 𝐾 are highly nonlinear func-
tions of soil moisture content and soil parameters, thereby posing 
significant computational challenges for solving the standard Rich-
ards equation itself [2]. The integral form of the standard Richards 
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equation is simply given by: 

𝜃(𝑡,⋅) − 𝜃(0,⋅) = ∫ ∇ ∙ (𝐶(𝜃)∇𝜃 + 𝐾(𝜃)∇𝑧)d𝑡!
' , (3) 

Besides being computationally difficult to solve, standard 
Richards equation is also limited when it comes to modeling real-
istic soil systems. For example, it has been experimentally shown 
that the anomalous non-Boltzmann scaling behavior is exhibited in 
porous media with fractal structure [3,4]. For soils exhibiting non-
Boltzmann scaling behavior, the soil moisture content is a function 
of 𝒙

!
!
"
, where 𝒙 is the position vector, and 𝛼 is a soil-dependent pa-

rameter indicating subdiffusion (0 < 𝛼 < 1 ) or superdiffusion 
(1 < 𝛼 < 2) [5]. Incorporating this anomalous flow behavior into 
the Richards equation leads to a generalized, time-fractional Rich-
ards equation: 

∂!)𝜃 + ∇ ∙ 𝒒 = 0,    (4) 

which is even more computationally challenging due to the pres-
ence of time-fractional derivative ∂!)𝜃. Naïve implementations for 
solving Equation (4) typically involves discretizing the time-frac-
tional Richards equation using finite difference method (FDM). 
However, this often causes numerical stability issues [6]. To ensure 
numerical stability in solving time-fractional PDEs, recent work 
features using a hybrid method, in which the FDM and finite ele-
ment method (FEM) will be used to discretize the time and spatial 
domains, respectively [7]. Nevertheless, this approach was only 
used to solve the time-fractional fourth-order reaction-diffusion 
equation, where the only nonlinearity originates from the sink 
term. For solving the time-fractional Richards equation, a finite 
point method (FPM) was recently proposed to improve stability 
and accuracy [8]. However, this approach relies on solving the FPM 
scheme in matrix form, whose matrix is often stiff and sparse and 
hence can be difficult to solve.  

To address the limitations of prevailing research, in this 
work, we propose a novel physics-based, data-driven numerical 
framework to solve time-fractional Richards equation. This frame-
work discretizes Equation (4) using finite volume method (FVM), 
which inherently enforces mass conservation at the discretized 
level. To solve the FVM-discretized fractional Richards equation, 
instead of converting the discretized equations into a matrix equa-
tion, we adopt methods such as fixed point iteration  scheme to 
convert the discretized equation system into an explicit scheme 
which can be solved iteratively. To enhance solution accuracy and 
stability, we introduce an adaptive fixed point iteration scheme 
that automatically selects a proper linearization constant for every 
iteration, time step, and discretized cell for time-fractional Rich-
ards equation based on our recent work [2]. Finally, this numerical 
scheme is synergistically integrated with an encoder-decoder-type 
architecture using simple neural networks, and the resulting data-
driven, physics-embedded numerical framework achieves higher 
solution accuracy. This data-driven approach serves two major 
purposes that common numerical solvers often overlook. First, by 
training the neural networks using solutions obtained from solvers 
employing static fixed point iteration scheme under different set-

tings (e.g., number of iterations), the encoder-decoder architec-
ture can systematically capture and account for the numerical er-
rors associated with realistic computational constraints (e.g., not 
being able to run for an infinite amount of time on a perfect com-
puter) during actual implementation of the numerical scheme, 
thereby improving solution accuracy and robustness. Second, the 
use of data-driven approach is attractive also because it provides 
new opportunities for integrating physics-based modeling with 
online in situ soil moisture measurements for sensor-driven soil 
monitoring and precision agriculture applications. Commercial soil 
moisture sensors are not perfect and instrumental errors will al-
ways be present in their measurements. Furthermore, environ-
mental factors (e.g., wind, temperature, evapotranspiration) and 
imperfect installation and maintenance will bring additional uncer-
tainties to online soil sensing data. Thus, the data-driven approach 
in our numerical framework makes it amenable to leverage uncer-
tainty-embedded dataset produced by in situ soil sensors in field 
environment for predictive modeling of root-zone soil moisture 
profiles. 

Lastly, accurate estimation of soil parameters (e.g., 𝛼 and 𝐶) 
from direct sensor measurements, also known as the inverse prob-
lem of physics-based models, is generally ill-posed due to insuffi-
cient and inaccurate measurements. Deterministic methods, 
which solve the inverse problem as a nonlinear optimization prob-
lem, tend to be trapped in local optima and are sensitive to data 
noise. Therefore, in this work, we present a probabilistic method 
based on Markov chain Monte Carlo (MCMC) [9] for identifying the 
optimal soil parameters 𝛼 and 𝐶 in time-fractional Richards equa-
tion given soil moisture content information as a preliminary 
study. Through a 1-D case study, we illustrate the effectiveness of 
our proposed approaches. 

THE DATA-DRIVEN NUMERICAL FRAMEWORK 

Approximation of time-fractional derivatives 
When it comes to representing time-fractional derivatives in 

Equation (4), there are several options, such as Riemann-Liouville 
fractional integral [10,11], Caputo fractional derivative [12], fractal 
derivative [13], and so on. In this work, we would like to adopt the 
Riemann-Liouville fractional integral of the following form: 

I'#
) f(𝑡) = *

+())∫ (𝑡 − 𝑢)
).*f(𝑢) d𝑢!

' ,  (5)    

where Γ(∙) is the gamma function. With this, the integral form of 
time-fractional Richards equation can be expressed as: 

𝜃(𝑡,⋅) − 𝜃(0,⋅) = I'#
) [∇ ∙ (𝐶(𝜃)∇𝜃 + 𝐾(𝜃)∇𝑧)], (6) 

where 𝛼 > 0. Note that the integral form of the standard Richards 
equation, Equation (3), is just a special case of Equation (6) by set-
ting 𝛼 = 1. 

FVM Discretization 
 First, we adopt an implicit Euler scheme to discretize Equa-
tion (6) in the spatial domain: 
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𝜃(𝑡/0*,⋅) − θ(𝑡1,⋅) = I'#
) I∇ ∙ J𝐶∇𝜃(𝑡/0*,⋅) +

𝐾J𝜃(𝑡/0*,⋅)K∇𝑧KL − I'#
) I∇ ∙ J𝐶∇𝜃(𝑡/,⋅) + 𝐾J𝜃(𝑡/,⋅)K∇𝑧KL,

 (7) 

where time step 𝑚 = 1,⋯ , O!$%$&'∆! P . Next, in order to discretize 

Equation (6), one needs to accurately approximate Equation (5). 
Here, we adopt the trapezoidal quadrature formula [14] and ex-
press I'#

) f(𝑡/0*) as: 

 I'#
) f(𝑡/0*) ≈

(∆!)!

)()0*)+())
∑ 𝑎3,/0*f(𝑡/0*)/0*
35' ,   (8) 

where the coefficient 𝑎3,/0* follows: 

𝑎3,/0* =

T
𝑚)0* − (𝑚 − 𝛼)(𝑚 + 1)) ,					if	𝑘 = 0		

(𝑚 − 𝑘 + 2))0* + (𝑚 − 𝑘))0* − 2(𝑚 − 𝑘 + 1))0*,					if	1 ≤ 𝑘 ≤ 𝑚
1,					if	𝑘 = 𝑚 + 1		

  (9) 

To adopt FVM, we first integrate both sides of Equation (7) 
over the control volume 𝑉: 

∫ 𝜃(𝑡/0*,⋅) − 𝜃(𝑡/,∙)
	
7 d𝑉 = I'#

) Y∫ [∇ ∙ (𝐶(𝜃)∇𝜃(𝑡/0*,⋅) +
	
7

𝐾(𝜃)∇𝑧)] d𝑉Z − I'#
) Y∫ [∇ ∙ (𝐶(𝜃)∇𝜃(𝑡/,∙) + 𝐾(𝜃)∇𝑧)]

	
7 d𝑉Z.

 (10) 

Then, one can apply divergence theorem on the RHS of Equa-
tion (10), followed by discretizing the control volume 𝑉 into cells 
𝑉8, where 𝑖 = 1, 2,⋯ ,𝑁8. Each 𝑉8  is associated with surfaces 𝜔8,9 
for 𝑗 = 1, 2,⋯ ,𝑁:( , whose surface area is given by 𝐴:(,* . This 
would lead to the following FVM-discretized version of Equation 
(10): 

J𝜃8/0* − 𝜃8/Kvol(𝑉8) = I'#
) c∑ (𝐶(𝜃)∇𝜃 +

;+(
95*

𝐾(𝜃)∇𝑧)|:(,*
/0* ⋅ 𝑛f:(,*𝐴:(,*g − I'#

) c∑ (𝐶(𝜃)∇𝜃 + 𝐾(𝜃)∇𝑧)|:(,*
/ ⋅

;+(
95*

𝑛f:(,*𝐴:(,*g, (11) 

where 𝜃8/  is a shorthand notation for the soil moisture at cell 𝑖 
and time step 𝑚, |:(,*

/  operates on surface 𝜔8,9  and time step 𝑚, 
and 𝑛f:(,*denotes the outward pointing unit normal vector associ-
ated with surface 𝜔8,9. Equation (8) will be used to evaluate I'#

) [⋅] 
in Equation (11). 

Adaptive fixed point iteration scheme 
In fixed point iteration scheme, for every cell 𝑖 and time step 

𝑚+ 1, one would multiply the fixed linearization parameter 𝛾 to 
Equation (11) and then add the term 𝜃8

/0*,<0* − 𝜃8
/0*,< to either 

side of Equation (11), so that the Richards equation can be solved 
in an iterative manner to obtain the soil moisture solution upon 
convergence. Since 𝛾 is a static constant, a trial-and-error proce-
dure is typically required to obtain an appropriate 𝛾  value that 
avoids convergence issues. Not only is this search procedure tedi-
ous to implement, the solutions obtained are also less accurate 
most of the time (to be shown in the case study) as the ground 
truth solutions are not known to us a priori. Thus, inspired by pre-

vious works [15], we introduce a novel adaptive fixed point itera-
tion scheme that replaces the static fixed linearization parameter 
𝛾 with 𝛾8

/0*,<, which adjusts itself for each specific discretized cell, 
time step, and iteration count s. Specifically, we introduce the 
term 𝜃8

/0*,<0* − 𝜃8
/0*,<  to the LHS of Equation (11). When the 

scheme converges for sufficiently large s , this term vanishes, 
which preserves the equality of Equation (11). In our previous work 
focusing on solving standard Richards equation [2,17], we devel-
oped a systematic procedure for choosing 𝛾8

/0*,< that would guar-
antee convergence and stability of the numerical scheme. In this 
work, we follow the same procedure for choosing the appropriate 
𝛾8
/0*,<. 

Encoder-decoder-type data-driven framework 
 Once our adaptive linearization scheme of the FVM-discre-
tized time-fractional Richards equation is established, we will ob-
tain soil moisture solutions 𝜃8

/0*,< for every cell, time step, and it-
eration. Through the encode-decoder-type architecture, these so-
lutions will first be mapped to their corresponding variables de-
noted as 𝜇8

/0*,< in a latent space via a trained neural network f== 
(i.e., f==:	𝜃8

/0*,< → 𝜇8
/0*,<), followed by applying inverse mapping 

from the latent space back to the soil moisture solutions 𝜃l8
/0*,< 

(which are expected to be more accurate than 𝜃8
/0*,<) via another 

trained neural network f==.*: 𝜇8
/0*,< → 𝜃l8

/0*,<.  
The dataset used to train the two neural networks will come 

from two different sources/solvers. For example, during neural 
network training, 𝜃 solutions could be soil moisture solutions ob-
tained from fixed point iteration scheme under different choices 
of linearization parameters and total iteration counts that cover 
their ranges expected during the actual solution process, whereas 
the 𝜇 solutions may come from direct sensor measurements or a 
simple finite difference based solver. Furthermore, we apply data 
augmentation to these “reference solutions” by adding zero-mean 
Gaussian noise with different variances [4]. After data augmenta-
tion, the resulting expanded set of reference solutions will be used 
for neural network training. This data augmentation step not only 
increases the size of the training dataset without having to actually 
solve the numerical schemes (thereby saving significant computa-
tional time), but also reflects the characteristics of actual soil sens-
ing data, which are subject to various measurement uncertainties 
due to instrumental error, environmental uncertainties, and im-
perfect installation and maintenance. It turns out that introducing 
Gaussian noise can greatly reduce the biases of reference solutions 
and enhance generalization performance, thereby significantly im-
proving the accuracy of numerical solutions. 

Our data-driven adaptive fixed point iteration scheme works 
as follows. For a given time step m and iteration count s, f== first 
maps the 𝜃8

/0*,<  to a latent space where 𝜇8
/0*,< = f==J𝜃8

/0*,<K 
lies upon. The resulting adaptive linearization scheme of FVM-dis-
cretized time-fractional Richards equation in terms of μ>

10*,?  is 
given by: 

𝜇8
/0*,<0* − 𝜇8

/0*,< = *
@(
,#-,. mI'#

) c∑ (𝐶∇𝜇):(,*
/0* ⋅

;+(
95*
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𝑛f:(,*𝐴:(,*g − I'#
) c∑ (𝐶∇𝜇):(,*

/ ⋅ 𝑛f:(,*𝐴:(,*

;+(
95* gn + *

@(
,#-,. f==(𝐽),               

(12) 

where the quantity J is given by: 

𝐽 = (𝜃8/ − 𝜃8
/0*,<)vol(𝑉8) + I'#

) c∑ (𝐾(𝜃)∇𝑧):(,*
/0* ⋅

;+(
95*

𝑛f:(,*𝐴:(,*g − I'#
) c∑ (𝐾(𝜃)∇𝑧):(,*

/ ⋅ 𝑛f:(,*𝐴:(,*

;+(
95* g. 

Once 𝜇8
/0*,<0* is obtained by solving Equation (12) (which is 

an explicit scheme) provided 𝜇8
/0*,< , we will apply the inverse 

mapping f==.* to transform 𝜇8
/0*,<0* from the latent space back to 

its original space 𝜃l8
/0*,<0* = f==.*J𝜇8

/0*,<0*K. And the entire solu-
tion process iterates itself until a stopping criterion is reached. A 
commonly used stopping criterion is the relative error, which is es-

timated as 𝜀 = max
>

AB//0- CD(
,#-,.#-E.B//0- CD(

,#-,.EA
AB//0- CD(

,#-,.#-EA
. Or, one can specify 

the total number of iterations needed for each time step and cell 
(which is what we use for the case study). 

We remark that, the two neural networks f== and f==.*  can 
be treated as encoder and decoder, respectively, and Equation 
(12) essentially employs the “message passing” idea [16] via our 
numerical scheme. 

Solving inverse problem using MCMC approach 
 To solve the inverse problem of identifying soil parameters, 
we adopt a simple MCMC approach with Metropolis-Hasting (M-
H) algorithm [9]. The algorithm begins by selecting an initial set of 
parameters 𝛼'. For each iteration, a candidate 𝑦 is drawn from the 
proposal density 𝑞(∙ |𝛼!). The acceptance probability ℎ(𝛼!|𝑦) is 
then computed. If a randomly drawn value 𝑟 from the uniform dis-
tribution 𝒰([0, 1])  is less than ℎ(𝛼!|𝑦) , the candidate 𝑦  is ac-
cepted, and 𝛼!0* is updated to 𝑦. Otherwise, the current parame-
ter 𝛼!is retained, setting 𝛼!0* = 𝛼!. This process continues itera-
tively to explore the parameter space. 

AN ILLUSTRATIVE EXAMPLE 

In this section, we test and validate our proposed numerical 
framework on 1-D benchmark problem presented in [11], which 
features both classical and anomalous diffusion, by comparing our 
numerical solution with the analytical solution as well as solution 
obtained using fixed point iteration scheme. 

1-D Classical Diffusion 
For the classical diffusion problem, the parameter 𝛼 is set to 

be 1. A constant soil moisture diffusivity 𝐶 = 24 ×
10.F	cm#min.* is used. The boundary condition is given by 
𝜃(0, 𝑡) = 0.5 and 𝜃(∞, 𝑡) < ∞. The initial condition is given by 

𝜃(𝑧, 0) = �0.5, if	𝑧 = 0
0.1, if	𝑧 > 0. The analytical solution for this problem is 

𝜃(𝑧, 𝑡) = 0.4 ∙ erfc �� G"

HI!
� + 0.1.  

Overall, we generate an augmented training dataset contain-
ing 84,480 pairs of noise-added solutions from solvers employing 
fixed point iteration scheme and our previously developed solver 
[2]. Two neural networks f== and f==.*, each adopting 5 layers with 

32, 64, 128, 64, 32 neurons per layer and (leaky) ReLU activation 
function, are trained for 10000 epochs by Adam optimizer with a 
learning rate of 0.001. 

From the results in Figure 1 and Table 1, one can make sev-
eral observations. First, solution accuracy highly depends on the 
choice of linearization parameters, and without the prior 
knowledge about where the ground truth solution lies, it will be 
challenging for fixed point iteration scheme to correctly identify 
the optimal linearization parameter to use by itself. Second, for 
this specific problem, since the solution quality of fixed point iter-
ation scheme changes as *

@
 varies from 1 to 500, a trial-and-error 

process, which is both tedious and computationally expensive, will 
be required for identifying the optimal linearization parameter. 
Our proposed framework, on the other hand, does not require 
such trial-and-error procedure. Third, our proposed numerical 
framework closely matches with the analytical solution quite well, 
thanks to the adoption of adaptive fixed point iteration scheme 
and the integrated data-driven approach. 

 
Figure 1. Numerical solutions obtained from fixed point iteration 
scheme and our numerical framework by setting 2,000 iterations 
as the stopping criterion for each time step and cell. In this exam-
ple, we study the soil moisture profile across a 12-cm deep soil 
when tJKJLM = 200 min. 

Table 1. Mean Squared Error (MSE) measuring the discrepancy be-
tween numerical solutions and the analytical solution. 

Method 
*
@
 value MSE 

FVM with a static fixed 
linearization parameter 
 

1 0.0487 
10 0.0239 
30 0.0121 
50 0.0085 
100 0.0050 
300 0.0017 
500 0.0009 

Our work N/A 2.4731 × 10.F 
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1-D Anomalous Diffusion 
We consider the case of subdiffusion (0 < 𝛼 < 1) for anom-

alous diffusion problem. Again, a constant soil moisture diffusivity 
𝐶 = 24 × 10.F	cm#min.N is used. Other the boundary and initial 
conditions are the same as in classical diffusion problem. The ana-
lytical solution for this problem is given by 𝜃(𝑧, 𝑡) = 0.4 ∙

H*,*
*,' �� G"

HI!! �
C*,) #O E
(',*) � + 0.1, where H*,*

*,'(∙) is the Fox function (see 

[11] for more details).  
First, we solve the forward problem by considering α = 0.6. 

We are mainly interested in the top 1.2 cm of soil, where the soil 
moisture changes significantly. From Figure 2, it is clear that, com-
pared to the asymptote solution presented in [11], our numerical 
framework achieves remarkable accuracy even when simulating 
the region where soil moisture changes the most. Second, we in-
vestigate the performance of numerical framework in solving in-
verse problem when it is integrated with MCMC approach. With-
out informing our solver, we set the soil parameters as 𝛼 = 0.13 
and 𝐶 = 24 × 10.F	cm#min.N. We examine two scenarios, one 
at 𝑡!$!%& = 3 min and the other at 𝑡!$!%& = 300 min. Due to the ill-
posedness of this inverse problem, we impose upper and lower 
bounds for the two parameters 0 < 𝛼 < 1  and 0 < 𝐶 < 30 ×
10.F	cm#min.N. The results in Figure 3 shows that the MCMC ap-
proach can estimate the soil parameters reasonably well (<20% 
and <1% relative discrepancy for 𝛼 and 𝐶, respectively). Further-
more, it provides an error bar for the parameters being estimated, 
which provides basis for uncertainty quantification. 

 
Figure 2. Solutions obtained from our numerical framework (stop-
ping criterion: 2,000 iterations for each time step and cell) com-
paring to asymptote solution and analytical solution [11]. In this 
example, we examine the soil moisture profile across a 1.2-cm 
deep soil when 𝑡!$!%& = 200 min. Here, 𝛼 = 0.6. Note that the 
MSE between numerical solutions from our numerical framework 
and analytical solution is 3.9130 × 10.P, while that of asymptote 
solution is 6.7163 × 10.F. 

 
Figure 3. Numerical solutions obtained using the parameters iden-
tified by MCMC approach. Here, we conduct 1000 samplings. The 
resulting parameters are 𝛼 = 0.13071 ± 3.7310 × 10.F and 𝐶 =
23.808 × 10.F ± 3.232 × 10.*#cm#min.N . Note that the MSE 
between numerical solutions and desired solutions are 2.8096 ×
10.Q  and 7.6698 × 10.R  for 𝑡!$!%& = 3	min  and 𝑡!$!%& =
300	min, respectively. 

CONCLUSION 

In this work, we develop a novel physics-based, data-driven 
numerical framework for simulating anomalous diffusion of water 
in porous media such as soil, which is characterized by the highly 
nonlinear time-fractional Richards equation. To address the com-
putational challenges associated with existing solvers, we inte-
grate neural networks and adaptive fixed point iteration scheme 
in a FVM discretization framework. These innovative approaches 
not only improves solution accuracy and robustness, but also open 
opportunities for integrating physics-based models with in situ soil 
moisture sensing technologies for precision agriculture applica-
tions. We also briefly introduce a systematic approach to solve the 
inverse problem using MCMC. Preliminary results obtained on a 1-
D benchmark problem indicate that our proposed forward and in-
verse problem solvers can be highly accurate and useful. Never-
theless, we notice that one limitation of the MCMC approach for 
solving the inverse problem is that its accuracy highly depends on 
the selection of parameter bounds. In our future work, we plan to 
investigate other probabilistic methods that are more scalable and 
robust for solving inverse problems (i.e., model parameter estima-
tion and uncertainty quantification given in situ soil moisture 
measurements). Overall, it is expected that this numerical frame-
work would be integrated in an irrigation control mechanism to 
provide farmers with quantitative insights and recommendations 
regarding when to irrigate, where to irrigate, and how much to ir-
rigate [18]. 
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