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ABSTRACT 

Olefins are essential precursors in producing a wide range of chemical products, including plastics, detergents, 
adhesives, rubber, and food packaging. Ethylene and propylene are the most ubiquitous olefin components and 
are predominantly produced through steam cracking. However, steam cracking is highly energy- and carbon-in-
tensive, making its decarbonization a priority as the energy sector shifts toward clean, renewable electricity. Elec-
trifying the steam cracking process is a promising pathway to reduce carbon emissions. However, this is challenged 
by the intrinsic conflict between the continuous operational nature of ethylene plants and the intermittent nature 
of renewable energy sources (e.g., solar and wind) in modern power systems. Massive energy storage systems or 
full plant reconfigurations to meet the power demand of electrified crackers are shown to be economically and 
practically infeasible. Thus, a more viable solution is to pursue a gradual electrification pathway and operate an 
ethylene plant as a microgrid that adopts diverse energy sources. To optimize the operational strategy of such a 
microgrid considering uncertainties in renewable energy generation and market prices, in this work, we introduce 
a stochastic multi-objective optimization approach that minimizes operating costs and carbon emissions of steam 
cracking. Results from a case study not only elucidate the trade-offs between economic and environmental objec-
tives, but also provide insights into the optimal operating scheme in sustainable ethylene production. 
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INTRODUCTION 

The U.S. energy landscape is undergoing a fundamental tran-
sition as the proportion of clean, renewable electricity in total U.S. 
electricity generation will double to 44% between now and 2050 
[1]. Thus, electrification is a promising pathway to decarbonize var-
ious energy-intensive chemical processes, including the steam 
cracking process for olefins production. Recently, there have been 
significant advancements in electrified cracking technology [2]. 
While conventional cracking furnaces transfer only 40-45% of fir-
ing energy to process fluids, electrified furnaces achieve efficien-
cies of at least 95% [2-4]. Most U.S. ethylene plants are large-scale, 
continuously operating facilities with capacities exceeding 1 mil-
lion tons annually. Due to the intermittent nature of variable re-
newable electricity (VRE), energy storage solutions must be in 
place. However, the intermittent nature and seasonal variation in 
VAE generation will lead to a 1~2-order increase in battery storage 
requirements compared to the storage requirement based on the 
average daily power supply, making energy storage purely using 
battery an expensive option [5,6]. On the other hand, the use of 
byproduct hydrogen (H2) as energy storage substantially reduces 

battery size. The combined use of solar and wind energy can sig-
nificantly reduce storage requirements [5]. And low but continuing 
use of fossil fuels and a gradual transition from conventional crack-
ers to electrified ones are feasible intermediate solutions toward 
long-term complete decarbonization [7]. 

In Figure 1, we propose a novel process scheme for steam 
cracking decarbonization that incorporate these important as-
pects. The envisioned process is a microgrid – a localized electric 
grid capable of independent operation. Both electrified and con-
ventional crackers are considered in this superstructure. Diverse 
energy sources, including on-site VRE, battery storage, electrolyz-
ers, H2 fuel cells as well as conventional natural gas and liquid fuel, 
can be adopted. Operating the cracking plant as a microgrid offers 
several advantages, including enhanced resilience, efficiency, and 
flexibility [8]. For example, a microgrid can operate in grid-con-
nected mode to benefit from low electricity prices or in islanded 
mode to ensure continuous operation during grid outages or price 
spikes. 

This study builds on our previous work [7] and explores the 
optimization of microgrid scheduling for clean ethylene produc-
tion based on the superstructure shown in Figure 1. A hypothetical 
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ethylene plant located on the Texas Gulf Coast is used as a case 
study, with ethane selected as the primary feedstock due to its 
prevalence in U.S. crackers [1]. A deterministic, steady-state, 
multi-objective MILP model will be developed to determine the 
optimal electrification level for our hypothetical plant, and uncer-
tainties in VRE generation and market price predictions will be con-
sidered as different scenarios. 

 

Figure 1. Our envisioned framework for using electricity to supply 
process heat for steam cracking [7]. Based on the context, the 
connections shown in the superstructure can represent either 
energy or mass flows. 

MULTI-OBJECTIVE SCENARIO-BASED OPTIMAL 
SCHEDULING FORMULATION 

Before formulating the microgrid scheduling problem, a pre-
liminary calculation [6] demonstrates the importance of incorpo-
rating diverse energy sources and energy storage systems for elec-
trified cracking. In the case of a plant with an ethylene production 
capacity of 1 million tons/year, even if one ignores seasonal varia-
tion, since VRE is accessible for only 30% of the day on average, 
around 70% of the daily energy demand – equivalent to 3,356 
MWh – must be stored to ensure uninterrupted operation of elec-
trified crackers. Relying solely on battery would require an exces-
sive amount of battery storage units. For example, if all the elec-
tricity is stored using Tesla Megapack, each with 3.9 MWh of en-
ergy capacity and 40.7 m3 of storage volume [12], the resulting bat-
tery volume would occupy a massive structure of 32.7 m × 32.7 m 
× 32.7 m. Furthermore, this storage requirement could increase by 
one to two orders of magnitude due to variations in daily and sea-
sonal weather patterns [5]. These findings highlight the need for a 
hybrid energy landscape, as illustrated in Figure 1, which inte-
grates both dispatchable and non-dispatchable generators. Dis-
patchable generators, powered by fossil fuel (e.g., diesel) and con-
trolled by microgrid master controllers, are subject to operational 
constraints such as generation limits, ramping rates, and minimum 
on/off times [13]. In contrast, non-dispatchable generators are 
driven solely by the availability and capacity of VRE sources and 
operate independently. Motivated by these results, we develop a 
multi-objective scenario-based mixed-integer linear programming 

(MILP) model to identify the optimal schedule for the microgrid 
and the optimal degree of electrification for ethane cracking. 

Mathematical Formulation 
In this section, we describe MILP model in detail. First, the 

objective function (1) minimizes the expected daily operating cost, 
which includes fuel costs (𝑐!"), electricity costs from the main grid 
(𝑐"), local energy generation costs by dispatch units (𝑐#) and fuel 
cell units (𝑐$%), startup (𝑐&'# ) and shutdown costs (𝑐&## ), and H2 gen-
eration(𝑐()) and storage (𝑐*&) costs across all scenarios 𝜔 ∈ Ω. 
The maximization function in the startup and shutdown costs in 
the objective function can be easily linearized. Constraint (2) 
adopts the 𝜖-constraint approach for modeling the trade-off be-
tween operating costs and environmental impacts by ensuring 
that the expected total released CO2-equivalent emissions in every 
hour generated by all cracker units do not exceed a specified level. 
Note that burning one ton of natural gas in conventional cracker 
releases approximately 2.95 (𝐸!" ) tons of CO2-equivalent emis-
sions [14]. Meanwhile, based on current power generation tech-
nologies, each MWh of electricity from the power grid is associ-
ated with 0.434 (𝐸") tons of CO2-equivalent emissions [15]. Equa-
tions (3) and (4) are energy balance equations with respect to the 
amount of ethylene produced by conventional crackers (CC) and 
electrified (EC) ones, respectively. In our previous work [7], we de-
veloped a differential-algebraic equation (DAE) numerical model 
for ethane cracking based on detailed kinetics model [16] and 
solved the resulting dynamic optimization problem in pyomo.dae 
[17] to obtain that the minimum energy required to produce one 
ton of ethylene in a conventional cracker (𝑃%% ) and electrified 
cracker (𝑃(%) are 4.27 MWh and 1.75 MWh, respectively (due to 
different thermal efficiencies). The RHS of Equations (3) and (4) 
uses the lower heating values of natural gas (𝐿𝐻𝑉!" ) (13.826 
MWh/ton) and H2 (𝐿𝐻𝑉+! ) (33.320 MWh/ton). Assuming year-
round continuous and steady-state operation of CCs and ECs, 
Equation (5) ensures that the hourly production rate of ethylene 
(𝐹,!+") of all CCs and ECs must be 114.155 ton/h to achieve an 
annual production target of 1 million tons. After steam cracking, 
the product stream undergoes a series of downstream processing 
steps to obtain individual product streams, including C2H4, C3H6, 
H2, and other value-added hydrocarbons. For CH4 produced by ECs 
and CCs, it will be directly recycled to power the CCs, as shown in 
Equation (6). For byproduct H2, it can either be stored in H2 storage 
(HS) units, or be used to power the CCs or produce electricity in 
fuel cell (FC) units [18], as described in Equation (7). The mole frac-
tions of CH4 (𝑅-./,,+") and H2 (𝑅123,+!) in the product mixture are 
0.469 and 0.531, respectively [7]. Furthermore, we assume CH4 
and H2 recovery rates in downstream separation units to be 99.7% 
(𝑟,+") and 99% (𝑟+!), respectively [7]. Next, given that the ratio of 
product flow rates between H2 and C2H4 (𝑅+!) is 0.149 as deter-
mined from the DAE model [7], equations (8-9) indicate that not 
all CH4 and H2 produced have to be recycled. Equation (10) limits 
the amount of H2 in a HS unit to its storage capacity (𝐻𝑆𝐶) which 
is 15 tons. Equations (11-12) are hydrogen balances around the HS 
unit and electrolyzer (EL). The energy balance for the electrolyzer 

Natural 
Gas

Liquid 
Fuel

Main 
Grid

VRE

Conventional 
crackers

Downstream 
separations

Electrified 
crackers

H2 storage 
unit 

Fuel cell

Electrolyzer

H2

Dispatchable 
generators

Energy storage 
system (battery)

Non-dispatchable 
generators

Energy conversion Energy storage Energy usageConnections & unit operations associated with:

H2

C
H

4/
H

2

C
H

4/
H

2H2

C
H

4

H2



 

[LAPSE_DoNotChange] Syst Control Trans 4:XXXX-YYYY (2025) 3  

is shown in Equation (13) using the NREL-validated PEM stack effi-
ciency (𝜂()) of 73.6% [19] and the theoretical electrolysis energy 
requirement (𝑄̇+! ) of 40 MWh/ton. Equation (14) indicates the 
current H2 production capacity (𝐹()

+! ) from the electrolyzer (0.6 
ton/h). The fuel cell energy balance, generation limit, and power 
distribution constraints are formulated in Equations (15-17), 
where we assume a 65% fuel cell efficiency (𝜂$%) and a power gen-
eration capacity (𝑃3$%) of 1 MW. Equations (18-22) show power dis-
tribution associated with the local non-dispatchable, dispatchable, 
energy storage system (both charging and discharging), and main 
grid. In Equation (23), we set the allowable power withdrawal from 
the main grid to the microgrid to be at most 50 MW (𝑃3"). Addi-
tional constraints related to local dispatchable generation, ramp-
ing, up/downtime, energy storage charging/discharging, and 
power storage are described in [9] and also included in the model 
[7]. 
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ILLUSTRATIVE CASE STUDY 

In this section, we illustrate the proposed multi-objective 
scenario-based MILP model in a case study of a hypothetical plant 
designed with an ethylene production capacity of 1 million tons 
per year. Each cracking furnace in the U.S. typically can produce 
100,000 to 250,000 tons of ethylene per year. Based on this, we 
assume the plant operates with five ethane crackers, each with a 
production capacity of 200,000 tons of C2H4 per year. The mi-
crogrid is equipped with 20 natural gas-powered local generators 
with minimum (resp. maximum) capacity of 1 (resp. 5) MW, a min-
imum up/downtime of 3 hr, a ramp-up/down rate of 2.5 MW/h, 
and an operating cost of $33.4/MWh. The battery storage units 
have a total capacity of 20 MWh with 5 hours of minimum charg-
ing/discharging time. The minimum and maximum capacities of 
charging/discharging power are 0.8 and 4 MW, respectively. Our 
planning horizon is 24 hours. 

Table 1: Probability of generated scenarios for LMP, wind power, 
and PV. 

Scenario number 
used in Table 2 

Probability of uncertain parameter (%) 
LMP WP PV 

1 64.50 14.48 4.86 
2 2.92 1.52 60.31 
3 3.26 64.91 15.81 
4 1.29 6.18 32.96 
5 28.03 13.91 16.06 

Table 2: Probability of generated scenarios (after scenario 
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reduction) for the microgrid problem after scenario reduction. 

Com-
bined 
scenario 

Selected 
LMP sce-
nario 

Selected 
WP sce-
nario 

Selected 
PV sce-
nario 

Probability 
(%) 

1 5 3 2 18.21 
2 1 3 4 45.56 
3 1 1 3 4.54 
4 5 3 3 9.50 
5 1 3 5 22.19 

 
Electricity market prices, along with solar and wind energy 

generation, are inherently intermittent. To account for these un-
certainties in our model, we generate five scenarios for each un-
certain parameter using Monte Carlo simulations based on a log-
normal distribution, ensuring that no negative parameter values 
are produced [7]. These scenarios are derived using publicly avail-
able data from the Texas grid (ERCOT) for August 2024. For loca-
tional marginal pricing (LMP), we select Bus TC-KO arbitrarily as a 
representative case without loss of generality. Table 1 summarizes 
the probabilities of scenarios for each uncertain parameter. Note 
that the combination of these scenarios results in 5D = 125 possi-
ble outcomes. To manage this complexity, we apply a scenario re-
duction technique to identify 5 representative combinations. This 
is achieved using a probability distance algorithm based on the 
Kantorovich distance [9] (see Table 2). Figures 2 through 4 illus-
trate the mean and average values for electricity market prices, 
wind power, and solar power across the 5 representative scenarios 
synthesized. 

 
Figure 2. The electricity market prices (in $/MWh) of the five 
scenarios considered.  

 
Figure 3. The generation output (in MW) of wind turbines of the 
five scenarios considered. 

 
Figure 4. The output power (in MW) of solar panels of the five 
scenarios considered. 

First, we solve the problem without incorporating the 𝜖-con-
straint of Equation (2) to determine the minimum operating cost 
and the corresponding degree of electrification (i.e., % of ethylene 
produced from ECs) required. The minimum expected daily oper-
ating cost is calculated to be $11,705.22, with 5.28% of the daily 
ethylene production coming from electrified crackers. The ex-
pected daily CO2-equivalent emissions amounted to 919.42 tons, 
with the maximum hourly emissions reaching 39.43 tons (the first 
row in Table 3). 

Table 3: Summary of expected operating costs, degrees of electri-
fication, and CO2-equivalent emissions for different values of 𝜖, 
highlighting the trade-offs between emissions reduction and asso-
ciated costs. 

# 𝝐 (tons) Expected CO2-
equiv emis-
sions (tons) 

Degree of 
electrifica-
tion (%) 

Expected oper-
ating cost ($) 

1 39 918.70 5.46 11,755.57 
2 38 910.08 7.65 12,172.48 
3 37 887.99 12.06 14,225.26 
4 36 863.99 14.59 17,556.30 
5 35 840.00 16.77 21,792.20 
6 34 815.99 18.49 27,436.60 
7 33 792.00 19.25 33,884.81 
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Figure 5. Pareto front showing the trade-off between expected 
daily operating cost and expected daily CO2-equivalent emissions 
for different values of 𝜖. Each point represents an optimal solution 
for a specific 𝜖-value. 

Figure 6. A concave relationship between expected operating cost 
and degree of electrification for different values of 𝜖 . The plot 
highlights how the tightness of emission constraint affects of 
optimal degree of electrification and cost. 

Next, we solve the problem for different values of 𝜖 ∈
[32,39] to evaluate the corresponding optimal operating and de-
gree of electrification. It is important to note that the problem be-
comes infeasible when 𝜖 = 32, indicating that reducing the hourly 
CO2-equivalent emissions to less than 33 tons is not feasible with 
the current technology. The results, summarized in Table 3, show 
that the highest degree of electrification achievable is 19.25%, 
which corresponds to an operating cost of $33,884.81 – a 189.5% 
increase compared to the case without the 𝜖-constraint (the first 
row in Table 3). On the other hand, the expected daily CO2-equiv-
alent emissions are reduced by 13.86% (almost 130 tons). 

Here, we discuss some of the key findings and results. First, 
Figures 5 and 6 illustrate the Pareto front and the operating cost-
degree of the electrification relationship, respectively, providing 
quantitative insights into the trade-off between the two important 
measures. Meanwhile, Figure 7 and 8 illustrate changes in the 

expected transferred power from the main grid to the microgrid 
and the charge/discharge status of local energy storage system 
(batteries). As one would expect, these fluctuations are partly 
driven by hourly variations in electricity market prices (as shown in 
Figure 2). During peak hours, there will be less power transferred 
from the main grid to the microgrid, thereby prompting the chem-
ical plant to prioritize local power generation or stored energy to 
maintain continuous operation. During off-peak hours, the mi-
crogrid can rely more on the main grid power to reduce operating 
costs. Additionally, this figure highlights the environmental consid-
erations affecting grid power usage. As stricter CO₂-equivalent 
emission constraint (𝜖) is enforced, the microgrid reduces its reli-
ance on the main grid and favors cleaner, locally generated energy 
sources. This is due to the relatively high carbon footprint associ-
ated with main grid electricity given the existing energy landscape. 
Therefore, decarbonization of chemical manufacturing should not 
be considered in silo. Instead, it must be synergistically coupled 
with decarbonization in power systems to achieve holistic decar-
bonization that is economically favorable. 

Figure 7. Expected transferred power from the main grid to the 
chemical plant. 

 
Figure 8. Expected charge/discharge power from ESS to ECs. 
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CONCLUSION 

This work presents an optimization framework for operating 
the microgrid that integrates electrified and conventional steam 
crackers along with renewable energy sources and diverse energy 
sources and storage systems. The proposed multi-objective sce-
nario-based MILP model illustrates the feasibility of reducing CO2-
equivalent emissions and the resulting process economics trade-
off. The results suggest that, while higher degree of electrification 
leads to lower emissions, there is a lower limit to which electrifica-
tion and decarbonization of steam cracking process can reach 
given 1) the limited capacities of energy storage systems and tech-
nology readiness of fuel cells and electrolyzers, and 2) the resulting 
increase in operating cost. Overall, operating the ethylene plant as 
a microgrid offers flexibility and resilience as it can better cope 
with the ongoing industrial decarbonization initiatives and the 
evolving U.S. energy landscape. Our proposed microgrid super-
structure provides a viable solution for energy-intensive steam 
cracking process to transition toward being sustainable while eco-
nomically competitive. Looking ahead, further research should ex-
plore the integration of emerging energy storage technologies, 
such as advanced batteries and thermal storage, to enhance the 
stability of electrified steam cracking. Additionally, policy incen-
tives and carbon pricing mechanisms could play a critical role in 
making sustainable production pathways more economically via-
ble. Future studies should also investigate the electrification of 
other key process units, such as distillation systems using heat 
pumps, and assess the feasibility of fully electrified cracking plant. 
Addressing these aspects will unlock the full decarbonization po-
tential of clean olefins production while ensuring operational reli-
ability and economic feasibility. 
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