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ABSTRACT 

An essential problem in precision agriculture is to accurately model and predict root-zone (top 1 m of soil) soil 
moisture profile given soil properties and precipitation and evapotranspiration information. This is typically 
achieved by solving agro-hydrological models. Nowadays, most of these models are based on the standard Rich-
ards equation (RE), a highly nonlinear, degenerate elliptic-parabolic partial differential equation that describes 
irrigation, precipitation, evapotranspiration, runoff, and drainage through soils. Recently, the standard RE has 
been generalized to time-fractional RE with any fractional order between 0 and 2. Such generalization allows the 
characterization of anomalous soil exhibiting non-Boltzmann behavior due to the presence of preferential flow. In 
this work, we focus on inverse modeling of time-fractional RE; that is, how to accurately estimate the fractional 
order and soil property parameters of the fractional RE given soil moisture content measurements. Specifically, 
we introduce a novel Bayesian variational autoencoder (BVAE) framework that synergistically integrates our in-
house developed fractional RE solver and adaptive Fourier decomposition (AFD) to accurately estimate the pa-
rameters of time-fractional RE. Our proposed AFD-enhanced BVAE framework consists of a probabilistic encoder, 
latent-to-kernel neural networks and convolutional neural networks. The BVAE framework is theoretically explain-
able and enhanced by the AFD theory, a novel signal processing technique that achieves superior computationally 
efficiency. Through illustrative examples, we demonstrate the efficiency and reliability of our AFD-enhanced BVAE 
framework. 
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INTRODUCTION 

Precision modeling and forecasting of soil moisture are es-
sential for implementing smart irrigation systems and mitigating 
agricultural drought. Most agro-hydrological models are based on 
the standard Richards equation [1], a highly nonlinear, degenerate 
elliptic-parabolic partial differential equation (PDE) with first order 
time derivative. However, standard RE is limited by its incapability 
of characterizing preferential flow in anomalous soil exhibiting 
non-Boltzmann behavior, a common and realistic scenario. To 
overcome this limitation, time-fractional RE of the following form 
[2] is developed and employed to model water flow dynamics in 
real soil systems: 

∂!"θ + ∇ ∙ 𝐪 = S,    (1) 

𝐪 = −(C(θ)∇θ + K(θ)∇z).	   (2) 

where θ denotes the soil moisture content (in, e.g., m# m#⁄ ), 𝐪 
represents the water flux (in, e.g., m# m$ ∙ s⁄ ), S denotes the sink 

term measuring water uptake rate by roots, K(θ) is unsaturated 
hydraulic water conductivity (in, e.g., m s⁄ ), C(θ) is soil moisture 
diffusivity (in, e.g., m$ s⁄ ), t ∈ [0, T] denotes the time (in, e.g., s), 
z corresponds to the vertical depth (in, e.g., m), and α is a soil-de-
pendent parameter indicating subdiffusion (0 < α < 1) and su-
perdiffusion (1 < α < 2) [2]. For unsaturated flow, both C and K 
are highly nonlinear functions of soil moisture content and soil pa-
rameters, thereby posing significant computational challenges for 
solving the standard Richards equation itself [3]. Thus, most exist-
ing research focuses on developing accurate and efficient numeri-
cal solvers for the time-fractional RE given soil parameters [2], 
which is also known as solving the forward problem. Meanwhile, 
an equally important problem, which is to accurately estimate soil 
parameters given the soil moisture profile, is known as the inverse 
problem and is often less studied. This is primarily because inverse 
problems are generally ill-posed due to insufficient and/or inaccu-
rate information (e.g., soil moisture solutions) and thus face signif-
icant computational challenges. Nevertheless, with recent ad-
vancements in soil sensing technologies and increasing adoption 
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of in situ soil moisture sensors, farmers now have real-time access 
to massive arrays of root-zone soil moisture data. This poses great 
need and opportunity to develop more accurate and computation-
ally efficient algorithms for solving inverse problems of time-frac-
tional RE, so that one can extrapolate soil parameters estimated 
from local in situ soil sensing measurements to model field-wide 
soil moisture profiles. 

Existing approaches to solve inverse problem for standard 
and/or time-fractional RE can be categorized into deterministic or 
probabilistic methods. Deterministic methods, which solve the in-
verse problem as a nonlinear optimization problem [4-6], tend to 
be trapped in local optima and are sensitive to data noise. Mean-
while, probabilistic methods, such as Markov chain Monte Carlo 
(MCMC) [7] or variational autoencoder (VAE) [8], can explore the 
entire solution space. However, state-of-the-art probabilistic 
methods scale poorly as problem size (e.g., the number of param-
eters to be estimated) increases, leading to scalability issues [9].  

To address these challenges, in this work, we propose a 
novel Bayesian variational autoencoder (VAE) framework that is 
built upon our in-house developed time-fractional RE solver [11] 
and the adaptive Fourier decomposition (AFD) techniques [12,13]. 
This integration enables precise parameter estimation for time-
fractional RE. The AFD-enhanced BVAE framework consists of a 
probabilistic encoder, latent-to-kernel neural networks, and con-
volutional neural networks. The probabilistic encoder will map the 
input data (i.e., soil moisture measurements) to a latent space. To 
preserve useful mathematical properties and physical insights, we 
further restrict the latent space to its reproducing kernel Hilbert 
space (RKHS) via the use of latent-to-kernel neural networks. The 
AFD-based convolutional neural networks are then applied to the 
resulting RKHS as decoder for parameter estimation. These neural 
networks are trained end to end, in which the training data are soil 
moisture profiles produced by our time-fractional RE solver. 
Through a simple 3-D time-fractional RE example, we demonstrate 
the accuracy of our AFD-enhanced BVAE framework in solving in-
verse problems by comparing it with conventional BVAE approach 
whose decoder structure is not specially designed. 

AN EXPLAINABLE BAYESIAN FRAMEWORK 

Bayesian VAE framework 
Here, we first provide a brief overview of the BVAE frame-

work. The standard variational autoencoder (VAE) is a generative 
model that learns a structured latent space while reconstructing 
input data. As shown in Figure 1, VAE consists of two primary com-
ponents, an encoder that maps input x ∈ D into a set of latent var-
iables z, and a decoder that reconstruct x from z.  

VAE defines the marginal likelihood as the probability of the 
observation x under the generative model. Given latent variables 
z, the marginal likelihood is expressed as: 

p(x) = ∫p(x|z)p(z) dz ,  (3) 

where p(z) is the prior distribution over latent variables (often a 
standard Gaussian). Since direct computation of the RHS of Equa-
tion (3) is intractable, VAE approximates the true posterior p(z|x) 
using a variational distribution q(z|x, ϕ), and maximizes the Evi-
dence Lower Bound (ELBO): 

ℒ%&'( = ∑ ℒ),+,∈. (x),   (4) 

ℒ),+(x) = 𝔼/0z1x, ϕ2 log p(x|z, Θ) − D3&[q(z|x, ϕ)‖p(z)]
 (5) 

where the first term of Equation (5) ensures accurate reconstruc-
tion and the second term regularizes the latent space by minimiz-
ing the Kullback-Leibler (KL) divergence between the approximate 
posterior and the prior distribution. 
 On the other hand, the BVAE framework extends this by 
placing priors not only on the latent variables z but also on the 
model parameters θ, resulting in a Bayesian formulation: 

p(Θ|D) ∝ p(D|Θ)p(Θ).    (6) 

The likelihood function is then defined as: 

p(x|z, D) = ∫p(x|z, Θ)p(Θ|D) dΘ  (7) 

and the marginal likelihood as: 

 
Figure 1. Our proposed AFD-enhanced BVAE architecture consists of two major components: an encoder that maps input x =
Px(5)Q578

9 ∈ D into a latent variable z = µ: + σ:⨀ε and a decoder that reconstruct xV = PxV(5)Q578
9

 from z.  
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p(x|D) = ∬p(x|z, D)p(z) dz p(Θ|D)dΘ.  (8) 

The BVAE enables more robust parameter estimation and 
improved uncertainty quantification. Instead of relying on a single 
point estimate for Θ, BVAE marginalizes over its posterior distribu-
tion, leading to better generalization and reliability in low-data re-
gimes. By jointly inferring p(z|x, D) and p(Θ|D), BVAE offers a fun-
damental way to incorporate uncertainty into both data represen-
tation and model parameters, making it particularly useful for ap-
plications requiring high-confidence decision-making. 

A novel, explainable encoder structure in our AFD-
enhanced BVAE framework 

One common way to enhance the explainability of a neural 
network is to modify its structure based on the approximation the-
ory (e.g., the universal approximation theorem [14]). In this work, 
we propose to achieve this by adopting AFD, a novel signal decom-
position method that adopts adaptive orthogonal bases and thus 
leads to higher accuracy and significant computational speedup 
compared to conventional Fourier decomposition [12,13]. Specifi-
cally, as shown in Figure 2, we innovate the decoder structure by 
combining latent-to-kernel neural network with mathematically 
interpretable dynamic convolutional kernel network (CKN). In 
terms of latent-to-kernel network, our proposed structure consists 
of a multi-layer neural network that will first take the latent pa-

rameters z obtained from the encoder and generate xX = PxX(5)Q578
9

, 
which belongs to the Hilbert space H of the same manifold ℳ that 
z belong to. Next, the latent-to-kernel network consists of feature 
maps FM(xX) that project xX to its reproducing kernel Hilbert space 
(RKHS) [15]. This way, our latent-to-kernel network will try to learn 
the feature maps from H(ℳ) to its nearest RKHS, where the con-
volutional Kernel  is unique and satisfies the reproducing property 

[16]. This naturally brings in dynamic CKN for local feature extrac-
tion, which is mathematically grounded in the RKHS framework. 
Furthermore, the dynamic CKN structure shown in Figure 2 math-
ematically resembles AFD in the sense that each dynamic convolu-
tional layer performs cross-correlation between FM(xX) and the or-
thogonal reproducing kernels β, i.e., FM(xX) ⋆ β5. With this, the fi-
nal output of the dynamic CKN, assuming that there are a total of 
N convolutional layers, is given by: 

xV = ∑ ρ5(FM(xX) ⋆ β5)β5;<!
=
>78 ,  (9) 

where ρ5 ∈ (0,1) are scaling factors and τ5 can choose between 0 
to N− i for layer i. The choices of ρ5 and the orthogonal reproduc-
ing kernels must satisfy weak maximal selection principle and con-
vergence theorem [10,12], respectively. 

It can be shown that Equation (9) is equivalent to AFD oper-
ation [10,12,13]. Thus, with a specially designed structure, the 
AFD-type dynamic CKN will enjoy significant computational 
speedup and rigorous performance guarantees just like the AFD. 
The full AFD-enhanced BVAE model will be trained end to end by 
minimizing the following total loss function: 

ℒ = ‖x − 	xV‖?(ℳ)
$ + ‖xX − FM(xX)‖?(ℳ)

$ +
wD3&[q(z|x, ϕ)‖p(z)], (10) 

where w is a regularization parameter. 

Using  AFD-enhanced BVAE framework to solve 
inverse problems  
 Here, we describe the procedure for applying our AFD-en-
hanced BVAE framework to solve the inverse problem. That is, we 
would like to reconstruct or estimate the soil-dependent parame-
ters, including α and parameters of hydraulic conductivity function 
and water retention curve, from soil moisture content profiles 
through direct sensor measurements. Without loss of generality, 

 
Figure 2. The decoder structure of our AFD-enhanced BVAE framework, which consists of two primary components: 1) latent-to-

kernel neural networks which will map the latent variables z to xX = PxX(5)Q578
9

 lying on an RKHS, and 2) dynamic convolutional kernel 

network that will reconstruct xV = PxV(5)Q578
9
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we denote those parameters and the corresponding soil moisture 
content as γ and θ, respectively. To train the model, various sets 
of soil parameters γ will be sent to our in-house developed frac-
tional RE solver to generate a set of soil moisture profile solutions. 
These solutions and their associated soil parameters γ will then be 
sent to the encoder to extract latent parameters z, which are then 
used by the decoder to reconstruct soil parameters γV. During the 
training process, the total loss function of Equation (10) will be 
minimized such that the output of the decoder, γV, shall match with 
the given γ as closely as possible. 

Once training is complete, our AFD-enhanced BVAE model 
will only take the actual soil moisture measurements  or solution 
profiles θ as input and produce the soil-specific parameter esti-
mates γV as output, which can be used by the fractional RE solver 
for extrapolation and field-wide soil moisture modeling. 

AN ILLUSTRATIVE EXAMPLE 

Here, we present a proof-of-concept example to demon-
strate the accuracy enhancement of our proposed AFD-enhanced 
BVAE framework by considering a simple 3-D time-fractional RE 
where K = θ	and C = a(θ + 1). The width, length as well as depth 
are 1. The boundary conditions are zero at all boundaries and the 
initial condition is given by: 

θ(x, y, z, 0) = (x − x$)(y − y$)(z − z$).  (11) 

For a = 0.1 and α = 0.5, the problem has an analytical solu-
tion and is given by: 

θ(x, y, z, t) = t(x − x$)(y − y$)(z − z$).  (12) 

Assuming that we do not know the values of 	γ (i.e., α and a), 
we generate a total of 10,000 sets of (θ, γ) solutions using our in-
house developed fractional RE solver. Both AFD-enhanced BVAE 

and conventional BVAE models contains three hidden layers and 
256 neurons per layer. The Adam optimizer and ReLU activation 
function are used for training. Figure 3 shows the error of soil mois-
ture profiles between analytical solution and the numerical solu-
tion obtained from substituting the estimated soil parameters into 
our fractional RE solver, where the solution across two dimensions 
(width and length) are drawn better visualization. For the third di-
mension (depth), the error employs a similar behavior due to sym-
metry of this problem. Our AFD-enhanced BVAE model not only 
produces more accurate parameter estimates, but also enhances 
the accuracy of our fractional RE solver by at least an order of mag-
nitude compared to conventional BVAE model. This illustrates the 
synergistic improvement in model accuracy when combining ad-
vanced numerical solver (for solving the forward problem) with 
our AFD-enhanced BVAE model (for solving the inverse problem). 
Furthermore, the data-driven nature of our proposed framework 
makes it particularly suitable for integrating in situ soil moisture 
sensing technologies to equip farmers with accurate tools that will 
bring “eyes inside the soil”. 

For comparison, we also implement a simple Kalman filter 
(KF) algorithm as a benchmark method to solve the same inverse 
problem. The results of KF are α = 0.517 and a = 0.00114, which 
are further away from the ground truth solutions compared to our 
AFD-enhanced BVAE model.  

Lastly, we point out that, unlike MCMC approach, our AFD-
enhanced BVAE algorithm does not experience a significant in-
crease in computational time as the number of unknown parame-
ters to be estimated grows. This suggests that the BVAE-type ap-
proaches are quite scalable with respect to the dimensionality of 
the parameter space [17]. 

CONCLUSIONS 

 
Figure 3. The error is obtained by substituting the parameters estimated by our proposed AFD-enhanced BVAE framework (Left) and 
conventional BVAE (Right) into the time-fractional RE solver [11] and taking the difference the numerical solution with the analytical 
solution of Equation (12). Ground truth value for the parameters are α = 0.5 and a = 0.001. The parameters estimated by our pro-
posed AFD-enhanced BVAE framework are α = 0.496 ± 0.005  and a = 0.00102 ± 7 × 10AB, while those of conventional BVAE are 
α = 0.440 ± 0.004 and a = 0.00094 ± 3 × 10AB.  
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In this work, we propose a novel AFD-enhanced BVAE frame-
work to accurately solve the inverse problem of time-fractional 
Richards equation. Our proposed framework synergistically inte-
grates BVAE, neural network, dynamic convolutions, and AFD the-
ory to offer computational speedup and great mathematical ex-
plainability. Furthermore, by designing a tailored decoder struc-
ture that resembles AFD operation, our new framework signifi-
cantly improves soil parameter estimation accuracy. In addition, 
by using this framework in conjunction with our accurate time-
fractional RE solver [11], we can achieve synergistic advancement 
in root-zone soil moisture modeling. Moreover, we remark that 
our proposed AFD-enhanced BVAE model is a generalized frame-
work that can be leveraged in solving various inverse problems in 
large-scale and/or complex partial differential equation systems 
(e.g., convection-diffusion equation, Schrödinger equation, etc.), 
as well as in other fields such as image processing, data analytics, 
and so on. We will explore these aspects in our future works. 
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