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Abstract

In this work, we present the first algorithm for identifying the minimum reboiler vapor duty
requirement for a general multi-feed, multi-product (MFMP) distillation column separating ideal
multicomponent mixtures. This algorithm incorporates our latest advancement in developing
the first shortcut model for MFMP columns. By comparing with rigorous Aspen Plus simula-
tions, we demonstrate the accuracy and efficiency of this algorithm through case studies. The
results obtained from these case studies also provide valuable insights on optimal design of mul-
ticomponent distillation systems as well as the minimum reflux behavior for MFMP columns.
Counterintuitive at first glance, many of these insight are against the design guidelines and
heuristics that chemical engineering community has been adopting for decades. We find out,
for example, that placing a colder feed stream above a hotter feed stream sometimes leads to
higher energy requirement. Furthermore, decomposing a general MFMP column into individ-
ual simple columns to estimate the minimum reflux ratio for the MFMP column, which is the
common underlying assumption in existing formulations for optimizing multicomponent distil-
lation systems, may lead to incorrect results. Thus, the algorithm presented in here offers the
first fast, accurate, and automated approach that can be easily incorporated in an optimization
framework to synthesize and design new, energy-efficient, and cost-effective multicomponent
distillation systems.

Keywords: Multicomponent distillation, multi-feed and multi-product distillation column, min-
imum reflux ratio, Underwood method, optimization

1 Introduction

Distillation is an ubiquitous separation technology in the chemical process industries, consuming
almost 50% of the energy used by the chemical industries and about 40% by the refining process1.
Assuming that 50% of the CO2 equivalent release from process heating in chemical manufacturing
and 40% in petroleum refining are attributable to distillation, distillation alone will be responsible
for 95 million tons of CO2 release in the U.S. each year2. Thus, to decarbonize the U.S. manufac-
turing sector, it is essential to significantly reduce the energy consumption and carbon footprint of
distillation process3.
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While binary mixtures can generally be separated using one distillation column, multicomponent
mixtures, which are more commonly encountered in industrial separations, require a sequence of
distillation columns called a distillation configuration to achieve the desired separation. As the
number of components in the feed increases, the total number of possible distillation configurations
increases combinatorially4. Among these distillation configurations, many of them contain one or
more distillation columns with multiple feed streams and/or one or more sidedraw product streams.
And it is well-known that these configurations with multi-feed, multi-product (MFMP) columns
are generally more energy-efficient to operate than the so called “sharp-split configurations” which
do not involve any MFMP column5;6.

MFMP columns can also be derived from conventional one-feed, two-product columns in binary
and multicomponent distillation by applying various process intensification techniques7–9, including
heat pumps10;11, double and multi-effect12, intermediate reboilers and condensers13, prefractiona-
tor arragement14, feed preconditioning15, heat and mass integration16, and so on. Compared to the
original conventional columns, these news MFMP columns not only require significantly less energy
from a first-law of thermodynamics perspective, but also have much higher thermodynamic effi-
ciency from a second-law perspective17, making them more attractive than alternative technologies
(e.g., membranes) for a variety of industrial separations9;18. Furthermore, when heat pumps are
used in conjunction with other techniques above, the resulting MFMP columns can now be flexibly
powered by alternative energy sources (e.g., renewable electricity such as solar and wind). Thus,
MFMP columns are becoming increasingly important in the context of industrial decarbonization
and net-zero economy, as they can revamp conventional steam-driven distillation systems whose
energy primarily comes from fossil fuel combustion2.

The minimum reflux ratio of a distillation column is closely related to its energy consumption,
capital cost, and operational limit19;20, hence it is a key parameter in distillation design and op-
eration. The naive approach of determining a column’s minimum reflux ratio involves performing
exhaustive sensitivity analysis using process simulators, which is a tedious task that often faces
convergence issues. As a result, a fast and accurate algorithmic approach to calculate the actual
minimum reflux condition of a general MFMP column is critical for designing new, energy-efficient,
and cost-effective multicomponent distillation systems. Ideally, such a method should also have a
simple mathematical formulation that can be easily incorporated in a (global) optimization frame-
work for fast and accurate identification of attractive configurations from an enormous configuration
search space.

Over the past decades, a number of algorithmic methods have been proposed to determine
the minimum reflux ratio of a general MFMP column accurately and efficiently. A comprehensive
review of these methods can be found in the first article of this series21. However, these methods
either rely on several simplifying assumptions, some of which turn out to be too restrictive or even
incorrect as we will later demonstrate, or they require rigorous tray-by-tray calculations which are
computationally expensive to perform and thus impractical to be implemented for solving complex
MFMP columns. To fill the gap between existing methods and what practitioners anticipate, in
our previous work21, we develop the first shortcut mathematical model to analytically determine
the minimum reflux ratio of any general MFMP column entirely based on the assumptions of ideal
vapor-liquid equilibrium, constant relative volatility, as well as constant molar overflow for every
component. No additional restrictions on the particular configuration of the MFMP column or its
product specifications are needed. Also, the proposed shortcut model does not involve any tray-
by-tray calculations. Furthermore, the physical and mathematical properties associated with the
shortcut model are explored, from which we successfully derive the mathematical conditions for
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any general MFMP column operated at minimum reflux.

Continuing our previous work, in this article, we introduce an algorithmic method that incor-
porates the shortcut model developed earlier to efficiently and accurately determine the minimum
reboiler vapor duty requirement for a general MFMP column separating a multicomponent mixture.
This algorithm can either be used by itself to find the minimum reflux condition for a standalone
MFMP column, or can be embedded into a global optimization framework6;17;22;23 to simultane-
ously optimize an entire configuration consisting of one or more MFMP columns. Later, we present
three case studies in comparison with rigorous Aspen Plus simulations to illustrate the accuracy
and usefulness of our algorithm. Also, these case studies are carefully designed to challenge some of
the widely-used design heuristics and rules-of-thumb researchers and industrial practitioners have
been relying upon. The shortcut method and the minimum reflux calculation algorithm presented
in this series thus provide new perspectives on how to accurately model, design, and operate MFMP
columns.

2 A Brief Summary of Shortcut Model for MFMP Columns

Before we introduce the algorithm formulation for determining the minimum reflux condition of
a MFMP column, we present a high-level review of the shortcut model and some of the key re-
sults during its derivation, including the mathematical conditions that dictate whether the target
separation task can be achieved (with finite or inifite number of stages) in the MFMP column.
We consider a column section, which is separated by either a feed or a product stream, as the
smallest module of a MFMP column. From this, we can derive algebraic constraints that must be
satisfied for each and every pair of adjacent column sections to maintain feasibility of separation.
In particular, when the target separation cannot be achieved without requiring an infinite number
of stages (i.e., some column sections are pinched), then the corresponding reflux ratio is the mini-
mum reflux ratio of the MFMP column with respect to the target separation goal. We encourage
readers to refer back to our previous work21 for detailed derivations and explanation of the results
summarized below.

Consider a MFMP column with NSEC column sections separated by NF feed and NW streams
(note that NSEC = NF +NW + 1). Following the nomencalture used in our previous work21, for a
c-component system, let C = {1, . . . , c} and αc > αc−1 > · · · > α1 = 1 be the relative volatilities
with respect to the least volatile one (component 1). Given the feed and product specifications,
we can determine the net material upward flow for component i in every column section k, namely
dSECk
i . Then, for a specific section vapor flow V SECk where k is numbered from top (k = 1) to

bottom (k = NSEC), we can solve the following equation21 to obtain a total of c roots, {γSECk
i }i∈C :

c∑

i=1

αid
SECk
i

αi − γSECk
= V SECk . (1)

Suppose dc, . . . , dl > 0, dl−1, . . . , dh+1 = 0, and dh, . . . , d1 < 0 for some 1 ≤ h < l ≤ c − 1 in a
column section. It can be verified that, among all c roots, c−1 of them lie in the following intervals:

γSECk
i ∈ (αi, αi+1) for i ∈ {1, . . . , h}

γSECk
i = αi for i ∈ {h+ 1, . . . , l − 1}

γSECk
i+1 ∈ (αi, αi+1) for i ∈ {l, . . . , c− 1}.

(2)
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The remaining root, which is referred to as the pinch root γSECk
p , turns out to be closely related

to the actual pinch zone composition in section k. When 1 ≤ h < l ≤ c − 1, it can be shown
that γSECk

p = γSECk
l ∈ (αl−1, αl) ⊂ (αh, αl) (i.e., the lth smallest root of Equation (1)). In this

case, the pinch index pSECk = l. For example, consider a five-component system (c = 5). Suppose
dSECk
1 , . . . , dSECk

3 < 0 and dSECk
4 , dSECk

5 > 0 (see Figure 1). Then, the pinch index pSECk = 4. In
terms of the edge cases beyond 1 ≤ h or l ≤ c− 1, when di < 0 for all i ∈ C, we set h = c− 1 and
l = c and thus γSECk

p = γSECk
c > αc. In this case, the pinch index pSECk = c. When di > 0 for all

i ∈ C, we set h = 0 and l = 1 and thus γSECk
p = γSECk

1 < α1 = 1. In this case, the pinch index

pSECk = 1.
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Figure 1: Roots of Equation (1) for an illustrative example, in which (d1, d2, d3, d4, d5) =
(−0.5,−0.4,−0.3, 0.2, 0.1) and (α1, α2, α3, α4, α5) = (1, 2, 3, 4, 5). The section vapor flow V is set
to be 8. In this case, γ4 is the pinch root and thus the pinch index is 4.

When two adjacent column sections are separated by a feed stream Fj (j = 1, . . . , NF), we

denote the section above Fj as TOPFj and the one below as BOTFj . Since d
TOPFj

i ≥ d
BOTFj

i for
every component i ∈ C, we can show that the pinch indices satisfy pTOPFj ≤ pBOTFj . Thus, an
index set IFj is defined for this feed Fj as:

IFj = {i ∈ C|γ
TOPFj

i > γ
TOPFj
p , γ

BOTFj

i−1 < γ
BOTFj
p } = {pTOPFj + 1, . . . , pBOTFj}. (3)

For example, consider the same five-component system discussed above where root profile shown
in Figure 1 corresponds to the lower section of feed stream Fj . Now, for the upper section, suppose

d
TOPFj

1 < 0 and d
TOPFj

2 , . . . , d
TOPFj

5 > 0. Following the same reasonings above, the pinch index for
section TOPFj is pTOPFj = 2. Thus, IFj = {3, 4}. With this, one of the key results we obtained in
our previous work21 is that, the feasibility of the target separation in sections TOPFj and BOTFj

requires the following γ root constraint to be satisfied for every i ∈ IFj :

γ
TOPFj

i ≥ ρi−1,Fj ≥ γ
BOTFj

i−1 ∀i ∈ IFj ; j = 1, . . . , NF (4)
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where the equality holds when the two column sections are pinched and {ρi−1,Fj}i∈IFj
are a subset

of solutions of the following equation:

c∑

m=1

αmlm,Fj

αm − ρi,Fj

= 0 or
c∑

m=1

αmfm,Fj

αm − ρi,Fj

= VFj i = 1, . . . , c− 1; j = 1, . . . , NF, (5)

where ρi,Fj ∈ (αi, αi+1). Here, lm,Fj ≥ 0, fm,Fj ≥ 0, and VFj ≥ 0 correspond to the flow rate of
component m in the liquid portion of Fj , the feed flow rate of component m, and the total vapor
flow rate of the feed, respectively. When Fj is in saturated vapor state, then lm,Fj corresponds to
the hypothetical liquid composition that is in thermodynamic equilibrium with the vapor feed.

When two infinite column sections are connected by a sidedraw stream Wj (j = 1, . . . , NW), we

denote the section above Wj as TOPWj and the one below as BOTWj . Since d
TOPWj

i ≤ d
BOTWj

i

for every component i ∈ C, we can show that pTOPWj ≥ pBOTWj . Similarly, we define an index set
IWj as:

IWj = {i ∈ C|λ
BOTWj

i > λ
BOTWj
p , λ

TOPWj

i−1 < λ
TOPWj
p } = {pBOTWj + 1, . . . , pTOPWj}. (6)

The feasibility of the target separation in sections TOPWj and BOTWj requires the following
γ root constraint to be satisfied for every i ∈ IWj :

γ
TOPWj

i−1 ≤ ρi−1,Wj ≤ γ
BOTWj

i ∀i ∈ IWj ; j = 1, . . . , NW, (7)

where {ρi−1,Wj}i∈IWj
are a subset of solutions of the following equation that is analogous to Equa-

tions (5):

c∑

m=1

αmlm,Wj

αm − ρi,Wj

= 0, or
c∑

m=1

αmfm,Wj

αm − ρi,Wj

= VWj i = 1, . . . , c− 1; j = 1, . . . , NW, (8)

where ρi,Wj ∈ (αi, αi+1). Here, lm,Wj ≤ 0, fm,Wj ≤ 0, and VWj ≤ 0 correspond to the flow rate
of component m in the liquid portion of the sidedraw stream, the sidedraw flow rate of component
m, and the total vapor flow rate of the sidedraw, respectively. When Wj is in saturated vapor
state, then lm,Wj corresponds to the hypothetical liquid composition that is in thermodynamic
equilibrium with the vapor sidedraw.

A unique feature about a sidedraw stream is that the sidedraw’s liquid composition (or the
hypothetical liquid composition for a vapor-only sidedraw) must belong to the liquid composition
profile, whereas a feed’s liquid composition (or the hypothetical liquid composition for a vapor-only
feed) may or may not belong to the liquid composition profile. Therefore, an additional set of
constraints are needed to ensure this for sidedraws. While Equation (7) already takes this aspect
into account when IWj is nonempty, we still need to account for a rather common edge case (e.g.,

Example 2 in Section 5) where pTOPWj = pBOTWj (note that pTOPWj can never be less than pBOTWj

due to the nature of sidedraw). Let pWj denote the common pinch index pTOPWj = pBOTWj . The
condition that sidedraw composition must belong to the composition profile yields to the following
constraint:

γ
TOPWj

i , γ
BOTWj

i ≥ ρi−1,Wj ∀i = pWj , . . . , c;

γ
TOPWj

i , γ
BOTWj

i ≤ ρi,Wj ∀i = 1, . . . , pWj − 1;
∀j = 1, . . . , NW. (9)

5



3 Formulation of the Minimum Reflux Calculation Algorithm

Now that we have reviewed the key results of our shortcut model, we will derive the formulation
to calculate the minimum reflux ratio of a general MFMP column algorithmically. Recall that for
a c-component system, the domain of γSECk

i roots to Equation (1) can be split into c + 1 distinct
intervals: (0, α1), (α1, α2), . . . , (αc−1, αc), and (αc, αc + δ) where δ is a sufficiently large positive
number. Based on Equation (2), among these c+ 1 intervals, each of the following c− 1 intervals
must contain at least one root: (α1, α2), . . . , (αc−1, αc). The remaining root, which is the pinch
root γSECk

p , may lie in one of the c+ 1 intervals depending on whether and where the sign change

in dSECk
i occurs (see discussion above).

To model this, for each column section k, we define a set of binary variables {µSECk
i ∈ {0, 1}}c+1

i=1 ,

where µSECk
i = 1 when the pinch root γSECk

p ∈ (αi−1, αi), and is 0 otherwise. Here, we define α0 := 0
and αc+1 := αc + δ. This way, the pinch root must satisfy the following constraints:

c+1∑

i=1

αi−1µ
SECk
i ≤ γSECk

p ≤
c+1∑

i=1

αiµ
SECk
i

c+1∑

i=1

µSECk
i = 1

∀k = 1, . . . , NSEC. (10)

Next, the nature of feed and sidedraw streams leads to the following sets of constraints for all
adjacent column section pairs:

Feed stream Fj : p
TOPFj ≤ pBOTFj ⇒

c+1∑

i=1

iµi,BOTFj
≥

c+1∑

i=1

iµi,TOPFj
∀j = 1, . . . , NF;

Sidedraw stream Wj : p
TOPWj ≥ pBOTWj ⇒

c+1∑

i=1

iµi,BOTWj
≤

c+1∑

i=1

iµi,TOPWj
∀j = 1, . . . , NW.

(11)

To represent the index sets IF and IW defined in Equations (3) and (6) in a way that can
be implemented algorithmically, we define a new set of binary variables {KSECk

i ∈ {0, 1}}c+1
i=1 for

column section k where:

KSECk
i =

i∑

m=1

µSECk
m ∀i = 1, . . . , c+ 1; ∀k = 1, . . . , NSEC. (12)

Clearly, KSECk
i = 0 if and only if µSECk

1 , . . . , µSECk
i are all equal to 0. And KSECk

i changes from

0 to 1 at index i where µSECk
i = 1 (i.e., γSECk

p ∈ (αi−1, αi)) and then stays at 1 for indices greater
than i. Now, let us consider two column sections separated by feed stream Fj . For section TOPFj ,

the index set {i ∈ C|γTOPFj

i > γ
TOPFj
p } is equivalent to {i ∈ C|KTOPFj

i−1 = 1}. Similarly, for section

BOTFj , the index set {i ∈ C|γBOTFj

i−1 < γ
BOTFj
p } is the same as {i ∈ C|KBOTFj

i−1 = 0}. Therefore, we
can redefine IFj as:

IFj = {i ∈ C|K
TOPFj

i−1 −K
BOTFj

i−1 = 1} ∀j = 1, . . . , NF. (13)
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In the example shown in Figure 1, where the root profile corresponds to the column section below

a feed stream Fj , K
BOTFj

1 = K
BOTFj

2 = K
BOTFj

3 = 0, and K
BOTFj

4 = K
BOTFj

5 = K
BOTFj

6 = 1. In

terms of the column section above Fj , where d
TOPFj

1 < 0 and d
TOPFj

2 , . . . , d
TOPFj

5 > 0, we have

K
TOPFj

1 = 0, whereas K
TOPFj

2 through K
TOPFj

6 are all equal to 1. Thus, it follows from Equation
(13) that IFj = {3, 4}, which is consistent with what we obtain using Equation (3).

Likewise, the we can redefine IWj as:

IWj = {i ∈ C|K
BOTWj

i−1 −K
TOPWj

i−1 = 1} ∀j = 1, . . . , NW. (14)

This way, we can rewrite Equations (4) and (7) indicating the feasibility of separation in a
MFMP column as:

(K
TOPFj

i−1 −K
BOTFj

i−1 )(γ
TOPFj

i − ρi−1,Fj ) ≥ 0 ∀j = 1, . . . , NF

(K
TOPFj

i−1 −K
BOTFj

i−1 )(ρi−1,Fj − γ
BOTFj

i−1 ) ≥ 0 ∀j = 1, . . . , NF

(K
BOTWj

i−1 −K
TOPWj

i−1 )(γ
BOTWj

i − ρi−1,Wj ) ≥ 0 ∀j = 1, . . . , NW

(K
BOTWj

i−1 −K
TOPWj

i−1 )(ρi−1,Wj − γ
TOPWj

i−1 ) ≥ 0 ∀j = 1, . . . , NW

∀i = 2, . . . , c. (15)

To implement Equation (9) in an algorithmic fashion, for every i = 1, . . . , c + 1 and j =

1, . . . , NW, we define a binary variables ω
Wj

i := µ
TOPWj
m µ

BOTWj
m , which can be linearized using

McCormick envelope. Clearly, ω
Wj

i = 1 when and only when pTOPWj = pBOTWj (i.e., both pinch
roots resides in (αi−1, αi)). Next, for each sidedraw stream j, we define a set of binary variables

{HWj

i }c+1
i=1 such that:

H
Wj

i =
i∑

m=1

ω
Wj
m , where ω

Wj
m





≥ 0

≥ µ
TOPWj
m + µ

BOTWj
m − 1

≤ µ
TOPWj
m

≤ µ
BOTWj
m

∀j = 1, . . . , NW. (16)

Therefore, Equation (9) can be rewritten as:

H
Wj

i (γ
TOPWj

i − ρi−1,Wj ) ≥ 0 ∀i = 2, . . . , c;

H
Wj

i (γ
BOTWj

i − ρi−1,Wj ) ≥ 0 ∀i = 2, . . . , c;

(1−H
Wj

i )(γ
TOPWj

i − ρi,Wj ) ≤ 0 ∀i = 1, . . . , c;

(1−H
Wj

i )(γ
BOTWj

i − ρi,Wj ) ≤ 0 ∀i = 1, . . . , c;

∀j = 1, . . . , NW. (17)

4 Implementation of Minimum Reflux Calculation Algorithm

When implementing the algorithm developed in Section 3, there are two approaches to consider.
The first approach is to implement Equations (10), (11), (12), (15), and (17) in an optimization
framework as constraints, along with the mathematical formulations of the shortcut model de-
veloped in our earlier work21. The resulting formulation is a mixed-integer nonlinear program
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(MINLP), which can be solved to global optimality using global solvers such as BARON24. We
use this approach when purity or recovery in product streams are only specified for the light and
heavy key components. In this case, the MINLP will determine the optimal distribution of other
components in the product streams such that the reflux ratio or reboiler vapor duty requirement is
minimized. To illustrate how this approach works, in Section 5.3, we present this formulation for
an quaternary separation example in a two-feed, one-sidedraw column.

For many practical applications, the product distributions of the MFMP column have already
been fully specified. In this case, the search for minimum reflux ratio of the MFMP column becomes
a fully algorithmic procedure that does not require solving an optimization problem. This is because
the net material upward flows {dSECk

i }ci=1 can be readily obtained from mass balances, making
the determination of pinch root γSECk

p (and thus the pinch index pSECk) completely deterministic
following Equation (2) for every column section k = 1, . . . , NSEC. This means that the index
sets IFj and IWj are also fully determined for every feed and sidedraw stream. Therefore, we
can run a simple algorithmic procedure presented in Algorithm 1 to identify the true minimum
reboiler vapor duty requirement or minimum reflux ratio. Specifically, as discussed in detail in
our previous work21, at minimum reflux condition, one of the feed or sidedraw streams essentially
“controls” the separation. Accordingly, the feasibility criteria (Equation (4) or (7)) associated
with the controlling feed or sidedraw stream will be satisfied as equalities, whereas the feasibility
criteria associated with other streams still need to be satisfied as inequalities. Thus, the idea behind
Algorithm 1 is to scrutinize all feed and sidedraw streams, assuming that each of them may be
controlling the separation at minimum reflux, and determine whether feasibility criteria are met
for all remaining feed and sidedraw streams. Overall, the true reboiler vapor duty (resp. minimum
minimum reflux ratio) corresponds to the lowest reboiler vapor duty (resp. lowest reflux ratio) that
lead to all feasibility criteria being met.

5 Case Studies

In this section, we examine a few ternary and quanterary separation examples that will illustrate
the accuracy and effectiveness of our minimum reflux calculation methods while providing valuable
insights of the minimum reflux behavior of a MFMP column for the first time.

5.1 Example 1: Two-Feed Distillation Column

In the first example, we examine a two-feed distillation column shown in Figure 2 separating a
ternary mixture of n-hexane (Component 3), n-heptane (Component 2), and n-octane (Component
1). Two-feed columns are common in extractive distillation applications. Furthermore, as recently
discovered by Madenoor Ramapriya et al.25, a large energy saving can potentially be realized when
two feed streams are introduced at two different locations of the column compared to pre-mixing
them to form a single feed stream.

The relative volatility of each component with respect to octane at atmospheric pressure are
estimated from Aspen Plus to be (α3, α2, α1) = (5.1168, 2.25, 1). To establish a common basis
for comparison, we ensure constant relative volatility and constant molar overflow assumptions
by appropriately modifying the property parameters in Aspen Plus listed under PLXANT and
DHVLDP26. The IDEAL thermodynamic package is used. This column produces a distillate
product with a total flow rate of 52.476 mol/s containing 95 mol% of hexane, 5 mol% of heptane,
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input : C, NF, NW, NSEC, {fi,Fj}NF
j=1, {li,Fj}NF

j=1, {fi,Wj}NW
j=1, {li,Wj}NW

j=1, d
SEC1
i for every

component i ∈ C
output: minimum reboiler vapor duty Vreb,min

initialize: An empty list {Vreb} storing candidate minimum reboiler vapor duty values

begin

Calculate {dSECk
i }i∈C; k=2,...,NSEC

from inter-column section material balances (Equation
(29) of Jiang et al.21);

From Equation (2), determine all pinch indices and the index sets {IFj}NF
j=1 and

{IWj}NW
j=1 based on Equations (3) and (6);

Solve Equations (5) and (8) to obtain {ρi,Fj}i∈C\{C}; j=1,...,NF
and

{ρi,Wj}i∈C\{C}; j=1,...,NW
, respectively;

for j ← 1 to NW do

if IWj = ∅ then Let pWj ← pTOPWj and add Vreb,Wj
= sidedrawFeasible(j, pWj )

into the list {Vreb} else Continue;
for i ∈ IWj do

Substitute γ
TOPWj

i−1 ← ρi−1,Wj into Equation (1) to obtain V TOPWj ;

Add Vreb,Wj
= getVreb(TOPWj , V

TOPWj ) into the list {Vreb};
end

end
for j ← 1 to NF do

if IFj = ∅ then Skip and go to the next j else Continue;

for i ∈ IFj do

Substitute γ
TOPFj

i ← ρi−1,Fj into Equation (1) to obtain V TOPFj ;

Add Vreb,Fj
= getVreb(TOPFj , V

TOPFj ) into the list {Vreb};
end

end
Vreb,min = min{Vreb}

end
Algorithm 1: Vrebmin: Algorithm for determining the minimum reboiler vapor duty require-
ment of a MFMP column knowing the flow rates and compositions of feed and product streams.
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input : column section s and its section vapor flow V SECs

output: candidate reboiler vapor duty value

begin
for k ← s− 1 to 1 do

Calculate V SECk from V SECk+1 via vapor balances;
Determine {γSECk

r }r∈C from Equation (1) using V SECk ;
if the feasibility criteria (Equations (4), (7), (9)) associated with SECk are satisfied
then Continue else return null;

end
for k ← s+ 1 to NSEC do

Calculate V SECk from V SECk−1 via vapor balances;
Determine {γSECk

r }r∈C from Equation (1) using V SECk ;
if the feasibility criteria (Equations (4), (7), (9)) associated with SECk are satisfied
then Continue else return null;

end

return V SECNSEC .
end

Algorithm 2: getVreb: Algorithm for checking feasibility of separation and returning the
candidate reboiler vapor duty value.

input : sidedraw stream index j, pinch index pWj

output: candidate reboiler vapor duty value
initialize: An empty list {Vreb,Wj

} storing candidate minimum reboiler vapor duty values

begin
for m← 1 to c do

if m ≤ pWj − 1 then

Substitute γ
TOPWj
m ← ρm,Wj into Equation (1) to obtain V TOPWj ; Add

Vreb,m = getVreb(TOPWj , V
TOPWj ) into the list {Vreb,Wj

};
else if m ≥ pWj then

Substitute γ
TOPWj
m ← ρm−1,Wj into Equation (1) to obtain V TOPWj ; Add

Vreb,m = getVreb(TOPWj , V
TOPWj ) into the list {Vreb,Wj

};
end

return V SECNSEC ← min{Vreb,Wj
}.

end
Algorithm 3: sidedrawFeasible: Algorithm for returning candidate reboiler vapor duty value
“controlled” by sidedraws having the same pinch indices for adjacent column sections.

10



𝐁

𝐃
𝐅𝟏

𝐅𝟐

3

2

1

Figure 2: A two-feed column with no sidedraw product stream.

and negligible amount of octane. Thus, bottoms product has a flow rate of 147.524 mol/s containing
0.1 mol% of hexane, 45.671 mol% of heptane, and 54.229 mol% of octane.

Figure 3: The pinch simplices at the minimum reflux condition obtained using Algorithm 1. Here-
after, X1, X2, X3 represent pure octane, heptane, and hexane, respectively. The blue dots are the
actual liquid composition profile of this two-feed column simulated in Aspen Plus as a RadFrac
column. By setting up appropriate Design Specs in Aspen Plus to simulate the MFMP containing
150 equilibrium stages, we obtain a minimum reflux ratio of Rmin = 2.145 from Aspen Plus.

We consider two scenarios in Example 1. In the first scenario, the upper feed F1 in the MFMP
column is a saturated liquid stream containing 30 mol/s of hexane, 60 mol/s of heptane, and 10
mol/s of octane. The lower feed F2 is also a saturated liquid stream but with 20 mol/s of hexane,
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10 mol/s of heptane, and 70 mol/s of octane. Clearly, F2 is less volatile (i.e., “heavier”) than
F1 and thus has a higher temperature. Since the feed and product specifications are given, one
can directly apply Algorithm 1 to obtain that the minimum reflux ratio Rmin = 2.162 and the
minimum reboiler vapor duty is Vreb,min = 165.95 mol/s. The minimum reflux condition occurs
when the upper feed F1 “controls” the separation, where Equation (4) associated with F1 becomes
the binding constraint. To better illustrate this, we construct the pinch simplicies following our
previous work21 for this ternary system at minimum reflux. Following the visualization of Figure
3, the pinch simplices associated with column sections 1 and 2 share a common boundary, where
F1 stream composition xF1 also lies. This means z

TOPF1
3 (xF1) = z

BOTF1
2 (xF1) = 0, which implies

γ
TOPF1
3 = γ

BOTF1
2 = ρ2,F2 (see our previous work21 for detailed explanation). If the reflux ratio is

further reduced, it can be shown that z
TOPF1
3 (xF1) < 0, and z

BOTF1
2 (xF1) < 0, thus violating the

feasibility criteria. Geometrically speaking, this implies that the two pinch simplicies will no longer
intersect. Therefore, Rmin = 2.162 is indeed the minimum reflux ratio.

We validate the minimum reflux ratio obtained from our shortcut method using rigorous Aspen
Plus simulation. Each column section contains 50 equilibrium stages, much larger than what are
needed for this paraffin separation task. This is to ensure that the true minimum reflux condition
is achieved. It turns out that the minimum reflux ratio obtained from our shortcut method is less
than 1% different compared to true minimum reflux ratio (Rmin = 2.145) obtained from rigorous
Aspen Plus simulation. Also, the liquid composition profile inside the MFMP column at minimum
reflux, as shown in Figure 4, exactly follows the behavior of liquid composition trajectory bundle of
a pinch simplex. For more details, readers are encouraged to review Sections 3.4 and 4.2 of Jiang
et al.21. Specifically, since the distillate product is free of octane, the liquid composition profile
xn (where stage number n is numbered from top to bottom) starting from the distillate product
must lie on the hyperplane zSEC1

1 (x) = 0 until it reaches a (saddle) pinch, which corresponds to
a vertex of the pinch simplex and lies somewhere within section 1. Below this pinch, the liquid
composition profile continues along the hyperplane zSEC1

3 (x) = 0 until it reaches the lower end of
section 1, which is connected to the top of column section 2. It turns out this is where the pinch
zone lies in section 2. Since that the pinch is an unstable node when moving downward along the
column, the liquid composition profile moves away from the pinch until it reaches the lower end of
section 2. Again, the the pinch zone of section 3 is located at the top of the section, from which
the composition profile follows its trajectory inside the pinch simplex and heads toward the stable
node until it reaches the bottoms product composition. It is worth noting that, while the hexane
composition is small in the bottoms product (0.1 mol%), it is not negligible. Thus, although the
liquid composition profile inside section 3 may appear to be approaching to the saddle point pinch,
it never actually reaches the saddle pinch, which is clear from Figure 4.

Next, using this example, we would like to examine the prevailing modeling heuristics that (1)
a MFMP column can be decomposed into a series of simple columns with exactly one feed and
two products, and (2) the actual minimum reflux ratio of the original MFMP column is simply
the largest minimum reflux ratio value determined for all decomposed simple columns (which can
be determined from the classic Underwood method27;28). According to column decomposition,
the two-feed column of Figure 2 is modeled as two simple columns, with one having F1 as the
feed stream and consisting of sections 1 and 2, whereas the other with F2 as the feed stream and
consisting of sections 2 and 3. In this case, it turns out that the largest minimum reflux ratio of
the two decomposed simple columns is 2.618, which is significantly higher than the true minimum
reflux ratio. In other words, the column decomposition approach overestimates the true minimum
reflux in this example.
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Figure 4: The liquid composition profile retrieved from Aspen Plus at the true minimum reflux
ratio of Rmin = 2.145.

Now, we consider the second scenario where the locations of the two feed streams are switched.
In other words, the upper feed F1 is less volatile than the lower feed F2. The distillate and bottoms
product specifications remain unchanged. Using Algorithm 1, we determine that the minimum
reflux ratio of this new arrangement is Rmin = 1.683. The minimum reflux condition occurs when
the lower feed F2 controls the separation. This can be visualized from the pinch simplex diagram
of Figure 5, where sections TOPF2 (i.e., section 2) and BOTF2 (i.e., section 3) share a common

boundary, indicating that γ
TOPF2
3 = γ

BOTF2
2 = ρ2,F2 .

Rigorous Aspen Plus simulation shows that the true minimum reflux ratio is 1.738. Thus,
our shortcut model gives an accurate estimation of the minimum reflux ratio with a 3% relative
difference compared to the true minimum reflux ratio. Furthermore, if we adopt the column decom-
position method, we would end up with a “minimum reflux ratio” that is as high as 19.714, which
is almost 11.3 times as large as the true minimum reflux ratio! Clearly, designing or operating
the MFMP column based on incorrect minimum reflux ratio will lead to tremendous capital and
operating costs.

By examining the two scenarios, we find that the optimal feed arrangement does not necessarily
follow any particular pattern based on its temperature. Intuitively, one might think that, in order to
reduce energy consumption (i.e., reflux ratio), feed stream placement should follow the temperature
profile. In other words, a high-temperature feed should be placed closer to the bottom of the column
than a low-temperature feed. However, it turns out that, despite achieving the same product flow
rates and purities, the minimum reflux ratio in the first scenario (Rmin = 2.162) is much higher
than that in the second scenario (Rmin = 1.683)! While this finding matches with the observation
made by Levy and Doherty29, here we provide a systematic analysis procedure for identifying
contradictions of the common belief that a high-temperature feed should be placed below a low-
temperature feed. Industrial practitioners should examine carefully the optimal feed arrangement
when designing their columns. In this regard, our shortcut model and minimum reflux calculation
method allows industrial practitioners to obtain a quick and reliable screening of the optimal feed
arrangement.
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Figure 5: The pinch simplex diagram at calculated minimum reflux ratio of Rmin = 1.683. The
blue dots indicate the liquid composition profile at R = 1.738, which is the minimum reflux ratio
predicted by rigorous Aspen Plus simulation.

5.2 Example 2: A One-Feed, Two-(Side)Product Column

B

D

F1

W1

W2

4

3

2

1

Figure 6: A two-feed column with no sidedraw product stream.

In this example, we study a distillation column separating a ternary mixture of n-hexane, n-
heptane, and n-octane with one feed stream and two sidedraw product streams, as shown in Figure
6. When both sidedraw products are withdrawn as saturated liquids, there is a common belief in

14



the literature (e.g., Sugie and Lu30, Glinos and Malone31) that F1 will always be “controlling” the
separation at minimum reflux. This assumption originates from the observation of the McCabe-
Thiele diagram for binary distillation. To verify if this is indeed true for multicomponent distillation,
we present this example in which the saturated liquid feed stream F1 contains 30 mol/s of hexane
(Component 3), 40 mol/s of heptane (Component 2), and 30 mol/s of octane (Component 1). The
distillate stream contains 24 mol/s of hexane, 6 mol/s of heptane and negligible amount of octane,
whereas the bottoms product contains 20 mol/s of octane and no hexane or heptane. The upper
sidedraw W1, which is located above F1, is a saturated liquid stream with 6 mol/s of hexane and
24 mol/s of heptane. The lower sidedraw W2 is also a saturated liquid stream with 10 mol/s of
heptane and 10 mol/s of octane.

Figure 7: The pinch simplex diagram at the minimum reflux ratio of Rmin = 2.693, along with the
liquid composition profile at the minimum reflux of Rmin = 2.668 determined by Aspen Plus (see
Figure 8 for liquid composition profile).

By applying Algorithm 1, we determine that the minimum reflux ratio is Rmin = 2.693, which
is less than 1% different compared to rigorous Aspen Plus simulation result of 2.668. From the
minimum reflux Z-simplex diagram of Figure 7, we can see that it is actually W1 that controls
the separation at minimum reflux. Since pTOPW1 = pBOTW1 = 2 (which can be verified from
Equation (2) after calculating the net material upward flows for sections 1 and 2), Equation (9)
is used to ensures that xW1 must not be situated outside of the pinch simplices corresponding to
sections 1 and 2 as xW1 must belong to the liquid composition profile. Specifically, at minimum

reflux, we have γ
TOPW1
3 = γ

BOTW1
3 = ρ2,W1 , which is illustrated in Figure 7 where z

TOPW1
3 (xW1) =

z
BOTW1
3 (xW1) = 0. An infinitesimal decrease of reflux ratio will cause facets z

TOPW1
3 (x) = 0 and

z
BOTW1
3 (x) = 0 of pinch simplices to move toward X3 (pure hexane), hence violating Equation (9).

Assuming that F1 controls the separation at minimum reflux, then the “minimum reflux ratio”
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Figure 8: The liquid composition profile retrieved from Aspen Plus at the true minimum reflux
ratio Rmin = 2.668. Each of the four column sections are given 50 equilibrium stages.

calculated under this assumption is 2.533, which turns out to be lower than the true minimum
reflux ratio. We have thus provided a counterexample to the common belief that the feed stream
always controls the minimum reflux operation when sidedraws are taken as saturated liquid streams.
Without incorporating the constraints related to sidedraws (Equations (7), (8), (9), (17)), as what
has been done in the literature, one may completely ignore the possibility that a sidedraw could
control the separation at minimum reflux and thus will obtain an incorrect minimum reflux ratio
value that causes infeasible separation. To the best of our knowledge, this work is the first in deriving
these necessary sidedraw-related constraints and incorporating these constraints in a systematic
framework to calculate the true minimum reflux ratio. Furthermore, we remark that our proposed
minimum reflux calculation method is a generalized framework that is not limited to single-feed
columns in saturated liquid sidedraws.

5.3 Example 3: A Two-Feed, One-(Side)Product Column

CD
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ABC

BCD
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1

CD

AB
ABC

BCD

4
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2

1

BC
BC

Column
decomposition

(a) (b)

Figure 9: (left) A MFMP column for quaternary separation; (b) the decomposed version of (a).
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Now, we study a MFMP column of Figure 9a that separates n-hexane (component A or 4),
n-heptane (component B or 3), n-octane (component C or 2), and n-nonane (component D or 1).
The relative volatilities with respect to nonane is are (α4, α3, α2, α1) = (12.332, 5.361, 2.300, 1).
Such MFMP columns are very common in multicomponent distillation configurations4. In terms
of product specifications, the most volatile component A must be completely recovered in the
distillate stream, whereas the least volatile component D must be completely recovered in the
bottoms product. The distributions of intermediate components B and C in product streams, on
the other hand, are flexible. Depending on what the distributions are, the net material upward flow
for heptane in column section 2 could be either positive or negative. Similarly, the net material
upward flow for octane in column section 3 can be either positive or negative. Therefore, the pinch
root in section 2, γSEC2

p = γSEC2
3 , lies in the interval (α2, α3) ∪ (α3, α4). Similarly, the pinch root

in section 3, γSEC3
p = γSEC3

2 , lies in (α1, α2) ∪ (α2, α3). Therefore, we define two binary variables,

µSEC2
2 and µSEC2

3 , to determine where the pinch root for section 2 lies. We also define two more
binary variables, µSEC3

1 and µSEC3
2 , for identifying the specific interval where the pinch root for

section 3 lies.

Furthermore, since γSEC2
3 can be in either (α2, α3) or (α3, α4), and γSEC3

2 can be in either (α1, α2)
or (α2, α3), singularity issue might arise when implementing Equation (1) in the optimization model
when pinch root γSEC2

3 = α3 and/or when pinch root γSEC3
2 = α2. To avoid the singularity issue,

we reformulate Equation (1) by multiplying both sides of the bound factor (e.g., (α3 − γSEC2
3 ) for

V SEC2 expression) followed by performing partial fraction decomposition. For example, the V SEC2

expression can be reformulated as:

V SEC2(α3 − γSEC2
3 ) = (α3 − γSEC2

3 )
α2d

SEC2
2

α2 − γSEC2
3

+ α3d
SEC2
3

= α2d
SEC2
2 + (α3 − α2)

α2d
SEC2
2

α2 − γSEC2
3

+ α3d
SEC2
3 .

Similarly, we can reformulate the V SEC3 expression using this technique. With this, we can
safely bound γSEC2

3 ∈ (α2, α4) and γSEC3
2 ∈ (α1, α3) witout concerning about the singularity issue.

In Appendix C, we provide all the equations and constraints needed to determine the optimal dis-
tribution of intermediate components to minimize the reboiler vapor duty requirement (i.e., V SEC4)
for this MFMP column. The resulting optimization model, which is a mixed-integer nonlinear pro-
gram (MINLP), can be solved to global optimality quickly using global solvers such as BARON24.
Specifically, we consider a case where F1 (ABC) is a saturated vapor stream with 30 mol/s of hex-
ane, 30 mol/s of heptane, and 40 mol/s of octane, whereas F2 (BCD) is a saturated liquid stream
with 40 mol/s of heptane, 30 mol/s of octane, and 30 mol/s of nonane. The sidedraw W1 (BC) is
in saturated liquid state. The lowest possible minimum reboiler vapor duty Vreb,min is determined
to be 171.9 mol/s, where its corresponding optimal product distributions summarized in Table 1.

We verify this result by performing exhaustive sensitivity analysis using Aspen Plus. Using
rigorous thermodynamic models and tray-by-tray calculations, the lowest reboiler vapor duty re-
quirement that satisfies product requirements is found to be 177.9 mol/s, which is within 5% relative
difference compared to the MINLP results. The associated heptane and octane flow rates in prod-
uct streams also match very well with the results shown in Table 1. This validates the accuracy and
computationally efficiency of global optimization framework based on the shortcut model. More-
over, we remark that the global optimization algorithm does more than just finding the minimum
energy requirement of a MFMP column and its corresponding product distributions. For example,
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Stream Label Component flow rate
(mol/s)

Distillate AB (30, 13.4, 0, 0)

Sidedraw BC (0, 56.6, 48.9, 0)

Bottoms CD (0, 0, 21.1, 30)

Table 1: Component molar flow rates (arranged as hexane, heptane, octane, and lastly nonane) of
all product streams at Vreb,min = 171.9 mol/s.

there has been a lingering question among the distillation community of whether all heptane can
be recovered from the distillate product in this MFMP column. We can easily answer questions like
this by modifying the relevant variable bounds and/or by adding/deactivating related constraints
in the MINLP formulation. In this case, when introducing the new constraint dSEC1

3 = f3,F1 +f3,F2 ,
the resulting MINLP problem turns out to be infeasible. Thus, we conclude that it is impossible
to recover all the heptane in the distillate product. Rigorous Aspen Plus simulation also confirms
that some heptane is always drawn from the sidedraw no matter how much vapor is generated at
the reboiler.

Lastly, using this MFMP column as an example, we illustrate why the column decomposition
method shown in Figure 9 fails to calculate the true minimum reflux ratio. The feed and product
stream specifications in this illustrative case study are listed in Table 2. The minimum reflux ratio
calculated using Algorithm 1 is Rmin = 2.002, which is only 0.1% different from the minimum reflux
ratio of 2.000 predicted by Aspen Plus simulation. Furthermore, this is achieved when sidedraw
BC controls the minimum reflux condition. Meanwhile, the column decomposition method, which
calculates the minimum reflux ratio of two simple columns as shown in Figure 9b using the classic
Underwood method, yields a “minimum reflux ratio” of 1.806, which is significantly lower than the
true minimum reflux ratio. In fact, as the original MFMP column is decomposed into two simple
columns, we lose the possibility that stream BC may control the minimum reflux. Therefore, we
must consider the entire MFMP column as a whole to retain all the constraints.

Stream Component flow rate Thermal
(mol/s) quality

AB (30, 40, 0, 0) 1

ABC (30, 30, 40, 0) 0

BC (0, 30, 40, 0) 1

BCD (0, 40, 30, 30) 1

CD (0, 0, 30, 30) 1

Table 2: Component molar flow rates (arranged as hexane, heptane, octane, and lastly nonane) of
all streams.

6 Conclusion

In this paper, we introduce the mathematical formulation that incorporates the model developed
in the first article of the series21 to determine the minimum reflux condition of MFMP columns
for multicomponent distillation. When the full product specifications are given, an algorithmic
procedure is developed to automatically determine the minimum reflux ratio or minimum reboiler
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vapor duty requirement. When some of the product specifications are not given to users a priori, an
optimization model can be developed as an MINLP to simulatenously identify the minimum reflux
ratio and the corresponding optimal product distributions. We present the use of both approaches
to analyze the minimum reflux behavior of MFMP columns. In all case studies, our minimum reflux
ratio results matches very well with rigorous Aspen Plus simulation results.

In addition to validating the accuracy and usefulness of our proposed algorithmic and optimiza-
tion frameworks, the second aim of these case studies is to reexamine some of the well-accepted
design heuristics and modeling assumptions the distillation community has been relying on regard-
ing how MFMP columns should be designed and operated. It turns out that some of these heuristics
and assumptions need to be rewritten. In Example 1, we show a counterexample where placing
a colder feed stream above a warmer feed stream, which follows the temperature profile within
the column, actually leads to a higher minimum vapor duty requirement than if the feed stream
locations are reversed. Thus, we must analyze all possible permutations of relative feed locations
to determine the optimal feed stream arrangement. Our shortcut based approach is particularly
suitable for analyses like this compared to rigorous process simulations which can be quite time
consuming to perform, especially as the number of feed streams and/or sidedraw streams increases.

Another key finding is that decomposing a MFMP column into multiple simple columns and
taking the largest individual minimum reflux ratios of each decomposed column using the classic
Underwood method is not the correct approach to determine the minimum reflux ratio of the
original MFMP column. In fact, such column decomposition approach can lead to minimum reflux
ratio values that significantly deviate from the true minimum reflux ratio. On the other hand,
our shortcut based approach considers the entire MFMP column as a whole, which is needed for
accurately estimating the true minimum reflux ratio.

Finally, when a distillation column has one or more sidedraw streams, one of the sidedraw
streams can control the separation at minimum reflux, even when they are all withdrawn as satu-
rated liquid streams. This possibility has often been overlooked by the distillation community in
the past due to the lack of fundamental understanding and systematic tools to model how sidedraws
affect the minimum reflux operation of a column. The mathematical model and algorithms devel-
oped in this series have filled this gap, thus allowing industrial practitioners to conduct rigorous,
accurate analysis of columns with sidedraws for the first time. Overall, we believe that these new
findings and insights are helpful in synthesizing and operating energy-efficient, cost-competitive,
and intensified MFMP columns for multicomponent distillation.
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Appendix A: Parameters and Variables

c Total number of components present in the distillation column
αi Relative volatility of component i with respect to the heaviest component

dSECk
i Component i’s net material upward flow in column section k

V SECk Total vapor flow in column section k

γSECk
i The ith root of Equation (1)

pSECk The pinch index of section k
γSECk
p The pinch root of section k

x The liquid composition vector
Xi The composition of pure component i
xF Liquid composition (or hypothetical liquid composition) composition of feed stream
xW Liquid composition (or hypothetical liquid composition) of sidedraw stream
ρi,F, ρi,W The ith root defined in Equations (5) and (8), respectively
VF, VW Total vapor flow rate in feed and sidedraw stream, respectively
fi,F, fi,W Component i’s flow rate in feed and sidedraw stream, respectively
NF Number of feed streams in the column
NW Number of sidedraw streams in the column
NSEC Number of column sections in the column, which is equal to NF +NW + 1

µSECk
i Binary variable that equals 1 when γSECk

p ∈ (αi−1, αi), and 0 otherwise

KSECk
i Binary variable defined in Equation (12) and used in Equations (15) and (17)

H
Wj

i Binary variable defined in Equation (16) and used in Equation (17)

Appendix B: Sets and Notations

C {1, · · · , c}
IF Index set defined in Equation (3) for feasibility criteria associated with feed streams
IW Index set defined in Equation (6) for feasibility criteria associated with sidedraws
TOPF Column section above a feed stream
BOTF Column section below a feed stream
TOPW Column section above a sidedraw stream, respectively
BOTW Column section below a sidedraw stream, respectively
F, W Feed and sidedraw stream, respectively

Appendix C: Optimization Model

Here, we provide the complete formulation for identifying the minimum reboiler vapor duty and
the corresponding product distributions for the column shown in Figure 2.

Objective function:
minimize V SEC4

Constraints and bounds:
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1. Mass balance equations and feed specifications:

fi,F1 + fi,F2 = dSEC1
i − fi,W1 − dSEC4

i ∀i = 1, . . . , 4

dSEC2
i = dSEC1

i − fi,F1 ; d
SEC3
i = dSEC2

i − fi,W1 ; d
SEC4
i = dSEC3

i − fi,F2 ∀i = 1, . . . , 4

f4,F1 = dSEC1
4 = 30; f1,F2 = −dSEC4

1 = 30

f3,F1 = 30; f2,F1 = 40; f1,F1 = 0; f4,F2 = 0; f3,F2 = 40; f2,F2 = 30;

fi,Fj ≥ 0 ∀i = 1, . . . , 4; j = 1, 2

dSEC1
i ≥ 0; fi,W1 ≤ 0; dSEC4

i ≤ 0 ∀i = 1, . . . , 4

2. Vapor duty calculation based on Equation (1):

V SEC1 =
4∑

i=1

αid
SEC1
i

αi − γSEC1
4

V SEC1 =
4∑

i=1

αid
SEC1
i

αi − γSEC1
3

V SEC2(α3 − γSEC2
3 ) = α2d

SEC2
2 + (α3 − α2)

α2d
SEC2
2

α2 − γSEC2
3

+ α3d
SEC2
3

V SEC2 =

4∑

i=1

αid
SEC2
i

αi − γSEC2
2

V SEC3(α2 − γSEC3
2 ) = α2d

SEC3
2 − (α3 − α2)

α3d
SEC3
3

α3 − γSEC3
2

+ α3d
SEC3
3

V SEC3 =
4∑

i=1

αid
SEC3
i

αi − γSEC3
3

V SEC4 =
4∑

i=1

αid
SEC4
i

αi − γSEC4
1

V SEC4 =

4∑

i=1

αid
SEC4
i

αi − γSEC4
2

3. Defining equations for the feed and sidedraw streams:

VF1 = 100 =

4∑

i=1

αifi,F1

αi − ρj,F1

∀j = 1, . . . , 3

VF2 = 0 =
4∑

i=1

αifi,F2

αi − ρj,F2

∀j = 1, . . . , 3

VW1 = 0 =

4∑

i=1

αifi,W1

αi − ρj,W1

∀j = 1, . . . , 3
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4. Variable bounds:

γSEC1
3 ∈ (α2, α3); γ

SEC1
4 ∈ (α3, α4)

γSEC2
2 ∈ (α2, α3); γ

SEC2
3 ∈ (α2, α4)

γSEC3
2 ∈ (α1, α3); γ

SEC3
3 ∈ (α2, α3)

γSEC4
1 ∈ (α1, α2); γ

SEC4
2 ∈ (α2, α3)

ρi,F1 , ρi,F2 , ρi,W1 ∈ (αi, αi+1) ∀i = 1, . . . , 3

5. Defining binary variables µ:

µSEC2
2 , µSEC2

3 , µSEC3
1 , µSEC3

2 ∈ {0, 1}
µSEC2
2 + µSEC2

3 = 1; µSEC3
1 + µSEC3

2 = 1

6. Feasibility criteria:

α2µ
SEC2
2 + α3µ

SEC2
3 ≤ γSEC2

3 ≤ α3µ
SEC2
2 + α4µ

SEC2
3

α1µ
SEC3
1 + α2µ

SEC3
2 ≤ γSEC3

2 ≤ α2µ
SEC3
1 + α3µ

SEC3
2

γSEC1
2 ≥ γSEC2

1 ; γSEC1
3 ≥ γSEC2

2 ; (1− µSEC2
2 )(γSEC1

4 − γSEC2
3 ) ≥ 0

µSEC3
1 (γSEC3

2 − γSEC2
1 ) ≥ 0; γSEC3

3 ≥ γSEC2
2 ; (1− µSEC2

2 )(γSEC3
4 − γSEC2

3 ) ≥ 0

µSEC3
1 (γSEC3

2 − γSEC4
1 ) ≥ 0; γSEC3

3 ≥ γSEC4
2 ; γSEC3

4 ≥ γSEC4
3

µSEC2
2 (γSEC2

3 − θ2,W1) ≥ 0; γSEC2
2 ≤ θ2,W1

γSEC3
3 ≥ θ2,W1 ; (1− µW3

1 )(γSEC3
2 − θ2,W1) ≤ 0

24


	Introduction
	A Brief Summary of Shortcut Model for MFMP Columns
	Formulation of the Minimum Reflux Calculation Algorithm
	Implementation of Minimum Reflux Calculation Algorithm
	Case Studies
	Example 1: Two-Feed Distillation Column
	Example 2: A One-Feed, Two-(Side)Product Column
	Example 3: A Two-Feed, One-(Side)Product Column

	Conclusion

