
ADVANCES IN NUMERICAL PARTIAL DIFFERENTIAL

EQUATIONS: FROM DISCRETIZATION-BASED SOLVERS TO

NEURAL OPERATORS

By

ZEYUAN SONG

Bachelor of Science in Statistics
Bachelor of Arts in Law

Shandong University of Science and Technology
Qingdao, China

2019

Master of Science in Mathematics
University of Macau

Taipa, Macau
2022

Master of Science in Industrial Engineering and Management
Oklahoma State University

Stillwater, OK
2025

Submitted to the Faculty of the
Graduate College of the

Oklahoma State University
in partial fulfillment of
the requirements for

the Degree of
DOCTOR OF PHILOSOPHY

May, 2026



ADVANCES IN NUMERICAL PARTIAL DIFFERENTIAL

EQUATIONS: FROM DISCRETIZATION-BASED SOLVERS TO

NEURAL OPERATORS

Dissertation Approved:

Dr. Zheyu Jiang

Dissertation Advisor

Dr. Yu Feng

Dr. Hong Je Cho

Dr. Akash Deep

ii



ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Zheyu Jiang, for his

invaluable guidance and unwavering support throughout my doctoral studies. He has always

been open to my ideas, even when they were diverse or unconventional, providing me with

the freedom to explore while keeping me grounded. Beyond the technical research, I have

learned a tremendous amount from him regarding academic writing, effective presentation,

and professional integrity. His rigorous attitude toward science and his wisdom regarding

life will continue to inspire me in my future career.

I would also like to extend my sincere thanks to my committee members, Dr. Yu Feng,

Dr. Hong Je Cho, and Dr. Akash Deep. I am grateful for the time they took to review

this dissertation and for their insightful comments and constructive feedback, which have

significantly improved the quality of this work.

Moreover, I acknowledge the financial support provided by the Oklahoma State University

and the National Science Foundation (under Award # 2442806). I am also grateful to the

staff in the School of Chemical Engineering for their administrative assistance and kindness

throughout my time here. I also want to thank Dr. Ieng Tak Leong from University of

Macau, who first introduced me to the topic of adaptive Fourier decomposition.

Lastly, words cannot express my gratitude to my family. Thank you for your patience

during the late nights and busy weekends. Your unwavering belief in me made this jour-

ney possible. Most importantly, I owe a debt of gratitude to my girlfriend. Your love,

understanding, and sacrifice have been my greatest strength. Thank you for believing in me.

Acknowledgments reflect the views of the author and are not endorsed by committee members or Okla-
homa State University.

iii



Name: Zeyuan Song

Date of Degree: May, 2026

Title of Study: ADVANCES IN NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS

Major Field: Chemical Engineering

Abstract:

Accurate numerical solutions of partial differential equations (PDEs) are crucial for numerous
science and engineering applications, from precision agriculture and soil moisture monitoring
to fluid dynamics and inverse problems. This dissertation presents comprehensive advances
in numerical PDE solution methods by bridging traditional discretization-based approaches
with modern machine learning techniques. We introduce the Message Passing Finite Volume
Method (MP-FVM), a novel hybrid algorithm that holistically integrates adaptive fixed-point
iteration, encoder-decoder neural networks, Sobolev training, and message passing within a
finite volume framework to solve the highly nonlinear Richards equation governing water
flow in unsaturated soils. We further introduce AFDONet, the first neural PDE solver
whose architecture is fully guided by adaptive Fourier decomposition theory, enabling accu-
rate solution representation on arbitrary Riemannian manifolds through adaptively selected
poles parameterizing rational orthogonal bases in reproducing kernel Hilbert spaces. We
extend AFDONet to inverse problems in Banach spaces through AFDONet-inv for handling
parameters with sparse or discontinuous structures, and develop Adaptive Fourier Mamba
Operators (AFMO) for efficient solution on irregular meshes with linear-time complexity.
Finally, we propose a four-agent Large Language Model pipeline for automated end-to-end
neural operator design, transforming neural architecture design from an art requiring rare
interdisciplinary expertise into a systematic, science-based process.

Through extensive case studies from one-dimensional to three-dimensional problems, we
demonstrate that MP-FVM achieves superior accuracy compared to state-of-the-art solvers
including finite difference methods, physics-informed neural networks, and commercial HY-
DRUS software, with mass balance consistently exceeding ninety-five percent. AFDONet sig-
nificantly outperforms existing neural operators including Fourier Neural Operator, Wavelet
Neural Operator, and DeepONet on benchmark problems involving Helmholtz, Navier-
Stokes, and Poisson equations, thanks to its deep connections with adaptive Fourier de-
composition theory. The LLM-assisted design framework consistently outperforms human-
designed baselines across diverse PDE benchmarks while requiring significantly less human
effort. Overall, this work presents a new paradigm for designing explainable neural opera-
tor frameworks by systematically translating established mathematical theories into neural
network components, providing practical tools for science and engineering.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Background

A wide range of scientific and engineering phenomena can be characterized and modeled by

partial differential equations (PDEs). These physiomechanical and physicochemical phenom-

ena range from fluid dynamics to heat and mass transfer, to structural mechanics, and to

quantum mechanics. Given the ubiquity of PDEs, most of them do not have analytical solu-

tions and need to be solved numerically. However, traditional discretization-based numerical

solvers, such as finite element methods and finite difference methods, can become quite slow,

inefficient, and unstable, especially for large-scale problems or complex geometries (Hittinger

& Banks, 2013; Sokic et al., 2011; Carey et al., 1993). The computational cost of traditional

solvers grows substantially with finer resolutions, as well as for parametric studies where

solutions must be computed for many different parameter configurations. Therefore, devel-

oping accurate, computationally efficient, and scalable PDE solution techniques is key to

addressing critical challenges in sustainability, digital agriculture, Industry 4.0, and beyond.

For instance, understanding how soil moisture distributes in the root zone of a large

crop field under different weather, topographic, and soil conditions is critical to designing a

water-efficient irrigation scheduling system; and it is typically achieved by solving an agro-

hydrological model that describes the movement of water through unsaturated soils. Most

existing agro-hydrological models are based on the Richards equation (Richards, 1931), a

highly nonlinear PDE. Solving the Richards equation numerically faces several fundamental

challenges. The equation exhibits strong nonlinearity through the soil moisture diffusivity
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and hydraulic conductivity functions, which can vary by several orders of magnitude within

a single simulation. Additionally, the resulting discrete systems are often stiff and sparse,

requiring sophisticated linearization and iterative solution techniques. Traditional finite

difference methods (Celia et al., 1990) are straightforward to implement for regular grids.

However, they may not guarantee stability for highly nonlinear problems (Meerschaert &

Tadjeran, 2004) and cannot ensure local mass conservation. Finite element (Bergamaschi

& Putti, 1999) and finite volume methods (Song & Jiang, 2023b) offer better conservation

properties and can handle complex geometries, but require careful treatment of nonlinearities

through linearization schemes. Among the iterative approaches, the fixed-point iteration

scheme has gained attention for its convergence properties. Static fixed-point iterations use a

fixed linearization parameter for all iterations, time steps, and discretized cells (Bergamaschi

& Putti, 1999; Zeidler, 1986), while adaptive fixed-point iterations allow the parameter to

vary, potentially offering better convergence behavior (Song & Jiang, 2023b). However,

selecting the appropriate linearization parameter remains a challenge that often requires

problem-specific tuning and expertise.

Meanwhile, data-driven methods, such as neural PDE solvers, can directly learn the

trajectory of the family of equations from solution data, and thus can be orders of magni-

tude faster than traditional solvers once trained (Li et al., 2020b). Neural PDE solvers can

amortize the computational cost across multiple parameter configurations, enabling rapid

solution prediction for new parameters after the training phase. Recent advances in oper-

ator learning have led to several notable neural PDE solver architectures. DeepONet (Lu

et al., 2019, 2021), inspired by the universal approximation theorem for nonlinear opera-

tors, learns mappings between infinite-dimensional function spaces through a branch-trunk

architecture. The Fourier Neural Operator (FNO) (Li et al., 2020b, 2023b) performs convo-

lution in the frequency domain to capture global spatial dependencies efficiently, achieving

mesh-independent approximation of PDE solutions. Both paradigms have led to numerous

variants, including Factorized FNO (Tran et al., 2021), Decomposed FNO (Li & Ye, 2025),
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Wavelet Neural Operator (Tripura & Chakraborty, 2023), and Multiwavelet Neural Opera-

tor (Gupta et al., 2021), each targeting specific challenges such as computational efficiency,

multi-scale phenomena, or adaptation to different geometries.

However, existing neural PDE solvers face several critical challenges. First, most existing

approaches are designed for regular Euclidean domains, while many real-world applications

involve PDEs defined on non-Euclidean manifolds or complex geometries. Most classical nu-

merical approaches to solve PDEs on manifolds rely on parameterization (Lui et al., 2005),

collocation (Chen & Ling, 2020), or spectral methods (Yan et al., 2023). Although re-

searchers have begun to explore manifold-aware neural architectures that can learn directly

from point clouds (He et al., 2024; Liang et al., 2024) or graphs (Bronstein et al., 2017),

they cannot easily be generalized to different manifolds. The challenge lies in developing

neural architectures that can handle the intrinsic geometry of manifolds while maintaining

computational efficiency and solution accuracy.

Second, the design of exact neural architectures in many neural PDE solvers has been

“more of an art than a science” (Sanderse et al., 2025), typically done in a bottom-up ap-

proach that involves significant intuition, expert experience, and trial-and-error experimen-

tation. Neural architecture design often requires extensive hyperparameter tuning, selection

of activation functions, choice of normalization techniques, and determination of network

depth and width. Although neural operators such as FNO and DeepONet are grounded

in theoretical insights, considerable manual effort and domain expertise are still required

to adapt these architectures to specific PDE problems. Rigorous mathematical basis and

explainability have been lacking in guiding the design of these neural architectures, making

it difficult to understand why certain architectural choices lead to better performance or to

predict which architectures will work well for new problems.

Third, extending neural operators to inverse problems, which are generally ill-posed, re-

mains challenging, especially when parameters lie in sparse domains that are better modeled

as Banach spaces rather than Hilbert spaces. Inverse problems for PDEs aim to identify
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unknown parameters of a physical system from observations of its output. A large class of

inverse problems are only well-defined as mappings from operators to functions. Traditional

approaches to inverse problems include variational methods in Hilbert spaces (Engl, 2007),

Bayesian inference techniques (Stuart, 2010), and optimization-based methods. However,

it has been shown that a Banach space setting for the parameter space would be closer

to reality for a wide range of problems, particularly when the parameters exhibit sparse

or discontinuous structures (Grasmair et al., 2011; Clason et al., 2021). Existing operator

learning frameworks either do not explicitly account for the underlying operator space or

solve the inverse problems in a Hilbert space, limiting their applicability to problems with

sparse parameter domains.

1.2 Research Objectives and Contributions

This dissertation addresses these challenges through a comprehensive research program that

bridges traditional numerical methods with modern neural operator learning. The overar-

ching goal is to advance the state of the art in numerical solutions of partial differential

equations by developing novel algorithms and frameworks that combine the mathematical

rigor and physical consistency of traditional methods with the computational efficiency and

flexibility of data-driven approaches.

The first research objective is to develop robust, convergent numerical solvers for nonlin-

ear, stiff PDEs by introducing hybrid algorithms that couple classical finite volume discretiza-

tion with machine learning, specifically for solving the Richards equations. This objective

recognizes that while traditional numerical methods provide strong theoretical guarantees

and physical consistency, they can benefit significantly from data-driven components that

adapt to the nonlinear characteristics of specific problems. We propose the Message Passing

Finite Volume Method (MP-FVM) that integrates adaptive fixed-point iteration schemes

with encoder-decoder neural networks and message passing mechanisms to enhance conver-

gence and preserve mass conservation. The hybrid solver is both accurate and efficient for
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highly nonlinear agro-hydrological problems.

The second research objective is to develop mathematically grounded neural operator

architectures for solving PDEs on arbitrary manifolds, with rigorous theoretical foundations

and explainable design principles. This objective addresses the fundamental limitation that

most existing neural PDE solvers lack systematic design principles and are restricted to

Euclidean domains. By adopting a top-down approach guided by established mathemati-

cal frameworks, specifically adaptive Fourier decomposition theory, we aim to create neural

architectures whose every component has clear mathematical interpretation and justifica-

tion. This approach not only enables solutions on arbitrary Riemannian manifolds but also

provides convergence guarantees and performance bounds rooted in approximation theory.

The third research objective is to extend neural operator frameworks to inverse problems

in Banach spaces, addressing ill-posed parameter estimation problems with sparse parameter

domains. Inverse problems are ubiquitous in science and engineering, arising whenever we

need to infer system parameters or properties from observed data. However, these problems

are often ill-posed and require careful regularization. By developing operator learning frame-

works that explicitly account for Banach space structures rather than restricting to Hilbert

spaces, we aim to handle inverse problems where parameters naturally exhibit sparse or

discontinuous characteristics, such as identifying piecewise constant material properties or

localized sources.

The fourth research objective is to explore automated neural operator design using large

language models, transforming the design process from an art into a science. The manual

design of neural architectures for specific PDE problems requires substantial expertise in

both the mathematical properties of the PDEs and the capabilities of neural network com-

ponents. By developing systematic pipelines that leverage the reasoning capabilities of large

language models, we aim to automate the process of translating mathematical theories into

implementable neural architectures, making theory-guided neural operator design accessible

to a broader community and accelerating the development of problem-specific solvers.
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The key contributions of this dissertation, which span from hybrid numerical methods for

soil moisture modeling to theory-guided neural operators and automated design frameworks,

are summarized as follows:

1.2.1 Hybrid Data-Driven Numerical Methods

We introduce the Message Passing Finite Volume Method (MP-FVM), a novel solution al-

gorithm that holistically integrates adaptive fixed-point iteration scheme, encoder-decoder

neural network architecture, Sobolev training, and message passing mechanism in a finite

volume discretization framework. The MP-FVM algorithm addresses the fundamental chal-

lenge of solving the highly nonlinear Richards equation by combining the strengths of classical

numerical methods with modern machine learning techniques. At its core, the algorithm em-

ploys a finite volume discretization to ensure local mass conservation, which is critical for

accurate long-term predictions of soil moisture dynamics. Unlike conventional finite volume

methods that convert the discretized equation into a large, stiff matrix equation which can

be challenging to solve, the MP-FVM algorithm adopts an adaptive fixed-point iteration

scheme that solves the discretized Richards equations iteratively, providing a robust solution

procedure with controllable convergence properties.

A key innovation of the MP-FVM algorithm is its integration of encoder-decoder neural

network architecture with the message passing mechanism. The encoder-decoder architecture

learns the complex nonlinear relationships between pressure head solutions obtained from

different numerical solvers, capturing both the sensitivity to different parameter choices and

the distinct topological features of solution spaces. The encoder maps pressure head solutions

to a latent space, while the decoder reconstructs solutions from this latent representation,

ensuring that essential topological features are accurately captured. The message passing

mechanism, implemented within the latent space through a processor that operates itera-

tively, enhances the convergence and numerical stability of the algorithm. By defining latent

variables that are solved iteratively using the adaptive fixed-point iteration scheme, the MP-

6



FVM algorithm enables the message passing mechanism to preserve physical consistency and

mass conservation while achieving superior solution accuracy.

The MP-FVM algorithm incorporates Sobolev training in the loss functions for both en-

coder and decoder neural networks, adding regularization terms that enforce consistency not

only at the function value level but also across derivatives. This ensures compatibility and

stability across the solution space, preventing small perturbations in solutions at initial con-

ditions or previous time steps from leading to slow convergence or inaccurate solutions at the

final time step. The algorithm provides guaranteed convergence under reasonable assump-

tions, which we rigorously prove by showing that the iterative scheme is contractive, with

the error decreasing geometrically at each iteration. This theoretical foundation, combined

with the ability to leverage pre-trained models for transfer learning across different boundary

and initial conditions, makes the MP-FVM algorithm both accurate and computationally

efficient. The algorithm achieves fine-scale accuracy using coarse-grid training data through

a coarse-to-fine approach, bypassing the need for computationally expensive high-resolution

training datasets while maintaining excellent solution quality.

1.2.2 Theory-Guided Neural Operators

We introduce AFDONet (Adaptive Fourier Deep Operator Network), the first neural PDE

solver whose architectural and component design is fully guided by adaptive Fourier de-

composition (AFD) theory (Qian, 2010; Qian et al., 2012). AFD is a signal decomposition

technique that leverages the Takenaka-Malmquist system and adaptive orthogonal bases to

sparsely represent functions in reproducing kernel Hilbert spaces (RKHS). Unlike classical

Fourier methods that use fixed global basis functions, AFD adaptively selects poles that

parameterize rational orthogonal bases according to a maximal selection principle, enabling

accurate representation of functions with localized features, sharp gradients, or non-periodic

structures. By replicating the AFD framework in a neural architecture, we create a solver

that exhibits exceptional mathematical explainability and groundness, where each compo-
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nent of the network has clear interpretation in terms of the underlying approximation theory.

The AFDONet architecture consists of three main components designed following AFD

principles: an encoder based on variational autoencoder (VAE) framework that maps PDE

inputs to a latent space, a latent-to-RKHS network that projects latent representations to

their nearest reproducing kernel Hilbert space where AFD operations are defined, and an

AFD-type dynamic convolutional kernel network (CKN) decoder that reconstructs solutions

through adaptive basis selection. The use of VAE as the backbone is motivated by the obser-

vation that many PDE solution fields lie on low-dimensional manifolds in high-dimensional

function space, and the variational inference in VAE aligns well with the maximal selec-

tion principle in AFD (Chen et al., 2020a). The latent-to-RKHS network extends previous

latent-to-kernel approaches (Lu et al., 2020a) by explicitly constraining the functional space

to be an RKHS through feature maps that perform orthogonal projection, ensuring that the

reproducing property is satisfied and enabling rigorous theoretical analysis.

AFDONet achieves outstanding solution accuracy on arbitrary Riemannian manifolds,

significantly outperforming existing neural operators such as FNO, DeepONet, and Wavelet

Neural Operator across diverse benchmark problems including the Helmholtz equation on

planar manifolds, Navier-Stokes equation on tori, and Poisson equation on quarter-cylindrical

surfaces. The superior performance stems from AFDONet’s ability to adapt its basis func-

tions to the specific geometry and solution characteristics of each problem. While FNO

and its variants rely on fast Fourier transforms that are inherently defined on Euclidean

domains and struggle with non-periodic boundaries, AFDONet uses adaptive rational bases

parameterized by poles that are learned from input data, allowing the bases to locally adapt

to sharp gradients, discontinuities, and complex geometries. Furthermore, AFDONet shows

superior performance on datasets with sharp gradients due to its connection with holomor-

phic function theory. We extend Sobolev training (Czarnecki et al., 2017a) to the complex

domain through a holomorphic training loss that enforces consistency between predicted and

true solutions at both the function value level and across all orders of derivatives, capturing
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the inherent smoothness and analytic structure of the target function.

The mathematical groundness of AFDONet enables us to provide rigorous convergence

guarantees and theoretical foundations. We prove three main theoretical results: First, we

bound the generalization error of AFDONet in terms of the number of training samples,

network depth and width, and the smoothness of the target function, showing that with ap-

propriate network scaling, the expected error decays polynomially in the number of samples.

Second, we prove the existence of the RKHS constructed by our latent-to-RKHS network by

extending results from approximation theory (Caragea et al., 2022), showing that for any

function in a Hilbert space and any tolerance, there exists a neural network that maps the

function to an RKHS with controlled approximation error. Third, we prove convergence of

the dynamic CKN decoder by leveraging the convergence mechanism of AFD, establishing

conditions on layer width, depth, and kernel complexity that ensure the reconstructed so-

lutions converge to the true solutions. These theoretical results distinguish AFDONet from

existing neural operators that lack such rigorous foundations.

We extend AFDONet to inverse problems (AFDONet-inv), operating in reproducing ker-

nel Banach spaces (RKBS) rather than Hilbert spaces, addressing the challenge of sparse

parameter domains in inverse problems. Inverse problems for PDEs aim to identify unknown

parameters from observations of system outputs and are typically ill-posed, requiring care-

ful regularization. While most existing operator learning frameworks assume parameters lie

in Hilbert spaces, many real-world inverse problems involve parameters with sparse or dis-

continuous structures that are better modeled in Banach spaces, particularly L1 or bounded

variation spaces (Grasmair et al., 2011; Clason et al., 2021). AFDONet-inv extends the AFD

framework from RKHS to RKBS by constructing appropriate reproducing kernels for Banach

spaces and modifying the orthogonalization procedure to account for the duality structure

of Banach spaces. The architecture explicitly represents the mapping from operator spaces

to parameter spaces, enabling solution of inverse problems where both inputs and outputs

are functional objects. We demonstrate that AFDONet-inv achieves superior accuracy and
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stability compared to Hilbert space approaches on benchmark inverse problems involving

parameter identification for elliptic PDEs with sparse coefficient fields.

1.2.3 Advanced Neural Operator Architectures

We develop Adaptive Fourier Mamba Operators (AFMO), which integrate reproducing ker-

nels for state-space models with Takenaka-Malmquist systems, enabling accurate solutions

on diverse geometries and meshes. Frequency-based neural operators such as FNO are at-

tractive for their ability to capture global dependencies through spectral representations,

but they face significant challenges when dealing with irregular geometries and non-uniform

meshes. Traditional Fourier transforms require regular grids and periodic boundary condi-

tions, limiting their applicability to complex real-world domains. To address these limita-

tions, AFMO builds upon recent advances in state-space models, particularly the Mamba

architecture, which has shown remarkable efficiency in sequence modeling tasks through

selective state-space representations.

The key innovation in AFMO is the integration of reproducing kernel theory with state-

space models to create a neural operator that can handle irregular geometries while maintain-

ing the computational efficiency of frequency-based approaches. We construct reproducing

kernels that are compatible with the state-space model’s hidden state dynamics, allowing

the network to learn representations that respect the geometry of the problem domain. The

Takenaka-Malmquist system provides the theoretical foundation for adaptively selecting ba-

sis functions that can accurately represent solutions on irregular domains. By parameterizing

the state-space model’s matrices using these adaptive bases, AFMO can selectively focus on

important spatial and temporal features while efficiently propagating information across the

domain.

AFMO demonstrates superior performance on problems involving irregular geometries,

non-uniform meshes, and complex boundary conditions. Unlike FNO which requires interpo-

lation or padding to handle irregular domains, potentially introducing artifacts and reducing
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accuracy, AFMO operates directly on point clouds or unstructured meshes. The state-space

formulation enables linear-time complexity in sequence length, making AFMO particularly

efficient for high-resolution simulations and long-time integration. We validate AFMO on

benchmark problems including flow past obstacles with complex geometries, heat diffusion on

irregular domains, and wave propagation in heterogeneous media, demonstrating improved

accuracy and reduced computational cost compared to existing neural operators.

1.2.4 Automated Neural Operator Design

We propose a four-agent Large Language Model (LLM) pipeline consisting of specialized

agents (Theorist, Programmer, Critic, Refiner) that designs mathematically grounded neural

operators end-to-end. The design of neural operators for specific PDE problems currently

requires substantial expertise in both the mathematical properties of the equations and the

architectural patterns of neural networks. Domain experts must understand the structure

of the PDE, identify appropriate functional spaces, select suitable basis representations, and

translate these insights into implementable neural architectures through extensive trial and

error. This process is time-consuming, requires rare interdisciplinary expertise, and often

results in suboptimal designs due to the vast space of possible architectural choices.

Our LLM-assisted framework automates this design process while maintaining mathemat-

ical rigor and grounding. The framework consists of four specialized agents, each responsible

for a distinct phase of the design process. The Theorist agent takes as input a descrip-

tion of the PDE problem and relevant mathematical theories, then reasons about the key

mathematical structures that should be reflected in the neural architecture. Drawing on its

broad knowledge of mathematical theories, approximation methods, and operator theory,

the Theorist identifies suitable function spaces, proposes appropriate basis representations,

and outlines the mathematical framework that should guide the architecture design. The

Programmer agent translates the Theorist’s mathematical blueprint into executable code,

making specific choices about network layers, activation functions, training procedures, and
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implementation details while remaining faithful to the mathematical principles identified by

the Theorist.

The Critic agent evaluates the designed architecture both theoretically and empirically. It

checks whether the implementation correctly reflects the intended mathematical structures,

identifies potential issues such as numerical instabilities or violations of physical constraints,

and suggests improvements based on mathematical analysis. The Critic performs both static

analysis of the code and dynamic analysis of training behavior, checking for issues like

gradient pathologies, inappropriate initialization, or insufficient expressiveness. Finally, the

Refiner agent iteratively improves the architecture based on feedback from the Critic, making

adjustments to address identified issues while preserving the core mathematical framework.

This refinement process continues until the architecture meets specified quality criteria in

terms of both mathematical soundness and empirical performance.

This LLM-assisted framework consistently outperforms human-designed baselines across

diverse PDE benchmarks spanning different equation types, domain geometries, and phys-

ical phenomena. We evaluate the framework on benchmark problems including advection-

diffusion equations, Burgers’ equation, Navier-Stokes equations, and various elliptic and

parabolic PDEs. The automatically designed architectures achieve comparable or superior

accuracy to carefully hand-crafted baseline methods while requiring significantly less human

effort. Moreover, the framework demonstrates good generalization, producing effective ar-

chitectures for problems that differ from those seen during the development of the pipeline,

suggesting that the LLMs have learned general principles of neural operator design rather

than memorizing specific patterns.

The framework transforms neural operator design from an art requiring rare expertise

into a more systematic, science-based process. By explicitly grounding the design in math-

ematical theory and automating the translation from theory to implementation, we make

theory-guided neural operator design accessible to researchers who may have deep under-

standing of their specific PDE problems but limited expertise in neural architecture design.
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The framework also enables rapid prototyping and exploration of different theoretical frame-

works, accelerating the development of problem-specific solvers. We demonstrate that the

framework is reliable across most mathematical theories commonly used in PDE analysis,

including spectral methods, finite element methods, kernel methods, and operator splitting

techniques, showing that it can effectively leverage diverse mathematical tools to create spe-

cialized neural architectures. This work opens new directions for theory-aware automated

scientific machine learning, where mathematical insights systematically guide the construc-

tion of data-driven models.

1.3 Organization of Dissertation

This dissertation is organized into eight chapters that progressively build from traditional

numerical methods to advanced neural operator frameworks and automated design tech-

niques.

Chapter 2 presents the Message Passing Finite Volume Method (MP-FVM) for solving

the Richards equation. We begin by formulating the Richards equation in a finite volume

discretization framework and derive the adaptive fixed-point iteration scheme that provides

a robust iterative solution procedure. We introduce a novel adaptive rule for updating the

linearization parameter, where the parameter adjusts dynamically with respect to space,

time, and iteration count based on monitoring the condition number of the resulting sys-

tem matrix and controlling the relative error between successive iterations. This ensures

the numerical scheme is well-posed and reaches convergence within the specified number

of iterations. The chapter then presents the integration of encoder-decoder neural network

architecture with the message passing mechanism. We discuss dataset preparation and data

augmentation strategies, including the use of Gaussian noise to enhance generalization per-

formance, and introduce Sobolev training to ensure compatibility and stability across the

solution space. The message passing process operates in the latent space defined by the

encoder-decoder networks, solving for latent variables iteratively using the adaptive fixed-
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point iteration scheme. We rigorously prove convergence guarantees for the MP-FVM algo-

rithm under reasonable assumptions, showing that the iterative scheme is contractive. The

effectiveness of the algorithm is demonstrated through comprehensive case studies in one,

two, and three dimensions, including benchmark problems with known analytical solutions,

layered soil problems with discontinuous properties, and realistic irrigation scenarios. Com-

parisons with state-of-the-art solvers including finite difference methods, physics-informed

neural networks, and commercial HYDRUS software demonstrate that MP-FVM achieves

superior accuracy, better preserves mass conservation and underlying physical relationships,

and maintains excellent computational efficiency.

Chapter 3 introduces AFDONet, a theory-guided neural operator for solving PDEs on

smooth manifolds. We begin with preliminaries on adaptive Fourier decomposition theory,

explaining the Takenaka-Malmquist system, reproducing kernel Hilbert spaces, and the max-

imal selection principle for adaptive pole selection. The chapter then presents the AFDONet

architecture, systematically deriving each component from AFD theory. We explain the

design of the VAE-based encoder, the latent-to-RKHS network that projects latent repre-

sentations to their nearest reproducing kernel Hilbert space, and the AFD-type dynamic

convolutional kernel network decoder that reconstructs solutions through adaptive basis

selection. Each architectural choice is justified by its connection to AFD theory, demon-

strating the top-down, theory-guided design approach. We present three main theoretical

results: bounds on the generalization error of AFDONet, proof of existence of the RKHS con-

structed by the latent-to-RKHS network, and convergence guarantees for the dynamic CKN

decoder. Extensive experimental validation is provided on benchmark problems including

the Helmholtz equation on planar manifolds with perfectly matched layers, incompressible

Navier-Stokes equations on tori, and Poisson equations on quarter-cylindrical surfaces. Com-

prehensive ablation studies demonstrate the necessity of each component, and comparisons

with FNO, DeepONet, and Wavelet Neural Operator show AFDONet’s superior performance

on manifolds and datasets with sharp gradients.
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Chapter 4 presents Adaptive Fourier Mamba Operators (AFMO) for handling irregu-

lar geometries and non-uniform meshes. We explain the integration of reproducing kernel

theory with state-space models, showing how the Mamba architecture’s selective state-space

representation can be adapted to learn PDE solution operators on irregular domains. The

theoretical foundations connecting Takenaka-Malmquist systems with state-space models are

presented, along with algorithmic details for implementing AFMO efficiently. Experiments

on problems with complex geometries, including flow past obstacles and diffusion on irreg-

ular domains, demonstrate AFMO’s superior performance compared to methods requiring

regular grids or interpolation.

Chapter 5 extends AFDONet to inverse problems in Banach spaces, introducing AFDONet-

inv. We begin by discussing the limitations of Hilbert space formulations for inverse problems

with sparse parameters and motivate the need for Banach space frameworks. The chapter

develops the theoretical foundation for adaptive Fourier decomposition in reproducing kernel

Banach spaces, extending key concepts from RKHS theory including reproducing properties,

orthogonalization procedures, and approximation theorems. We present the AFDONet-inv

architecture, which explicitly represents mappings from operator spaces to parameter spaces

in Banach spaces, handling the duality structure appropriately. The architecture incorpo-

rates sparsity-promoting regularization through appropriate choice of Banach space norms,

typically L1 or bounded variation spaces. We derive convergence and stability results for

AFDONet-inv, showing that the learned inverse operators are robust to noise in the obser-

vations. The chapter demonstrates superior performance on benchmark inverse problems

including coefficient identification for elliptic PDEs with sparse or discontinuous parame-

ters, source identification problems, and initial condition reconstruction. Comparisons with

traditional variational methods, Bayesian inversion techniques, and Hilbert space operator

learning approaches demonstrate the advantages of the Banach space formulation for prob-

lems with inherently sparse structures.

Chapter 6 explores automated neural operator design using large language models. We

15



begin by analyzing the challenges in manual neural operator design and motivating the

need for automated approaches. The chapter presents the four-agent LLM pipeline in detail,

describing the role and implementation of each agent: the Theorist that reasons about math-

ematical structures, the Programmer that translates theory to code, the Critic that evaluates

designs, and the Refiner that iteratively improves architectures. We explain how the agents

communicate through structured interfaces, how mathematical theories are represented and

processed by the LLMs, and how the iterative refinement process is controlled. Extensive

experiments demonstrate the framework’s effectiveness across diverse PDE benchmarks in-

cluding hyperbolic, parabolic, and elliptic equations on various domain geometries. We ana-

lyze the architectures designed by the framework, showing that they incorporate appropriate

mathematical structures and often discover novel architectural patterns not present in exist-

ing literature. Ablation studies examine the contribution of each agent and the importance

of theory-grounding. The chapter also discusses limitations of the current framework, in-

cluding cases where LLMs struggle with highly specialized mathematical theories or produce

architectures with implementation issues, and proposes directions for improvement.

Chapter 7 concludes the dissertation with a comprehensive summary of contributions,

discussion of limitations, and directions for future research. We synthesize the key insights

from the hybrid numerical methods, theory-guided neural operators, and automated de-

sign frameworks, discussing how they collectively advance the field of numerical PDE solu-

tions. Limitations of each approach are honestly assessed, including computational costs,

applicability to specific problem classes, and theoretical gaps that remain. We identify

several promising directions for future research, including extension of the methods to time-

dependent PDEs on evolving manifolds, development of uncertainty quantification frame-

works for neural operators, integration with multi-fidelity modeling approaches, and appli-

cation to frontier problems in computational science and engineering. The chapter concludes

with reflections on the broader impact of this work in bridging traditional numerical analysis

with modern machine learning, and the potential for these methods to accelerate scientific
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discovery and engineering innovation.

17



CHAPTER II

MASSAGE-PASSING FINITE VOLUME METHOD FOR THE RICHARDS

EQUATION

The spatiotemporal dynamics of root zone (e.g., top 1 m of soil) soil moisture from precipi-

tation and surface soil moisture information can generally be modeled by the Richards equa-

tion Richards (1931), which captures irrigation, precipitation, evapotranspiration, runoff,

and drainage dynamics in soil:

∂tθ(ψ) +∇ · q = −S(ψ),

q = −K(θ(ψ))∇(ψ + z).

(2.0.1)

Here, ψ stands for pressure head (in, e.g., m), q represents the water flux (in, e.g.,

m3/m2 · s), S is the sink term associated with root water uptake (in, e.g., s−1), θ denotes the

soil moisture content (in, e.g., m3/m3), K is unsaturated hydraulic water conductivity (in,

e.g., m/s), t ∈ [0, T ] denotes the time (in, e.g., s), and z corresponds to the vertical depth

(in, e.g., m). The Richards equation is a nonlinear convection-diffusion equation Caputo

& Stepanyants (2008), in which the convection term is due to gravity, and the diffusive

term comes from Darcy’s law Smith et al. (2002). For unsaturated flow, both θ and K

are highly nonlinear functions of pressure head ψ and soil properties, making Equation

(2.0.1) challenging to solve numerically. Specifically, θ(ψ) and K(ψ) (or K(θ), depending

on the model) are commonly referred to as the water retention curve (WRC) and hydraulic

conductivity function (HCF), respectively. Several of the most widely used empirical models

for WRC and HCF are summarized in Table 1.

Due to the highly nonlinear nature of WRC and HCF, analytical solutions to the Richards

equation do not exist in general Farthing & Ogden (2017). Thus, the Richards equation is
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Table 1: Some of the widely used HCF and WRC models. In these models, A, γ, α, β, n,

θs, and θr are soil-specific parameters and have been tabulated for major soil types.

Model HCF (K(ψ) or K(θ)) WRC (θ(ψ))

Haverkamp et al. (1977) Ks
A

A+|ψ|γ θr +
α(θs−θr)
α+|ψ|β

Mualem (1976); Van Genuchten (1980) Ks

√
θ−θr
θs−θr

{
1−

[
1−

(
θ−θr
θs−θr

) l
l−1

] l−1
l

}2

θr +
θs−θr[

1+(α|ψ|)n
]n−1

n

Gardner (1958) Kse
αψ θr + (θs − θr)eαψ

typically solved numerically in some discretized form. Consider the discretized version of

Equation (2.0.1), whose control volume V ⊂ Rd (d = 1, 2, 3) is discretized into N small cells

V1, . . . , VN . Using implicit Euler method on the time domain with a time step size of ∆t,

the discretized Richards equation at time step m = 0, 1, . . . , ⌈ T
∆t
⌉ − 1 can be expressed as:

θ(ψm+1
i )− θ(ψmi )−∆t∇ ·

[
K
(
θ(ψm+1

i )
)
∇
(
ψm+1
i + z

) ]
+∆tS(ψm+1

i ) = 0,

Dirichlet boundary condition: ψj(·) = 0 for all Vj ⊂ ∂V,

Initial condition: ψ(0, ·) = ψ0(·),

(2.0.2)

where ψmi is the pressure head in cell Vi and time step m, and ψ0(·) denotes the initial

condition at t = 0.

The performance of a numerical PDE solver depends theoretically on the well-posedness

of the PDE Sizikov et al. (2011), which is an essential property that certifies the accuracy

and reliability of numerical solutions to the PDE. A PDE is said to be well-posed if its

weak solution exists, is unique, and depends continuously on the problem’s initial conditions

Sizikov et al. (2011); Evans (2010). Here, we consider an FVM discretization with a discrete

space Qh ⊂ L2(V ) of piecewise constants, where h denotes the maximum dimension of any

cell in its mesh. With this, we define the space of piecewise constant functions on the set

of meshes Th = {V1, V2, . . . , VN} as Qh(V ) = {v ∈ L2(V ) : v|Vi is constant for all Vi ∈ Th}.

Then, we introduce the discrete gradient operator Hyman & Shashkov (1997), GRADh, which

maps a cell-based function in Qh to a face-based function that approximates the gradient.

19



Note that ψmi in Equation (2.0.2) denotes the pressure head in cell Vi and time step m, which

is the value of ψm in the cell Vi. To study the pressure head solution in function space Qh(V ),

we focus on ψm rather than ψmi . With this, the discrete solution for the FVM-discretized

Richards equation can be defined as follows:

Definition 2.0.1 Given ψm ∈ Qh, if for any v ∈ Qh,

〈
θ(ψm+1)− θ(ψm), v

〉
V

(2.0.3)

+ ∆t
〈
K(θ(ψm+1))GRADh(ψ

m+1 + z),GRADh(v)
〉
Eh

(2.0.4)

+ ∆t
〈
S(ψm+1), v

〉
V
= 0 (2.0.5)

holds, where Eh denotes the set of all faces that make up the mesh Th, then ψm+1 is a discrete

solution of the FVM-discretized Richards equation.

Following Definition 2.0.1, for the discrete function space Qh, an inner product over a

cell Vi is defined for piecewise constant functions f, g ∈ Qh as ⟨f, g⟩Vi :=
∫
Vi
fg dV . In

this case, by denoting fi and gi as the function values of f and g respectively on Vi (i.e.,

fi = f |Vi and gi = g|Vi , both of which are constants), we have
∫
Vi
fg dV = figivol(Vi).

The global inner product over the entire domain V is then ⟨f, g⟩V :=
∑N

i=1⟨f, g⟩Vi . We

remark that the existence and uniqueness of the weak solution of the Richards equation

have been rigorously established and carefully studied Merz & Rybka (2010); Misiats &

Lipnikov (2013); Abdellatif et al. (2018), setting up the theoretical foundation for developing

an efficient solution algorithm to solve the discretized Richards equation numerically.

2.1 Adaptive fixed-point iteration scheme of Discretized Richards Equation

In this section, we will formally introduce the adaptive fixed-point iteration scheme formu-

lation of the FVM-discretized Richards equation. We will also derive sufficient conditions

for parameter τ to ensure convergence. We will also analyze the convergence behavior of the

resulting sequence of solutions {ψm+1,s
i }s, where s is the iteration count (s = 1, 2, . . . , S).
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2.1.1 Adaptive fixed-point iteration scheme for the Richards Equation

To discretize the Richards equation via FVM, we first integrate both sides of Equation (2.0.1)

over V : ∫
V

[∂tθ(ψ) + S(ψ)] dV =

∫
V

∇ ·
[
K(θ)∇(ψ + z)

]
dV. (2.1.1)

Next, we apply the divergence theorem to Equation (2.1.1), which converts the volume

integral on the RHS into a surface integral:

[
∂tθ(ψ̂) + S(ψ̂)

]
ψ̂∈V

vol(V ) =

∮
SV

K(θ)∇(ψ + z) · n dSV , (2.1.2)

where vol(V ) is the volume of V , SV is the surface of V and n is the outward pointing unit

normal to the boundary ∂V . The common surface shared by cell Vi and cell Vj is denoted

as ωi,j. With this, we can rewrite the operator K(·)∇(·) and the outward pointing unit

normal vector n on ωi,j as
[
K(·)∇(·)

]
ωi,j

and nωi,j
, respectively. After FVM discretization,

we obtain the discretized version of Equation (2.1.2) as:

∂tθivol(Vi) + S(ψi)vol(Vi) =
∑
j∈Ni

[
K(θ)∇(ψ + z)

]
ωi,j
· nωi,j

Aωi,j
∀i = 1, . . . , N, (2.1.3)

where ∂tθi refers to the time derivative ∂tθ(ψi) in cell Vi, Ni denotes the index set of all the

neighboring cells sharing a common surface with Vi, and Aωi,j
is the area of surface ωi,j.

In static fixed-point iteration scheme, for each cell Vi and at each time step m + 1,

one would add the term 1
τ
(ψm+1,s+1

i − ψm+1,s
i ) to either side of Equation (2.1.3), so that

the Richards equation can be solved in an iterative manner. The fixed-point pressure head

solution of this iterative procedure is denoted as ψmi . Since τ is a static constant, a trial-and-

error procedure is typically required to obtain an appropriate τ value that avoids convergence

issues. Not only is this search procedure tedious to implement, the solutions obtained are also

less accurate most of the time as we will show in Section 2.3.1. Thus, inspired by previous

works Amrein (2019); Zhu et al. (2019), we propose an adaptive fixed-point iteration scheme

that replaces the static τ with τm+1,s
i , which adjusts itself for each specific discretized cell,
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time step, and iteration count. We then introduce the term 1

τm+1,s
i

(ψm+1,s+1
i −ψm+1,s

i ) to the

LHS of Equation (2.1.3), which leads to:

ψm+1,s+1
i =ψm+1,s

i + τm+1,s
i

∑
j∈Ni

[
K(θ)∇(ψ + z)

]m+1,s

ωi,j
· nωi,j

Aωi,j

− τm+1,s
i

[
∂tθ

m+1,s
i + S(ψm+1,s

i )
]
vol(Vi),

(2.1.4)

By discretizing ∂tθ
m+1,s
i using implicit Euler scheme as

θ(ψm+1,s
i )−θ(ψm

i )

∆t
, we can obtain the

adaptive fixed-point iteration scheme of the FVM-discretized Richards equation:

ψm+1,s+1
i = ψm+1,s

i + τm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

(ψ + z)m+1,s
j − (ψ + z)m+1,s

i

dist(Vj, Vi)
e · nωi,j

Aωi,j

− τm+1,s
i

[
θ(ψm+1,s

i )− θ(ψmi )
∆t

+ S(ψm+1,s
i )

]
vol(Vi),

(2.1.5)

where e = (1, 1, 1) for the standard 3-D Cartesian coordinate system, and dist(·, ·) represents

the Euclidean distance function.

2.1.2 Choice of Adaptive Linearization Parameter

In adaptive fixed-point iteration scheme, we observe that τm+1,s
i needs to be sufficiently small

because otherwise, the RHS of Equation (2.1.5) could approach infinity, which affects the

convergence of the scheme. To prevent 1

τm+1,s
i

from being too large, we impose a user-specified

global upper bound τ0:

τm+1,s
i ≤ τ0.

In addition, the choice of τm+1,s
i can impact the accuracy of solutions. In other words,

the term
∣∣∣ψm+1,s+1

i −ψm+1,s
i

ψm+1,s
i

∣∣∣ should be no greater than a prespecified tolerance ρ. Thus, we

have: ∣∣∣∣ψm+1,s+1
i − ψm+1,s

i

ψm+1,s
i

∣∣∣∣ = τm+1,s
i |gm+1,s

i |
|ψm+1,s
i |

≤ ρ ∀s = 1, . . . , S,

where S is the user-specified total number of iterations for convergence, ρ should be no less
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than the overall tolerance of convergence ϵ (to be discussed in Section 2.1.3), and:

gm+1,s
i =

∑
j∈Ni

Km+1,s
ωi,j

(ψ + z)m+1,s
j − (ψ + z)m+1,s

i

dist(Vj, Vi)
e · nωi,j

Aωi,j

− θ(ψm+1,s
i )− θ(ψmi )

∆t
vol(Vi)− S(ψm+1,s

i )vol(Vi).

This implies that:

τm+1,s
i ≤ ρ|ψm+1,s

i |
(1 + ρ)|gm+1,s

i |
∀s = 1, . . . , S, (2.1.6)

whose RHS can be explicitly determined from the results of the previous iteration. Note

that, in actual implementation, we select τm+1,s
i based on:

τm+1,s
i = min

{
τ0,

ρ|ψm+1,s
i |

(1 + ρ)|gm+1,s
i |

}
∀s = 1, . . . , S. (2.1.7)

Meanwhile, we can monitor the sensitivity of solutions obtained by our adaptive fixed-

point iteration scheme and make sure that the solutions do not change drastically with

respect to small perturbations. To achieve this, following Zarba (1988) and Celia & Zarba

(1988), we explicitly write down Equation (2.1.5) for all discretized cells in the form of a

matrix equation:

Axm+1,s = b, (2.1.8)

where the ith element of vector xm+1,s is xm+1,s
i = ψm+1,s+1

i − ψm+1,s
i , which corresponds to

cell Vi. Here, it is worth mentioning that Equation (2.1.8) is not used for solving Equations

(2.1.5) as it is an explicit numerical scheme. Rather, it is used for analyzing the properties

of the scheme after xm+1,s
i solutions are obtained by solving Equation (2.1.5). For example,

to evaluate the choice of τm+1,s
i , we can calculate the condition number of A based on the

solutions obtained from the chosen τm+1,s
i . If the condition number is larger than a user-

specified threshold, we will update τ0 in Equation (2.1.7) so that the condition number drops

below the threshold. For 1-D problems, Zarba (1988) showed that A is a N ×N asymmetric

tridiagonal matrix. In this case, the condition number of A can be determined by calculating

its eigenvalues. On the other hand, for 2-D and 3-D problems, A is a rectangular matrix, so

that singular value decomposition will be used to determine its condition number.
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2.1.3 Convergence of Adaptive Fixed-Point Iteration Scheme

We now study the convergence behavior of our adaptive fixed-point iteration scheme, which is

formalized in Theorem 2.1.1. Recall that functions ψm and ψm+1,s are considered to study the

convergence. To show this, the idea is to leverage Definition 2.0.1 and find ψm+1,s+1 ∈ Qh(V )

given ψm, ψm+1,s ∈ Qh(V ) such that:

〈
θ(ψm+1,s+1)− θ(ψm), v

〉
V
+

∆t

τm+1,s

〈
ψm+1,s+1 − ψm+1,s, v

〉
V
+
〈
S(ψm+1,s+1), v

〉
V

= −∆t
〈
K
(
θ(ψm+1)

)
GRADh(ψ

m+1,s+1 + z),GRADh(v)
〉
Eh

(2.1.9)

holds for any v ∈ Qh(V ). We remark that, unlike previous proofs (e.g., Amrein (2019))

that are based on several restrictive assumptions, our convergence proof follows a different

approach that is intuitive and flexible, as it does not involve any additional assumptions

other than the properties listed below.

Theorem 2.1.1 The sequence {ψm+1,s}s converges to a unique solution ψm+1 ∈ Qh(V ) for

m = 0, 1, . . . , ⌈ T
∆t
⌉ − 1.

Proof. First, we state two key properties used in the proof:

1. The Cauchy-Schwarz inequality holds for the discrete L2 inner product: for any u,w ∈

Qh, we have ⟨u,w⟩V ≤ ∥u∥L2∥w∥L2 .

2. θ̇(ψ) = dθ
dψ
|ψm+1,s ≥ c0 > 0, which is valid in most WRC models (see Table 1). Similarly,

Ṡ(ψ) = dS
dψ
|ψm+1,s ≥ 0 in the region between the start and optimal root water extraction.

First, we subtract Equation (2.0.3) from Equation (2.1.9) to obtain the error equation.

Let es := ψm+1,s − ψm+1, we have:

〈
θ(ψm+1,s+1)− θ(ψm+1), v

〉
V
+

∆t

τm+1,s

〈
es+1 − es, v

〉
V

+
〈
S(ψm+1,s+1)− S(ψm+1), v

〉
V
= −∆t

〈
K(·)GRADh(e

s+1),GRADh(v)
〉
Eh
.

(2.1.10)
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Let the test function v = es+1 = ψm+1,s+1 − ψm+1. This is a valid choice as es+1 ∈ Qh.

By applying the mean value theorem to the θ and S terms, and using Observation 2, we

have: 〈
θ(ψm+1,s+1)− θ(ψm+1), es+1

〉
V
=
〈
θ̇(ξθ)e

s+1, es+1
〉
V
≥ c0∥es+1∥2L2 ,〈

S(ψm+1,s+1)− S(ψm+1), es+1
〉
V
=
〈
Ṡ(ξS)e

s+1, es+1
〉
V
≥ 0

(2.1.11)

for some ξθ, ξS between ψm+1,s+1 and ψm+1. The flux term on the RHS of Equation (2.1.10)

is also non-negative:

−∆t
〈
K(·)GRADh(e

s+1),GRADh(e
s+1)

〉
Eh

= −∆t∥es+1∥2h ≤ 0, (2.1.12)

where ∥ · ∥h is the discrete energy semi-norm. Substituting Equation (2.1.11) and Equation

(2.1.12) into Equation (2.1.10) gives:

c0∥es+1∥2L2 + 0 +
∆t

τm+1,s

〈
es+1 − es, es+1

〉
V
≤ 0 (2.1.13)

By applying Observation 1, Equation (2.1.13) leads to:

c0∥es+1∥2L2 +
∆t

τm+1,s

(
∥es+1∥2L2 − ⟨es, es+1⟩V

)
≤ 0. (2.1.14)

Then, we have:(
c0 +

∆t

τm+1,s

)
∥es+1∥2L2 ≤

∆t

τm+1,s
⟨es, es+1⟩V ≤

∆t

τm+1,s
∥es∥L2∥es+1∥L2 . (2.1.15)

If es+1 = 0, we complete the proof. If es+1 ̸= 0, we can divide Equation (2.1.15) by ∥es+1∥L2 :(
c0 +

∆t

τm+1,s

)
∥es+1∥L2 ≤ ∆t

τm+1,s
∥es∥L2 , (2.1.16)

which yields the contraction:

∥es+1∥L2 ≤

(
∆t

τm+1,s

c0 +
∆t

τm+1,s

)
︸ ︷︷ ︸

=:γs

∥es∥L2 . (2.1.17)

Since c0 > 0, the contraction factor γs is strictly less than 1. Therefore, the sequence is a

contraction mapping on the discrete space Qh(V ) equipped with the L2 norm. By the Banach

fixed-point theorem, the sequence {ψm+1,s} converges to a unique solution ψm+1 ∈ Qh(V ).

This completes the proof.
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2.2 Message Passing Finite Volume Method (MP-FVM)

Once the adaptive fixed-point iteration scheme for the FVM-discretized Richards equation is

established, we incorporate it in our MP-FVM algorithm to enhance the solver accuracy and

ability to retain underlying physics (e.g., mass conservation). As discussed previously, the

message passing neural PDE solver proposed by Brandstetter et al. (2022) comprises three

main components: an encoder, a processor, and a decoder. The message passing mechanism

is implemented within the processor that operates in the latent space. However, it has

not been extended to discretized PDEs. In this work, we introduce the message passing

mechanism for the discretized Richards equation by defining a latent variable µm,si as the

processor. Therefore, by leveraging our adaptive fixed-point iteration scheme, we can now

solve the latent variable iteratively to enhance the convergence and numerical stability of

the message passing mechanism. Specifically, this integrative algorithm, MP-FVM, adopts

one neural network (encoder) f̂NN to learn the map ψm,si 7→ µm,si and another neural network

(decoder) f̂−1
NN to learn the inverse map µm,si 7→ ψm,si . Overall, our MP-FVM algorithm involves

offline training (dataset preparation and encoder-decoder training) and solution (message

passing) process, which are summarized in the flowchart of Figure 1.

2.2.1 Dataset Preparation and Data Augmentation

The dataset used to train the encoder and decoder neural networks comes from two different

sources/solvers. Specifically, for each cell Vi and time step m, we approximate the latent

variable solution µm,Si from a finite difference solver (e.g., Ireson et al. (2023)). Here, S is the

user-specified total iteration number. The corresponding ψm,Si solution is obtained separately

from the fixed-point iteration scheme of Equation (2.1.5) using a static parameter τ . The

resulting set of solution pairs,
{(
ψm,Si , µm,Si

)}
i,m

, form a set of original “reference solutions”.

In actual implementation, we obtain multiple sets of original reference solutions by selecting

multiple total iteration numbers (S1, . . . , Sp) and/or fixed-point parameters (τ1, . . . , τr) that
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Figure 1: Flowchart of our proposed algorithm to solve the FVM-discretized Richards equa-

tion using a message passing mechanism.

cover their ranges expected during the actual solution process. These sets of original reference

solutions, which are
{(
ψm,S1

i , µm,S1

i

)
|τ1
}
i,m
, . . . ,

{(
ψ
m,Sp

i , µ
m,Sp

i

)
|τr
}
i,m

, are combined to form

a larger set to perform data augmentation.

Next, to apply data augmentation, we introduce Gaussian noise Zq ∼ N (0, σ2
q ) with

different variances σ2
1, . . . , σ

2
Q to each and every element in the reference solution set ob-

tained previously. After data augmentation, the resulting expanded set of reference solutions,{
(ψm,S1

i +Zp, µ
m,S1

i +Zq)|τ1
}
i,m,q

, . . . ,
{
(ψ

m,Sp

i +Zq, µ
m,Sp

i +Zq)|τr
}
i,m,q

, is denoted as S and

will be used for neural network training. This data augmentation step not only increases the

size of the training dataset, but also reflects the characteristics of actual soil sensing data,

which are subject to various measurement uncertainties. Furthermore, In Section 2.3.1, we

will show that introducing Gaussian noise can greatly reduce the biases of reference solutions

and enhance generalization performance Da Silva & Adeodato (2011), thereby significantly

improving the accuracy of numerical solutions.
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2.2.2 Neural Network Training

A neural network is capable of approximating any function provided that it contains enough

neurons Hornik (1991); Pinkus (1999). In the actual implementation, depending on the

problem settings, the desired choices of optimal optimizer, number of hidden layers, and

activation functions can vary. Based on our extensive research and hyperparameter tuning,

we find that a simple three-layer neural network with 256 neurons in each layer achieves

the best performance for most 1-D through 3-D problems compared to other more complex

neural network architectures (e.g., LSTM). Also, we find that stochastic gradient decent

(SGD) optimizer often outperforms others (e.g., Adam or RMSProp). The learning rate is

set to be 0.001. This simple neural network structure makes our MP-FVM algorithm training

much less computationally expensive compared to state-of-the-art neural PDE solvers (e.g.,

Lu et al. (2020b); Brandstetter et al. (2022)).

In terms of loss function design, we note that the solution of the Richards equation at a

given time step depends on the pressure head solution at the initial condition and previous

time steps. A small perturbation in these solutions can lead to slow convergence or inaccurate

solutions at the final time step. To account for this, we introduce Sobolev training Czarnecki

et al. (2017b) for both neural networks f̂NN and f̂−1
NN to ensure compatibility and stability in

the same solution space. We implement Sobolev training by adding a Sobolev regularization

term to the standard Mean Squared Error (MSE) in the loss functions for f̂NN and f̂−1
NN:

Lf̂NN
=

1

|S|
∑

(ψ,µ)∈S

(
µ− f̂NN(ψ)

)2
︸ ︷︷ ︸

MSE term

+λf̂NN
· 1

|S|
∑

(ψ,µ)∈S

(∥∥∥∇(µ− f̂NN(ψ)
)∥∥∥2

L2

)
︸ ︷︷ ︸

Sobolev regularization term

, (2.2.1)

and

Lf̂−1
NN

=
1

|S|
∑

(ψ,µ)∈S

(
ψ − f̂−1

NN(µ)
)2

︸ ︷︷ ︸
MSE term

+λf̂−1
NN
· 1

|S|
∑

(ψ,µ)∈S

(∥∥∥∇(ψ − f̂−1
NN(µ)

)∥∥∥2
L2

)
︸ ︷︷ ︸

Sobolev regularization term

, (2.2.2)

where λf̂NN
and λf̂−1

NN
are user-specified regularization parameters for the neural networks λf̂−1

NN

and f̂−1
NN, respectively. Here, we use the Leaky ReLU activation function, as it has been shown
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that there exists a single hidden-layer neural network with ReLU (or Leaky ReLU) activation

function that can approximate any function in a Sobolev space Czarnecki et al. (2017b).

Overall, this combined loss function ensures that the model not only produces accurate

predictions but also generates smooth and regular outputs by matching the gradients of the

true function.

2.2.3 Message Passing Process

When neural network training is complete, the trained encoder f̂NN and decoder f̂−1
NN can then

be incorporated into Equation (2.1.5) to derive the following fixed-point iterative scheme for

the latent variables with message passing mechanism:

µm+1,s+1
i = µm+1,s

i + τm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

e · nωi,j

µm+1,s
j − µm+1,s

i

dist(Vj, Vi)
Aωi,j

+ f̂NN(J), (2.2.3)

where J = τm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

e·nωi,j

zj−zi
dist(Vj ,Vi)

Aωi,j
−τm+1,s

i

(
θm+1,s
i −θmi

∆t
+ S(ψm+1,s

i )
)
vol(Vi).

To solve Equation (2.2.3), we will adopt a similar strategy as in Equation (2.1.7) to adaptively

select the linearization parameter τm+1,s
i . To start the message passing process, we obtain

the initial pressure head solutions in the control volume at m = 0 from the initial and

boundary conditions. These initial pressure head solutions can be mapped to the latent

space via trained encoder network f̂NN. Next, for each new time step m + 1, the latent

variable for every cell can be iteratively solved by Equation (2.2.3) by utilizing the trained

neural networks f̂NN and f̂−1
NN. Note that the iterative usage of f̂−1

NN is implicitly implied

in the MP-FVM algorithm, as the term J in Equation (2.2.3) contains ψm+1,s
i that must

be evaluated by applying f̂−1
NN on latent variable µm+1,s

i . Also, it is worth mentioning that,

since ψ and J have different scales, in actual implementation, in addition to f̂NN for learning

ψm,si → µm,si , we train another neural network named f̂ ′
NN for mapping J to the latent space

in Equation (2.2.3). To monitor convergence of the iterative message passing process, we

define the relative error REs as:

REs :=
||µm+1,s+1 − µm+1,s||L2

||µm+1,s+1||L2

, (2.2.4)
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where µm+1,s+1 = (µm+1,s+1
1 , . . . , µm+1,s+1

N )T and so on. Once REs is below a user-specified

tolerance tol (typically in the order of 10−6), we declare convergence of {µm+1,s
i }s to µm+1

i .

From there, one can determine the converged ψm+1
i using f̂−1

NN, followed by obtaining other

physical quantities such as soil moisture content θm+1
i and qm+1

i from the WRC and HCF

models (Table 1) and Equation (2.0.1). The entire solution process then repeats itself in the

next time step until m = ⌈ T
∆t
⌉ − 1.

Furthermore, it is worth mentioning that, when neural network training for a specific

problem setting (e.g., boundary condition and initial condition) is complete, the trained

neural networks can be saved as a pre-trained model. As we encounter a new problem

setting, the pre-trained model provides a strong starting point that can be quickly refined

with a small number of epochs (typically no more than 100) before it can be deployed

to solve the new problem. The use of pre-trained model is a well-established technique

in machine/deep learning for leveraging knowledge learned from (large) datasets, reducing

the need for extensive training data and computation, and enabling faster deployment and

improved performance in new tasks through fine-tuning.

2.2.4 Convergence of MP-FVM Algorithmn

The convergence of our MP-FVM algorithm, which features the sequence {µm+1,s}s, can

be established by extending Theorem 2.1.1 and investigating the convergence behavior of

stochastic gradient descent (SGD) for neural network realizations of f̂NN and f̂−1
NN. Similar

to Theorem 2.1.1, we consider functions {µm+1,s}s and µm+1 instead of their discretized

variants.

Theorem 2.2.1 The sequence {µm+1,s}s converges to µm+1 for m = 0, 1, . . . , ⌈ T
∆t
⌉ − 1.

To prove Theorem 2.2.1, we first need to introduce the following preliminary assumptions

and results from Fontaine et al. (2021) and Berner et al. (2019).

1. The objective function f is L-smooth.
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2. There exists a Polish probability space (Z,Z, πZ) and η ≥ 0 such that one of the

following conditions holds:

(a) There exists a function H : Rd × Z → Rd such that for any x ∈ Rd,∫
Z

H(x, z)dπZ(z) = ∇f(x),
∫
Z

∥H(x, z)−∇f(x)∥2L2dπZ(z) ≤ η.

(b) There exists a function f̃ : Rd×Z → R such that for all z ∈ Z, f̃(·, z) ∈ C1(Rd,R)

is L-smooth. Furthermore, there exists x∗ ∈ Rd such that, for any x ∈ Rd,∫
Z

f̃(x, z)dπZ(z) = f(x),

∫
Z

∇f̃(x, z)dπZ(z) = ∇f(x),
∫
Z

∥∇f̃(x∗, z)∥2L2dπZ(z) ≤ η.

In this case, we define H = ∇f̃ .

3. There exists M ≥ 0 such that for any x, y ∈ Rd,

∥Σ(x)1/2 − Σ(y)1/2∥L2 ≤M∥x− y∥L2 .

4. One of the following conditions holds:

(a) For Assumption 2(a): f is convex, i.e., for any x, y ∈ Rd,

⟨∇f(x)−∇f(y), x− y⟩ ≥ 0,

and there exists a minimizer x∗ ∈ argminx∈Rd f .

(b) For Assumption 2(b): For all z ∈ Z, f̃(·, z) is convex, and there exists a minimizer

x∗ ∈ argminx∈Rd f .

Under Assumptions 1 and 2, we introduce the sequence {Xn}n∈N starting from X0 ∈ Rd

corresponding to SGD with non-increasing step sizes for any n ∈ N by:

Xn+1 = Xn − γ(n+ 1)−αH(Xn, Zn+1),

where γ > 0, α ∈ [0, 1], and {Zn}n∈N is a sequence of independent random variables on

a probability space (Ω,F , P ) valued in (Z,Z) such that for any n ∈ N, Zn is distributed
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according to πZ . As Fontaine et al. (2021) pointed out, the solution of the following SDE is

a continuous counterpart of {Xn}n∈N:

dXt = −(γ + t)−α∇f(Xt) dt+ γ(γ + t)−2αΣ(Xt)
1/2 dBt,

where γα = γ1/(1−α) and (Bt)t≥0 is a d-dimensional Brownian motion.

Given these preliminaries, we now leverage two established results as lemmas:

Lemma 2.2.1 (Theorem 6 of Fontaine et al. (2021)) Let α, γ ∈ (0, 1), for f ∈ C2(Rd,R),

there exists C ≥ 0 such that for any T ≥ 1,

E[f(XT)]− min
x∈Rd

f ≤ C
(1 + log(T ))2

Tα(1−α)
.

Lemma 2.2.2 (Equation 35 of Berner et al. (2019)) Suppose f̃ with an at most poly-

nomially growing derivative is the “true” function learned by the neural network. Let κ > 0

be the polynomial growth rate, there exists D ≥ 0 such that

∥f̃(x)− f̃(y)∥L2 ≤ D
(
1 + ∥x∥κ+2

L2 + ∥y∥κ+2
L2

)
∥x− y∥L2

holds.

With Lemmas 2.2.1 and 2.2.2, we are now ready to give the proof of Theorem 2.2.1 which

accounts for the convergence of SGD:

Proof. To start, we have:

∥µm+1,s+1 − µm+1,s∥L2 ≤ E
[
∥f̂NN(ψ

m+1,s+1,XT)− f̂NN(ψ
m+1,s,XT)∥L2

]
≤ E

[
∥f̂NN(ψ

m+1,s+1,XT)− f̃(ψm+1,s+1)∥L2

]
+ ∥f̃(ψm+1,s+1)− f̃(ψm+1,s)∥L2

+ E
[
∥f̃(ψm+1,s)− f̂NN(ψ

m+1,s,XT)∥L2

]
,

where XT is the weights of f̂NN optimized by SGD optimizer, whose process is assumed to

be well-approximated by the SDE in Lemma 2.2.1, and f̃ is the true function learned by

f̂NN.
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To bound the first and third terms, we define the objective function for the SGD process

for a given input ψ as fψ(x) = ∥f̂NN(ψ, x)− f̃(ψ)∥L2 . We assume this function satisfies the

conditions for Lemma 2.2.1. The terms we seek to bound are then precisely of the form

E[fψ(XT)]. From Lemma 2.2.1, we have:

E[fψ(XT)] ≤ C
(1 + log(T ))2

Tα(1−α)
+ min

x∈Rd
fψ(x).

We assume the network is a good approximator, such that for a given ε > 0 and for any

relevant ψ, the minimum error satisfies minx∈Rd fψ(x) ≤ ε
6
. When the network is trained

for a sufficiently large T , we can ensure C (1+log(T ))2

Tα(1−α) ≤ ε
6
. Thus, for both the first and third

terms, which correspond to ψ = ψm+1,s+1 and ψ = ψm+1,s, we have the bound:

E
[
∥f̂NN(ψ,XT)− f̃(ψ)∥L2

]
≤ ε

6
+
ε

6
=
ε

3
.

Next, for the term ∥f̃(ψm+1,s+1) − f̃(ψm+1,s)∥L2 , it can be bounded using Lemma 2.2.2

and the result ∥ψm+1,s+1−ψm+1,s∥L2 ≤ ε

3D(1+∥ψm+1,s+1∥κ+2

L2 +∥ψm+1,s∥κ+2

L2 )
obtained from Theorem

2.1.1:

∥f̃(ψm+1,s+1)− f̃(ψm+1,s)∥L2 ≤ D
(
1 + ∥ψm+1,s+1∥κ+2

L2 + ∥ψm+1,s∥κ+2
L2

)
· ∥ψm+1,s+1 − ψm+1,s∥L2 ≤ ε

3
.

Therefore, it follows that

∥µm+1,s+1 − µm+1,s∥L2 ≤ ε

3
+
ε

3
+
ε

3
= ε,

which completes the proof.

2.3 Case Studies

Now that we have introduced the MP-FVM algorithm formulation for the Richards equa-

tion, in this section, we evaluate our MP-FVM framework on a series of 1-D through 3-D

benchmark problems modified from the literature Celia et al. (1990); Gasiorowski & Kolerski
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(2020); Tracy (2006); Berardi et al. (2018); Orouskhani et al. (2023). Specifically, we exten-

sively study the 1-D benchmark problem of Celia et al. (1990) to demonstrate the need and

benefits of different components employed in our MP-FVM algorithm, including adaptive

fixed-point iteration scheme, encoder-decoder architecture and message passing mechanism,

and Sobolev training. Also, using this problem as a benchmark, we demonstrate the accu-

racy of our solution algorithm with respect to state-of-the-art solvers. In the 1-D layered

soil case study proposed by Berardi et al. (2018), we show that our MP-FVM algorithm is

capable of handling discontinuities in soil properties and modeling the infiltration process

through the interface of two different soils. In the 2-D case study adopted from Gasiorowski

& Kolerski (2020), we show that our MP-FVM algorithm can better satisfy the mass balance

embedded in the Richards equation. In the 3-D case study adopted from Tracy (2006) in

which an analytical solution to the Richards equation exists, we show that our MP-FVM

algorithm produces much more accurate solutions compared to conventional FVM solvers.

Finally, we study a 3-D problem adopted from Orouskhani et al. (2023) featuring an actual

center-pivot system and validate the accuracy and robustness of our MP-FVM algorithm in

modeling real-world precipitation and irrigation scenarios for a long period of time.

2.3.1 A 1-D Benchmark Problem

Here, we study the 1-D benchmark problem over a 40 cm deep soil presented by Celia et al.

(1990). The HCF and WRC adopt the model of Haverkamp et al. (1977) (see Table 1),

whose parameters are listed in Table 2. The initial condition is given by ψ(z, 0) = −61.5

cm, whereas the two boundary conditions are ψ(40 cm, t) = −20.7 cm, ψ(0, t) = −61.5 cm,

respectively Haverkamp et al. (1977). This benchmark problem ignores the sink term.

Through this 1-D illustrative example, we will highlight the benefits of (a) adopting

an adaptive fixed-point iteration scheme as opposed to standard the fixed-point iteration

scheme, (b) implementing the MP-FVM algorithm as opposed to the conventional FVM

method, and (c) integrating the adaptive fixed-point iteration scheme with encoder-decoder
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Soil-specific Parameters Values Units

Saturated hydraulic conductivity, Ks 0.00944 cm/s

Saturated soil moisture content, θs 0.287 –

Residual soil moisture content, θr 0.075 –

α in Haverkamp’s model 1.611× 106 cm

A in Haverkamp’s model 1.175× 106 cm

β in Haverkamp’s model 3.96 –

γ in Haverkamp’s model 4.74 –

Total time, T 360 s

Table 2: soil-specific parameters and their values used in the 1-D case study of Celia et al.

(1990) based on the empirical model developed by Haverkamp et al. (1977).

network and message passing mechanism in a holistic numerical framework.

The Need for Adaptive fixed-point iteration scheme

To illustrate how adaptive fixed-point iteration scheme improves convergence and accuracy

of conventional fixed-point iteration schemes, we compare the pressure head solution profiles

at t = T = 360 seconds obtained by different static fixed-point parameters after (a) S =

500 iterations and (b) tol = 3.2 × 10−5. We adopt a spatial grid containing 101 mesh

points (∆z = 0.4 cm) and a temporal grid satisfying the Courant-Friedrichs-Lewy (CFL)-

like condition, typically expressed as ∆t ≤ ∆z2

2K
De Moura & Kubrusly (2013). As shown

in Figure 2, when using static fixed-point iteration scheme, the choice of parameter τ and

the total number of iterations can impact the solution accuracy and algorithm stability

significantly. For example, when the fixed-point parameter is too large (e.g., τ = 2 for this

problem), the stability of the static fixed-point iteration scheme can be adversely affected (as

illustrated by the zigzag pressure head profile towards z = 40 cm). Another key observation
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Figure 2: Comparison of pressure head solution profiles at t = T = 360 seconds under (a)

S = 500 iterations and (b) tol = 3.2×10−5 for the 1-D benchmark problem Celia et al. (1990)

using standard and adaptive fixed-point iteration schemes (Equation (2.1.5)). The solutions

obtained from Celia et al. (1990) based on very fine space and time steps are marked as the

ground truth solutions.

is that, increasing the total number of iterations sometimes deteriorates solution accuracy

of static fixed-point iteration scheme. These observations pose practical challenges for using

static fixed-point iteration scheme, especially when the ground truth solutions are absent,

as identifying the optimal fixed-point parameter and total number of iterations that would

yield accurate solutions will not be possible without referring to ground truth solutions.

This motivates us to develop adaptive fixed-point iteration scheme as a robust and reliable

numerical scheme that produces solutions that are close to ground truth solutions without

trail-and-error parameter tuning. Also, it is worth noting that our adaptive fixed-point

iteration scheme successfully bypasses the singularity issue as 1

τm+1,s
i

approaches to 0 and

correctly calculates the pressure head solutions for z ∈ [0, 20 cm] where θ̇(ψ) becomes small.

36



The Need for Encoder-Decoder Architecture

To generate the reference solutions, we consider a coarse spatial discretization containing 40

cells (i.e., grid size ∆z = 1 cm) and solve for T = 360 seconds. The time step size ∆t is

determined using the CFL condition De Moura & Kubrusly (2013). A set of pressure head

solutions ψ is obtained using the finite difference method that incorporates a modified Picard

iteration scheme developed by Celia et al. (1990). Meanwhile, another set of pressure head

solutions, which essentially becomes the latent variable dataset µ for neural network training,

is obtained from the fixed-point iteration scheme of Equation (2.1.5) under 4 different static

fixed-point parameter τ = 0.25, 0.24, 0.23, 0.22 and 10 different total iteration counts S =

1, 000, 2, 000, up to 10, 000.
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P
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m
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Figure 3: The relationships between 1640 pressure head solutions ψ and µ, which are obtained

by two distinct approaches. The resulting nonlinearity present in these reference solutions

highlights need for data-driven approach.

As mentioned earlier, reference solutions utilized to train the encoder f̂NN and decoder
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f̂−1
NN come from two different sources. As shown in Figure 3, a highly nonlinear relationship

between two sources of pressure head solutions is observed. This is mainly because pressure

head solutions from different sources exhibit different sensitivities with respect to different

choices of τ and S. Without knowing the ground truth solutions a priori, it is hard to

determine which set of pressure head solutions is more accurate. This motivates us to

adopt an encoder-decoder architecture to explicitly capture this nonlinear relationship, which

encapsulates the sensitivity of solution with respect to different choices of τ and S.

Another motivation for adopting an encoder-decoder architecture in our numerical solver

comes from the fact that different sources of pressure head solutions also exhibit different

topological features. To see this, we use persistent homology Edelsbrunner & Morozov

(2013) as a way to capture the multiscale topology of each source of pressure head solutions.

Specifically, we construct a sequence of simplicial complexes and track the “birth” and

“death” of topological features across this sequence. Figure 4 shows that the µ solutions

exhibit longer-lasting topological components than the ψ solutions, as all points die off

much sooner (e.g., ∼ 7.4 on the death axis) for the ψ solutions. Therefore, the use of an

encoder f̂NN, which maps the pressure head solutions ψ to a latent space where µ solutions

lie, can capture the distinct topological structures of two sources of pressure head solutions.

Similarly, the decoder f̂−1
NN transforms the latent representation µ back to the original solution

space, ensuring that the essential topological features of ψ solutions are accurately captured

and reconstructed.

Improving MP-FVM Algorithm Performance via Sobolev Training and Encoder-

decoder Architecture

As previously discussed, we perform data augmentation on the reference solutions to increase

dataset size and enhance generalization performance. Specifically, after we obtain a set of ψ

solutions using the finite difference method developed by Celia et al. (1990), we make multiple

copies of it and append each copy to the µ solutions obtained by the fixed-point iteration
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Figure 4: Persistence diagrams Edelsbrunner & Morozov (2013) for pressure head solutions

ψ (left) and µ (right). The marked differences in topological features illustrate the need for

an encoder to map ψ into the topological space of µ. Here, ∞ refers to infinite lifespan and

H0 are connected components.

scheme of Equation (2.1.5) under different static τ and S values. We then add zero-mean

Gaussian noises with standard deviation varying from 0.1 to 0.5 to these augmented reference

solutions. Overall, this leads to a total of 17, 097 reference solutions for neural network

training and validation. Note that, as previously discussed, the original and augmented

reference solutions are generated using a coarse grid (∆z = 1 cm). Thus, they can be

obtained relatively efficiently. On the other hand, in the solution step, we will use a more

refined grid containing 101 mesh points (∆z = 0.4 cm). This “coarse-to-fine” approach can

therefore enhance the solution accuracy of our MP-FVM algorithm without requiring a large

amount of high-accuracy, fine-mesh training data. Furthermore, when augmented reference

solutions are used for training, only 100 additional epochs are needed to retrain neural

networks that have already been trained using the original reference solutions. Second, we

notice that there is only a slight difference in the final pressure head solution profile when
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Figure 5: Comparison of pressure head solution profiles at t = T = 360 seconds produced

from adaptive fixed-point iteration scheme only (Equation (2.1.5)) and from MP-FVM algo-

rithm (Equation (2.2.3)) with and without implementing Sobolev training.

Gaussian noises of different magnitudes are directly added to the original reference solutions

without augmenting them together. Third, increasing training data size (from 1, 640 to

17, 097) via data augmentation of original reference solutions is an effective way to improve

solution accuracy of our MP-FVM algorithm, as the pressure head profile matches very well

with the ground truth solution.

From Figure 5, it is clear that integrating adaptive fixed-point iteration scheme in the

MP-FVM framework synergistically improves the overall solution accuracy of the Richards

equation, especially in the region where pressure head changes rapidly with respect to depth

(i.e., between z = 20 to 30 cm). On the other hand, we observe slight discrepancy in pressure
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head solution close to z = 40 cm when comparing our MP-FVM algorithm with ground-

truth solutions, whereas the solution produced by adaptive fixed-point iteration scheme

alone matches perfectly with ground-truth solution at z = 40 cm, which corresponds to

one of the boundary conditions. We believe that this is due to the fact that f̂NN and f̂−1
NN

only approximate the true relationships f and f−1, respectively, and the resulting induced

error causes discrepancies in pressure head solutions even at the boundaries. To overcome

this limitation, one way is to increase the size of the augmented reference solutions for

neural network training. Another approach is to switch from MP-FVM (Equation (2.2.3))

to adaptive fixed-point iteration scheme only (i.e., Equation (2.1.5)) when solving for the

boundary conditions. We leave this refinement for future research.

Figure 6 illustrates how Sobolev training affects the solution quality of our MP-FVM

algorithm. Specifically, we find that, first, the effectiveness of Sobolev training depends

on the choice of hyperparameter λ. Second, larger values of λ (e.g., 10−5) may not lead

to improved accuracy in pressure head solution, as in this case, neural network training

may prioritize smoothness or derivative agreement over fitting the pressure head solutions.

Third, smaller values of λ (e.g., 10−9) could still be useful in improving solution accuracy

compared to without Sobolev training (i.e., λ = 0). Last but not least, we notice that, when

pre-trained models are used, the sensitivity of pressure head solution to λ is significantly

reduced, especially for λ < 10−6. We suspect that this is because pre-trained models already

capture the relationships between ψ and µ solutions reasonably well, so that the Sobolev

loss primarily serves to fine tune the models.

Convergence and Solution Accuracy Comparison

We compare our MP-FVM algorithm with other solvers based on computational performance

and solution accuracy under two scenarios. In Scenario 1, we set the error tolerance tol to be

3.2× 10−5, whereas in Scenario 2, we set the total number of iterations S = 500. For static

fixed-point iteration scheme, we use an optimal fixed-point parameter τ = 1
3.5
≈ 0.2857
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Figure 6: Comparison of pressure head solution profiles at t = T = 360 seconds produced

from MP-FVM algorithm (Equation (2.2.3)) with implementing Sobolev training with differ-

ent regularization parameters in Equation (2.2.1) and Equation (2.2.2) at Scenario 2. Here,

we use the same λ = λf̂NN
= λf̂−1

NN
and all neural networks are trained from scratch.

identified by trail-and-error process. In terms of computational performance, we use the

condition number of matrix A defined in Equation (2.1.8), which measures the sensitivity of

fixed-point iteration scheme subject to small perturbations, as the metric.

From Tables 3 and Table 4, we see that implementing adaptive fixed-point iteration

scheme significantly improves the stability of conventional FVM and our MP-FVM algo-

rithms, as matrix A is well-conditioned. These observations suggest that adaptive fixed-

point iteration scheme outperforms static fixed-point iteration scheme in enhancing the con-

vergence behavior of discretization-based solvers.

In terms of solution accuracy, we consider two metrics. The first metric is the discrepancy
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Algorithm
Average condition number of A obtained from Zarba (1988) (Scenario 1)

Static fixed-point iteration scheme Adaptive fixed-point iteration scheme

FVM 1.7668 1.0064

MP-FVM 1.7419 1.0075

Table 3: Comparison of average condition number under Scenario 1 across all time steps

(as Equation (2.1.8) already considers all discretized cells) for conventional FVM and our

MP-FVM algorithms that implement static or adaptive fixed-point iteration scheme.

Algorithm
Average condition number of A obtained from Zarba (1988) (Scenario 2)

Static fixed-point iteration scheme Adaptive fixed-point iteration scheme

FVM 1.7206 1.0064

MP-FVM 1.7113 1.0071

Table 4: Comparison of average condition number under Scenario 2 across all time steps for

conventional FVM and our MP-FVM algorithms that implement static or adaptive fixed-

point iteration scheme.

from the ground truth solutions of Celia et al. (1990). The comparison results are illustrated

in Figure 7. The second metric is the solver’s performance in preserving the mass (moisture)

balance, which is quantified by the mass balance measure MB defined in Celia et al. (1990):

MB =
total additional mass in the domain

total water flux into the domain
. (2.3.1)

In Figure 7, we compare the pressure head profiles obtained from our MP-FVM algo-

rithm (which implements adaptive fixed-point iteration scheme and Sobolev training), the

conventional FVM algorithm (that implements adaptive fixed-point iteration scheme), and a

state-of-the-art physics-informed neural network (PINN) solver based on Bandai & Ghezze-

hei (2021), against the ground truth solution Celia et al. (1990). Clearly, in both scenarios,

compared with the MP-FVM solutions, PINN and FVM solutions are further apart from
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ground truth solutions.

Figure 7: Pressure head profiles at t = T = 360 sec obtained by different algorithms under

(left) Scenario 1, and (right) Scenario 2. Both conventional FVM and our MP-FVM algo-

rithm incorporate adaptive fixed-point iteration scheme. Note the PINN solver is not an

iterative method, thus the solution profile is the same under both scenarios.

From Tables 5 and 6, we observe that, in both Scenarios 1 and 2, our MP-FVM algorithm

achieves the best MB values when using either coarse time steps suggested by the CFL

condition De Moura & Kubrusly (2013) or a fixed time step. Considering that using coarse

time steps reduces solution time without affecting solution quality, adopting a CFL-like

condition is desired.

Remark on Computational Efficiency

Although our MP-FVM framework does involve neural network training which will take some

additional time, there are several well-established strategies widely used in the machine/deep

learning community to reduce the overall computational time and costs. For example, as

previously discussed, one can leverage the previously trained neural network from a different

problem setting as a good starting point to train with new dataset for the new problem setting

in just a small number of epochs. To see this, we run the 1-D benchmark problem of Celia
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Method used Scenario Average ∆t (sec) MB

FVM algorithm 1 18.90 96.13%

MP-FVM algorithm 1 18.68 100.23%100.23%100.23%

FVM algorithm 2 17.62 86.04%

MP-FVM algorithm 2 18.35 97.29%97.29%97.29%

Celia et al. (1990) N/A 10 95.00%

Table 5: MB results of different numerical methods. Note that here, ∆t is the determined for

each method by the CFL condition De Moura & Kubrusly (2013) and we take the average

across all iterations.

Method used Scenario MB (∆t = 15 sec)

FVM algorithm 1 98.87%

MP-FVM algorithm 1 100.72%100.72%100.72%

FVM algorithm 2 96.79%

MP-FVM algorithm 2 97.81%97.81%97.81%

Celia et al. (1990) N/A 95.00%

Table 6: MB results of different numerical methods, in which a common ∆t = 10 seconds is

used for all numerical methods.

et al. (1990) in a Dell Precision 7920 Tower equipped with Intel Xeon Gold 6246R CPU and

NVIDIA Quadro RTX 6000 GPU (with 24GB GGDR6 memory). The MP-FVM algorithm

is implemented in Python 3.10.5. The total computational time for solving the Celia problem

from scratch with S = 500 is 181.43 seconds, in which the neural network training step costs

127.58 seconds. On the other hand, when using a pre-trained model, the time for neural

network training step and the total computational time are reduced by 89.79% and 63.21%

down to 13.01 and 66.76 seconds, respectively. Meanwhile, the computational time for a
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direct solver is 43.75 seconds. While our MP-FVM algorithm still takes more time than

the direct solver, it is still an attractive numerical framework as: 1) it gives more accurate

solutions; 2) its data-driven nature makes it suitable for seamless integration between physics-

based modeling and in situ soil sensing technologies; 3) for large-scale and/or more complex

problem settings, the neural network training time will become less significant compared to

the actual solution time; and 4) our MP-FVM algorithm consumes less computational time

compared to many neural PDE solvers Lu et al. (2020b); Brandstetter et al. (2022).

2.3.2 A 1-D Layered Soil Benchmark Problem

To investigate the robustness of our MP-FVM algorithm in handling realistic problems, we

study the classic Hills’ problem Hills et al. (1989) that involves the 1-D water infiltration into

two layers of very dry soil, each having a depth of 30 cm. The top layer (layer 1) corresponds

to Berino loamy fine sand and the bottom layer (layer 2) corresponds to Gledale clay loam.

The WRC and HCF follow the Mualem-van Genutchen model. The soil-specific parameters

are extracted from Hills et al. (1989) and are listed in Table 7. This benchmark problem

also ignores the sink term.

As pointed out by Berardi et al. (2018), the dry condition is the most challenging physical

case to model from a numerical point of view. The presence of discontinuous interface

across the two soil layers presents another complication to this problem. We simulate the

problem for up to 7.5 minutes. For neural network training, we generate a total of 30,500

reference solutions using conventional FVM solver (which implements the static fixed-point

iteration scheme of Equation (2.1.5) with an optimal τ = 0.04 identified by a trial-and-error

procedure).

Figure 8 illustrates the soil moisture profile at three different times obtained using our

MP-FVM algorithm, conventional FVM algorithm, as well as the Transversal Method of

Lines (TMOL) solver Berardi et al. (2018) (which is considered the current state-of-the-

art algorithm for this problem). All three approaches adopt the same discretized temporal
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Soil θr θs α n Ks

Berino loamy fine sand 0.029 0.366 0.028 2.239 541.0

Gledale clay loam 0.106 0.469 0.010 1.395 13.10

Table 7: Soil-specific parameters and constants used in the layered soil problem of Hills et al.

(1989).

Figure 8: Comparison of soil moisture content profile obtained different methods with ∆z = 1

cm under (left) MP-FVM, FVM and TMOL at t = T = 3 sec and t = T = 2.5 min and

(right) MP-FVM, FVM and TMOL at t = T = 7.5 min. Note that TMOL by Berardi et al.

(2018) is not an iterative method. FVM and MP-FVM are implemented for 500 iterations

at every time step.

(∆t = 1 second) and spatial steps (∆z = 1 cm). We set REs = 1 × 10−5 as the common

stopping criterion. From Figure 8, we observe that our MP-FVM algorithm is capable of

successfully simulating this challenging problem with discontinuities in soil properties at the

interface. The soil moisture solutions obtained by our MP-FVM algorithm are also consistent

with existing solvers. In fact, compared to the FVM solver, the solutions produced by our

MP-FVM algorithm are closer to the state-of-the-art TMOL solutions.
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2.3.3 A 2-D Benchmark Problem

In the second example, we study the 2-D Richards equation for an infiltration process in a

1m× 1m loam soil field Gasiorowski & Kolerski (2020). The spatial steps in both horizontal

(∆x) and vertical (∆z) directions are set to be 0.02 m, and the time step used for this

comparison study is ∆t = 10 seconds. The Mualem-van Genuchten model (see Table 1) was

used in this case study. The soil-specific parameters, given by Carsel & Parrish (1988), are

listed in Table 8. This problem also ignores the sink term.

Property Symbol Value Units

Saturated hydraulic conductivity Ks 2.89× 10−6 m/s

Saturated water content θs 0.43 –

Residual water content θr 0.078 –

van Genuchten Constant α 3.6 m−1

van Genuchten Constant n 1.56 –

Total time T 1.26× 104 s

Table 8: Soil-specific parameters and constants used in 2-D case study.

The initial and boundary conditions of this case study are given by:

Initial condition: ψ(x, z, t = 0 s) =


0m, x ∈ [0.46, 0.54]m, z = 0m,

−10m, otherwise.

Boundary condition: ψ(x ∈ [0.46, 0.54]m, z = 0, t) = 0m, no slip conditions for other boundaries.

Note that the initial and boundary conditions are symmetric along x = 0.5m. We first

obtain 9 sets of original reference solutions (ψ, µ), where each ψ or µ is a 51 × 51 array.

Here, ψ solutions are obtained from the conventional 2-D FVM solver (which implements

the static fixed-point iteration scheme) that uses a spatial step of 0.02 m under three different
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fixed-point parameters τ = 2, 2.22 and 2.5 and three total iteration counts S = 300, 400

and 500. Then, we apply data augmentation by adding Gaussian noises with σ2 values

ranging from 0.01 to 0.05 to generate a total of 400 reference solutions (which also contain

the original reference solutions). Meanwhile, µ solutions are obtained from the HYDRUS

software Šimůnek et al. (2016). These reference solutions are used to train the encoder-

decoder networks for our MP-FVM algorithm. Each neural network contains 3 hidden layers

and 256 neurons in each layer. ReLU activation function is adopted in each layer, and each

neural network is trained by Adam optimizer for 100 epochs. We set the total iteration

number to be S = 500. The total computational time for our MP-FVM algorithm to run

from scratch with S = 500 is 1473.5 seconds, whereas the FVM solver takes 876.6 seconds

under the same S.

Meanwhile, we also simulate this 2-D problem using HYDRUS software Šimůnek et al.

(2016) and compare the pressure head results at t = T = 1.26× 104 sec with our MP-FVM

algorithm and the FVM solver (the fixed-point parameter identified to be 1 by trial-and-

error). From Figure 9, we can draw two observations. First, the pressure head solution

profiles for both FVM and MP-FVM algorithms appear to be symmetric along x = 0.5 m,

whereas HYDRUS 2D shows a clear asymmetric profile. As pointed out earlier, since the

initial and boundary conditions are symmetric along x = 0.5 m, symmetry in the pressure

head solutions is expected. This suggests that both FVM and MP-FVM based solvers

can capture some degree of underlying physics of the original problem. Second, despite

the assymetric behavior in pressure head profile, the size of isolines for the HYDRUS 2D

simulation result is more similar to our MP-FVM solution than to the FVM solver solution.

This observation is also consistent with the information presented in Figure 11a. In fact, both

observations can also be carried over to the soil moisture profile, as shown in Figures 10 and

11b. Finally, in terms of mass conservation, our MP-FVM algorithm achieves significantly

higher MB value compared to other benchmark solvers (see Table 9).
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Figure 9: Pressure head solution profile obtained from three numerical methods: (left) FVM

solver (fixed-point parameter τ = 1); (middle) HYDRUS 2D software; (right) our MP-FVM

algorithm.

Figure 10: Soil moisture solution profile obtained from three numerical methods: (left) FVM

solver (fixed-point parameter τ = 1); (middle) HYDRUS 2D software; (right) our MP-FVM

algorithm.

2.3.4 A 3-D Benchmark Problem with Analytical Solutions

Lastly, we consider a 3-D water infiltration example, in which the analytical solution exists

Tracy (2006). In this example, V is a 3-D cuboid [0, a] × [0, b] × [0, c]. The hydraulic

conductivity function follows the Gardner’s model Gardner (1958) (see Table 1). The initial

condition is given by:

ψ(x, y, z, t = 0) = hr,

where hr is a constant. The boundary condition is given by:
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Figure 11: Cross-sectional view (x = 0.5m) of: (left) the pressure head profile; (right) soil

moisture profile.

Method MB (∆t = 10 sec)

FVM algorithm 63.12%

HYDRUS 2D simulation 62.45%

MP-FVM algorithm 71.74%71.74%71.74%

Table 9: MB results of three methods at x = 0.5 m.

ψ(x, y, z = c, t) =
1

α
ln
[
exp (αhr) + h0 sin

πx

a
sin

πy

b

]
,

where h0 = 1−exp (αhr). Ignoring the sink term, the pressure head solution for this problem

was derived in Tracy (2006) as:

ψ =
1

α
ln

{
exp (αhr) + h0 sin

πx

a
sin

πy

b
exp

(
α(c− z)

2

)[sinh βz
sinh βc

+
2

zd

∞∑
k=1

(−1)kλk
γ

sin (λkz) exp (−rt)
]}
,

(2.3.3)

where d = α(θs−θr)
Ks

, λk =
kπ
c
, γ =

λ2k+β
2

c
and β =

√
α2

4
+ (π

a
)2 + (π

b
)2.

The infinite series in Equation (2.3.4) is convergent by the alternating series test, and

we consider the first 1, 000 terms of this series. Note from Equation (2.3.4) that the ana-

51



lytical solution depends only on the saturated (θs) and residual soil moisture content (θs).

The Mualem-van Genuchten correlation Mualem (1976); Van Genuchten (1980) tabulated

in Table 1 was used for the water retention curve θ(ψ). The constants and parameters used

in this case study are listed in Table 10.

Property Symbol Value Units

Saturated hydraulic conductivity Ks 1.1 m/s

Saturated soil moisture θs 0.5 –

Residual soil moisture θr 0 –

Parameter in Gardner’s model α 0.1 m−1

Parameter in intial and boundary conditions hr −15.24 m

Length of V a 2 m

Width of V b 2 m

Depth of V c 2 m

Total time T 86,400 sec

Table 10: Soil-specific parameters and constants used in the 3-D case study.

Our goal is to compare the accuracy of our MP-FVM algorithm with FVM solvers using

this analytical solution as the benchmark. We use our own in-house 3-D FVM solver, which

implements the static fixed-point iteration scheme of the FVM-discretized 3-D Richards

equation, to obtain 1, 734 original reference solutions using a coarse grid of ∆x = ∆y =

∆z = 0.4 m under two fixed-point parameters τ = 1 and 2 and five total iteration counts

S = 100, 200, . . . , 500, while excluding any NaN values. Then, data augmentation is applied

by introducing Gaussian noise, resulting in a total of 8, 820 data points (which include the

original reference solutions) for neural network training. For both FVM and MP-FVM

algorithms, we set the tolerance to 1×10−9, which can be achieved in less than 500 iterations

for each time step.
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Figure 12: Pressure head solution at z = 0.5 m of different methods: (A) analytical solution,

(B) MP-FVM algorithm, (C) the relative difference between analytical and MP-FVM solu-

tions, (D) conventional FVM solver (which implements static fixed-point iteration scheme

with an optimal τ = 2) and (E) the relative difference between analytical solution and FVM

solution.

We examine and compare the pressure head solutions at z = 0.5 and 1 m, which are

shown in Figure 12 and 13, respectively. We quantify the relative difference between the

numerical and analytical solutions by
ψanalytical−ψnumerical

ψanalytical
. From the relative difference heat

map of Figure 12c,e and 13c,e, we observe that, first, the magnitude of relative difference

of our MP-FVM algorithm is significantly lower than that of the conventional FVM solver.

Second, the largest relative difference of our MP-FVM pressure head solution occurs around

the four corners of the x-y domain, whereas the largest relative difference of FVM solution

occurs in the center of the x-y domain. Furthermore, in each cell, the relative difference of

FVM based pressure head solution is always non-positive, whereas that of MP-FVM based

solution can be positive or negative.
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Figure 13: Pressure head solution at z = 1.0 m of different methods: (A) analytical solution,

(B) MP-FVM algorithm, (C) the relative difference between analytical and MP-FVM solu-

tions, (D) conventional FVM solver (which implements static fixed-point iteration scheme

with an optimal τ = 2) and (E) the relative difference between analytical solution and FVM

solution.

Here, we provide some justifications for these observations. First, for conventional FVM

solver that embeds the static fixed-point iteration scheme, we observe from Equations (2.1.5)

that:

ψanalytical − ψnumerical ∝

{∑
j∈Ni

[
K(ψ)∇(ψ + z)

]m+1,s

ωi,j
· nωi,j

Aωi,j
− ∂tθm+1

i vol(Vi)

}
,

for any s, discretized cell Vi, and discretized time step m. Since the hydraulic conductivity

function is positive and symmetric along x = 1 m and y = 1 m, and ∇ψ
∣∣
ω+:=[0,1]×[0,1]×z =

−∇ψ
∣∣
ω−:=[1,2]×[1,2]×z, we have

∑
j∈Ni

[
K(θ(ψ))∇(ψ + z)

]m+1,s

ωi,j
· nωi,j

Aωi,j
> 0. Meanwhile,

∂tθ
m+1
i (ψ)vol(Vi) is typically small due to the slow dynamics of water infiltration in soil

and the fact that vol(Vi) is small. Thus, we have ψanalytical − ψnumerical > 0 for the FVM

solution, which explains why the relative difference is non-positive. On the other hand, for
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our MP-FVM algorithm, the use of neural networks to approximate f and f−1 complicates

the behavior (including the sign) of the relative difference.

Regarding the distribution of the magnitude of relative difference in the FVM solver, since

hydraulic conductivity function is an increasing function of ψ, and ψ is at its maximum at

the center of the x–y plain, it is expected that
∑

j∈Ni

[
K(ψ)∇(ψ+ z)

]m+1,s

ωi,j
·nωi,j

Aωi,j
(hence

the relative difference) is maximized at and around the center of the x-y plane. However,

for MP-FVM based pressure head solution, we suspect that the higher relative difference at

the four corners may be attributed to the slight decrease in accuracy of neural networks in

approximating f and f−1 near the domain boundaries.

Finally, we evaluate the Mean Absolute Error (MAE) by averaging the absolute errors

between numerical and analytical pressure head solutions across all cells on two vertical

planes, z = 0.5 m and z = 1 m. For z = 0.5 m, MAEMP-FVM and MAEFVM are calculated

to be 0.0146 and 0.3444, respectively. For z = 1 m, MAEMP-FVM and MAEFVM are 0.0375

and 0.5653, respectively. This indicates that the MAE of the FVM solutions is typically 1

to 2 orders of magnitude higher than the MP-FVM solutions, highlighting the accuracy of

our MP-FVM algorithm.

2.4 A Realistic Case Study

Finally, we consider a real-world case study adopted from Orouskhani et al. (2023), where

infiltration, irrigation, and root water extraction take place in circular agricultural field,

equipped with a center-pivot irrigation system with a radius of 50 m, located in Lethbridge,

Alberta. Soil moisture sensors are inserted at a depth of 25 cm across 20 different locations

in this field to collect soil moisture data every 30 min from June 19 to August 13, 2019.

To validate our MP-FVM algorithm in solving real-world 3-D applications, we select one of

the 20 locations where the Mualem-van Genuchten WRC and HCF model parameters are

identified and given in Orouskhani et al. (2023). We consider a cylindrical control volume

V with a radius of 0.1 m and a depth of 25 cm. We discretize V into 6, 40 and 22 nodes in
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the radial, azimuthal, and axial directions, respectively. The time step size ∆t is determined

using the heuristic formula. Thus, we reformulate Equation (2.2.3) in cylindrical coordinate

system as:

µm+1,s+1
i = µm+1,s

i + τm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

êj · nωi,j

µm+1,s
j − µm+1,s

i

dist(Vj, Vi)
Aωi,j

+ f−1(J),

where êj = (1, 1
r2j
, 1)T and

J =τm+1,s
i

∑
j∈Ni

Km+1,s
ωi,j

êj · nωi,j

zj − zi
dist(Vj, Vi)

Aωi,j
− τm+1,s

i

θm+1,s
i − θmi

∆t
vol(Vi)

− τm+1,s
i S(ψm+1,s

i )vol(Vi).

(2.4.1)

Here, the sink term in S follows the Feddes model Feddes & Zaradny (1978):

S = σ(ψ)Smax, (2.4.2)

where Smax is the maximum possible root extraction rate and σ denotes a dimensionless

water stress reduction factor (see Agyeman et al. (2020) for the detailed formulation).

The boundary conditions are given by:

∂ψ(r, ω, z)

∂r
= 0 at r = 0m,

∂ψ(r, ω, z)

∂r
= 0 at r = 0.1m,

∂ψ(r, ω, z)

∂z
= 0 at z = 0 cm,

∂ψ(r, ω, z)

∂z
= −1− uirr

K(ψ)
at z = 25 cm,

ψ(r, ω = 0, z) = ψ(r, ω = 2π, z),

where uirr is the irrigation rate (in m/s). The initial condition is simply:

ψ(x, y, z, t = 0) = hr,

where hr is the starting pressure head recording.

Note that the boundary conditions are time dependent due to uirr. This poses a poten-

tial computational challenge, as the neural networks typically need to be retrained whenever
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initial and/or boundary conditions change Mattey & Ghosh (2022); Brecht et al. (2023). To

overcome this practical challenge, we adopt a new approach of training the two neural net-

works with 3,000 epochs based on the boundary conditions for June 19, 2019 (no irrigation)

when data collection began. Then, the trained weights within these two neural networks

serve as the starting point for retraining when a new set of boundary conditions is adopted.

This way, only 500 epochs are sufficient to retrain the neural networks. For each set of

boundary conditions, we obtain the training set containing 84, 480 reference solutions. In

addition, the dataset provided by Orouskhani et al. (2023), after performing data augmen-

tation by introducing Gaussian noises, is also included in our training dataset. Each neural

netowrk, which has 5 hidden layers with 256 neurons in each layer, is trained using SGD

optimizer with a learning rate of 0.001. We set the stopping criterion to be 1× 10−9, which

can be achieved well within 500 iterations.

For this problem, we simulate the pressure head from 1:00 am on June 19, 2019 to 5:00

pm on July 28, 2019. As mentioned in Orouskhani et al. (2023), there are two irrigation

instances between this time frame, one is on July 4 (the 15th day, 1.81 mm) and the other

is on July 18 (the 30th day, 1.58 mm). Figure 14 shows the pressure head solution profile

obtained by our MP-FVM algorithms compared to the experimental measurements provided

by Orouskhani et al. (2023) over the course of 35 days. We observe that, most of the time,

the MP-FVM solutions match with the experimental measurements very well. The only

major mismatch between experimental measurements and MP-FVM solutions occurs on the

30th day, which corresponds to the time when the irrigation takes place. We believe that

the mismatch is due to our simplifying assumption regarding the irrigation schedule. Due to

the limited information we have on the exact irrigation schedule and intensity, we have to

assume that the irrigation instances occurred throughout the day. Thus, we simply divide

the irrigation amount by 86, 400 seconds to obtain uirr. However, in reality, the irrigation

could end in less than 24 hours. With more accurate uirr model, our MP-FVM algorithm

is expected to produce highly accurate solutions that match more closely with experimental
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Figure 14: Comparison of pressure head profile at z = 25 cm in a selected 0.1-m radius

region (averaged for all 6× 40 = 240 cells at z = 25 cm) in the field. Note that the standard

FVM solver becomes highly inaccurate when the boundary condition changes (15th day, 30th

day, etc.). The flattening of true peaks of pressure head solutions represents a nonphysical

smoothing of the true solution Miller et al. (1998), which we suspect to come from the

numerical dispersion and inherent discrete maximum principle (DMP)-type peak clipping

behavior observed in standard FVM schemes Njifenjou (2025).

measurements at all times. This makes our MP-FVM algorithm an accurate and scalable

numerical framework to solve Richards equation over a long period of time.
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CHAPTER III

ADAPTIVE FOURIER DECOMPOSITION-GUIDED NEURAL

OPERATORS

3.1 Problem Statement

We consider a PDE defined on a spatial domain Ω ⊂ Rd and a time interval (0, T ]:

Lα[u(x, t)] = f(x, t), ∀(x, t) ∈ Ω× (0, T ], (3.1.1)

where L denotes the differential operator, f(x, t) is the source/sink term, and the parameter

function α ∈ A specifies the physical parameters and the initial and boundary conditions.

Our goal is to learn a neural operator G : A → F(D × [0, T ]), which maps the parameter

function α from its parameter space A to the corresponding solution u(x, t) ∈ F . In this

work, we focus on two types of tasks: (i) the static task, which solves a PDE for one set

of physical parameters α and a fixed final time T (i.e., u(x, T )); and (ii) the autoregressive

task, which forecasts the PDE solution at time step t + 1 (i.e., u(x, t + 1)) based on the

solution at the previous time step t (i.e., u(x, t)).

3.2 Related Work

Classic Fourier-based methods, such as Fourier transform approaches Negero (2014),

Fourier series expansions Asmar (2016), and Fourier spectral methods Alali & Albin (2020),

have been extensively used to solve PDEs numerically. Classic Fourier-based methods offer

accurate and efficient representations of smooth, periodic functions by transforming differ-

ential operators into simple algebraic operations in the frequency domain. However, the use
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of global basis functions produces oscillations when approximating functions with disconti-

nuities or sharp transitions Gottlieb & Shu (1997). Furthermore, the fixed basis structure in

these methods lacks adaptability to signals with time-localized, transient, or nonperiodic fea-

tures. In addition, these methods are typically defined on simple, regular domains, making

them difficult to apply directly to manifolds.

Operator learning aims to directly learn the mapping between infinite-dimensional

function spaces (e.g., from input functions to solutions) to enable fast, mesh-independent

approximation of PDE solutions across various input conditions, including source and/or

sink term, physical parameters, and initial and boundary conditions. Among existing oper-

ator learning-based PDE solvers, two notable ones backed by the approximation theory are

DeepONet Lu et al. (2019, 2021), which is inspired by the universal approximation theorem

for nonlinear operators, and the Fourier Neural Operator (FNO) Li et al. (2020b, 2023b),

which performs convolution in the frequency domain to capture global spatial dependencies

efficiently. Both operator learning paradigms have led to several new variants. Some of

the recently developed network architectures He et al. (2023); Goswami et al. (2022); He

et al. (2024); Li et al. (2023a) built upon DeepONet provide enhancements such as physics-

informed structure, parameterized geometry and phase-field modeling. Some of the new

variants of FNO include Factorized FNO (F-FNO) Tran et al. (2021), Decomposed FNO (D-

FNO) Li & Ye (2025), Spherical FNO Bonev et al. (2023), Domain Agnostic FNO (DAFNO)

Liu et al. (2023), Wavelet Neural Operator (WNO) Tripura & Chakraborty (2023), Multi-

wavelet Neural Operator (MWT) Gupta et al. (2021), Coupled Multiwavelet Neural Operator

(CMWNO) Xiao et al. (2025), and Adaptive Fourier Neural Operator (AFNO) Guibas et al.

(2021).

Physics-informed representation learning and variational autoencoder (VAE).

Another avenue for solving PDEs is to directly incorporate physical knowledge and con-

straints derived from the PDE into a neural architecture. One of the popular frameworks
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is the Physics-Informed Neural Network (PINN) Raissi et al. (2019, 2017), where the PDE

itself is embedded in the loss function as a regularization term. Another approach is to

introduce variational autoencoders (VAEs) Tait & Damoulas (2020); Kingma et al. (2013) in

a physics-informed architecture. This provides a structured latent space and a probabilistic

framework for integrating physics, leading to more stable and generalizable representation

learning. Several physics-informed VAE models have recently been proposed, including Glyn-

Davies et al. (2024); Zhong & Meidani (2023); Takeishi & Kalousis (2021); Lu et al. (2020a).

Specifically, Lu et al. (2020a) used a dynamics encoder and a propagating decoder to extract

interpretable physical parameters from PDEs. Later, Takeishi & Kalousis (2021) proposed

a physics-informed VAE model by introducing physics-based models to augment latent vari-

ables, encoder, and decoder. However, these methods lack rigorous theoretical justifications

for the design of their neural architectures that ensure convergence and performance guar-

antees.

3.3 Preliminaries to Adaptive Fourier Decomposition (AFD)

AFD is a novel signal decomposition technique that leverages the Takenaka-Malmquist sys-

tem and adaptive orthogonal bases Qian (2010); Qian et al. (2012). It is established as a new

approximation theorem in a reproducing kernel Hilbert space (RKHS) sparsely in a given

domain Ω as s =
∑∞

i=1⟨s,Bi⟩Bi for the chosen orthonormal bases Bi Saitoh et al. (2016).

An RKHS is a Hilbert space of functions where evaluation at any point is continuous with

respect to the inner product ⟨·, ·⟩, and each point on the domain corresponds to a unique

kernel function. For AFD in RKHS, the sparse bases {Bi}i are made orthonormal to each

other by applying Gram-Schmidt orthogonalization to the normalized reproducing kernels

associated with a set of adaptively selected “poles” {ai}i, which are complex numbers used

to parameterize the sparse bases. Specifically, to decompose signals in a Hardy space (i.e.,

a Hilbert space consisting of holomorphic functions defined on the unit disk), which can be

further relaxed to an RKHS Song & Sun (2022), the orthonormal basis functions Bi can be
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derived as:

Bi(z) =

√
1− |ai|2
1− aiz

i−1∏
j=1

z − aj
1− ajz

, ai ∈ D, (3.3.1)

where D = {z ∈ C : |z| < 1}. To adaptively select the sequence of poles such that conver-

gence of AFD approximation is ensured, one shall follow the so-called “maximal selection

principle”, such that the resulting |⟨s,Bi⟩| is as large as possible. That is, to select the

next pole ai given i− 1 already selected poles, a1, . . . , ai−1 (hence bases B1, . . . ,Bi−1), the

corresponding orthonormal basis Bi needs to satisfy:

|⟨s,Bi⟩| ≥ ρi sup {⟨s,B′
i⟩|bi ∈ Ω\{a1, . . . , ai−1}} , (3.3.2)

where 0 < ρ0 ≤ ρi < 1, B′
1 =

kb1
∥kb1∥H(Ω)

and B′
i =

kbi−
∑i−1

j=1⟨kbi ,Bj⟩Bj

||kbi−
∑i−1

j=1⟨kbi ,Bj⟩Bj ||H(Ω)

. Here, kbi is

the reproducing kernel (e.g., Gaussian or Bergman kernel) at bi. In classic AFD theory,

the algorithmic procedure of pole selection, which is discussed in Song & Sun (2022), is

computationally expensive. Therefore, integrating the classical AFD with neural operators

is a promising approach to enable fast and accurate solution of PDEs through the use of

adaptive orthonormal basis functions.

3.4 AFDONet Architecture

Guided by the AFD theory, we design AFDONet to approximate PDE solution spaces on

any smooth manifold. The AFDONet architecture shown in Figure 15 consists of an encoder,

a latent-to-RKHS network, and an AFD-type dynamic convolutional kernel network (CKN).

These components work synergistically to enhance the performance of the AFDONet solver.

After the encoder, AFDONet identifies the closest RKHS where the latent variables reside

using a latent-to-RKHS network. Subsequently, AFDONet reconstructs the PDE solutions

by replicating the AFD operation and adaptively selecting the poles using a specially designed

decoder network. For static tasks, the training dataset is denoted as {u(x, T )}{α} for different

sets of physical parameters α, while for autoregressive tasks, the training dataset is denoted

as {u(x, t), u(x, t+ 1)}Tt=0.
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Figure 15: Our proposed AFDONet framework, which adopts VAE as the backbone, intro-

duces a latent-to-RKHS network and a dynamic CKN decoder to reproduce the AFD setting

and operation.

The use of VAE as architecture backbone is motivated from both methodological

and experimental perspectives. From a methodological perspective, the use of VAE archi-

tecture as the backbone for our AFDONet is motivated by several reasons. First, many

PDE solution fields lie on low-dimensional manifolds in high-dimensional function space.

VAE-based neural operators can learn a probabilistic latent representation of these mani-

folds, mapping high-dimensional inputs to a compact latent space while capturing variation

in solution behavior. This reduces the complexity of learning and enables generalization

across parametric inputs, as shown in many prior successes in VAE-based neural operators

Zhong & Meidani (2023); Rafiq et al. (2025); Lu et al. (2020a); Takeishi & Kalousis (2021).

Second, VAE is inherently connected to AFD theory in several ways. For instance, VAEs

benefit from frequency transformations Li et al. (2024), which are the foundation of bases

used in AFD. Also, the maximal selection principle of basis functions in AFD aligns well

with the variational inference of VAE Chen et al. (2020a).

From an experimental perspective, we will show in Section 3.10 that the use of VAE and

its holistic integration with other components in the AFDONet architecture help significantly

improve the accuracy of PDE solutions on manifolds.
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The encoder network maps the inputs α or u(x, t) to a latent space in the complex

domain C2r using a standard probabilistic encoder network based on the VAE framework.

For the static task, this means:

(
µ(α), log σ2(α)

)
= A2

(
Φ
(
A1α

))
, z = µ(α) + σ(α)⊙ ε, ε ∼ CN (0, Ir), (3.4.1)

where A1 ∈ CWe×d and A2 ∈ C2r×We are the weight matrices (where We = O(r)), Φ(·) is the

activation function, the latent mean is µ(α) ∈ Cr, the log-variance is log σ2(α) ∈ Cr, and z

is the latent parameter vector.

For the autoregressive task, the input ut = u(x, t) lies on the Hilbert space H(M) of

manifold M. Therefore, ut = u(x, t) must be projected from H(M) into an appropriate

complex domain. Let {ϕk}∞k=0 be an orthonormal Fourier basis. Then, we define a linear

projection:

ΠKut :=
(
⟨ut, ϕ0⟩, . . . , ⟨ut, ϕK−1⟩

)
∈ CK , (3.4.2)

which retains the first K modes of the field. This leads to the following encoder structure:

(
µt, log σ

2
t

)
= A2

(
Φ
(
A1ΠKut

))
, zt = µt + σt ⊙ εt, εt ∼ CN (0, Ir), (3.4.3)

where A1 ∈ CWe×K and A2 ∈ C2r×We are the weight matrices (where We = O(r)), Φ(·) is

the activation function. In both tasks, the encoder network has a depth Le = 2 and width

We = O(r).

The latent-to-RKHS network maps the latent parameters to convolutional kernels

while constraining the corresponding functional space to be an RKHS, where the AFD oper-

ations are defined. This extends the latent-to-kernel network proposed by Lu et al. (2020a)

by explicitly accounting for the fact that the kernels are constructed in a Hilbert space. Our

latent-to-RKHS network consists of multi-layer fully-connected feedforward (MLP) networks

and feature maps. The MLP networks will first take the latent parameter vector z obtained

from the encoder network to generate ũ(x, ·) on H(M). Then, feature maps FM(·) will map

ũ(x, ·) to its nearest RKHS H(M) via orthogonal projection. This way, the latent-to-RKHS
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network learns the feature maps from H(M) to its nearest RKHS H(M), in which the

reproducing kernel ka can be obtained by:

ka(ξ) =
N ′∑
i=1

νi(a) e
2πjϕ·(ξ−yi), ∀a, ξ ∈M (3.4.4)

where j2 = −1 and ϕ is the fundamental frequency. Here, weights νi ∈ C and parameters

yi ∈ M are learnable from the latent-to-RKHS network. Essentially, a feature map applies

a fast Fourier transform (FFT) to its input, multiplies the top N ′ low-frequency components

by learnable complex weights while discarding the high-frequency components, and then

performs an inverse FFT. Note that this is different from Fourier layers in FNO because

we only perform one-sided (positive-frequency) operations, whereas FNO performs both

positive- and negative-frequency operations. This is because, in AFD, negative frequencies

are redundant, as they can be determined by the positive ones via complex conjugation.

We also point out that, since Fourier basis kernel e2πjϕ·(ξ−yi(a)) lies in H(M), which is

closed under finite linear combinations, the reproducing kernel ka(ξ) is guaranteed to lie in

H(M) as well. In addition, although Fourier basis kernels are orthogonal to each other, the

reproducing kernels are not. Thus, orthogonalization is still needed.

Orthogonal reproducing kernels. Like AFD, in AFDONet, a set of reproducing kernels

in Equation 3.4.4, each corresponding to one of the N distinct poles a1, . . . , aN ∈ M, need

to be first orthogonalized via Gram-Schmidt orthogonalization:

B1 =
ka1(ξ)

∥ka1(ξ)∥H(M)

; Bi =
kai(ξ)−

∑i−1
j=1⟨kai(ξ),Bj⟩Bj∥∥∥kai(ξ)−∑i−1

j=1⟨kai(ξ),Bj⟩Bj

∥∥∥
H(M)

for i = 2, . . . , N.

(3.4.5)

To adaptively select the poles, we develop a maximum selection principle that is analogous

to Equation 3.3.2 in AFD theory as:

|FM(ũ(x, ·)) ⋆Bi| ≥ ρi sup {|FM(ũ(x, ·)) ⋆B′
i| : bi ∈M\{a1, . . . , ai−1}} , (3.4.6)

where B′
1 =

kb1 (ξ)

∥kb1 (ξ)∥H(M)
, B′

i =
kbi (ξ)−

∑i−1
j=1⟨kbi (ξ),Bj⟩Bj

∥kbi (ξ)−
∑i−1

j=1⟨kbi (ξ),Bj⟩Bj∥H(M)

for i = 2, . . . , N , and kbi is the

reproducing kernel at bi.
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The AFD-type decoder network reconstructs PDE solutions from FM(ũ(x, ·)) once

the RKHS and its reproducing kernel are established. The decoder adopts a dynamic convo-

lutional kernel network (CKN) Mairal et al. (2014); Chen et al. (2020b), which (i) performs

cross-correlation between FM(ũ(x, ·)) and the orthogonal reproducing kernels Bi, (ii) assigns

a multiplier 0 < ρ0 ≤ ρi < 1 to the output of each convolutional layer, and (iii) incorpo-

rates skip connections for each convolutional layer. With this, the output of the dynamic

CKN with N convolutional layers (each pole is associated with a layer) replicates the AFD

operation and reconstructs the PDE solution as:

ûN,θ(x, ·) =
N∑
i=1

⟨FM(ũ(x, ·)) ,Bi+τi⟩Bi+τi =
N∑
i=1

(FM (ũ(x, ·)) ⋆Bi)Bi+τi , (3.4.7)

where ⋆ is the cross-correlation defined as f ⋆ g(τi) =
∫
M f̄(z)g(z + τi)dz and τi can choose

between 0 and N − i for convolutional layer i.

Training. Overall, our AFDONet model is trained end-to-end by minimizing the loss func-

tion:

L(θ) =
∣∣∣∣u(x, ·)− ûN,θ(x, ·)∣∣∣∣2H(M)︸ ︷︷ ︸

reconstruction loss in RKHS

+
∣∣∣∣ũ(x, ·)− FM(ũ(x, ·))

∣∣∣∣2
H(M)︸ ︷︷ ︸

feature map loss

+ ω DKL

(
CN (µ, σ2)

∥∥∥ CN (0, Ir)
)

︸ ︷︷ ︸
latent space regularization

+
k∑
i=0

wi
∣∣∣∣∇iûN,θ(x, ·)−∇iu(x, ·)

∣∣∣∣2
L2(M)︸ ︷︷ ︸

holomorphic training loss

,

(3.4.8)

where ∇iu denotes the i-th covariant derivative defined on manifold M. Notice that here,

we extend the idea of Sobolev training Czarnecki et al. (2017a) to the complex domain and

introduce a holomorphic training loss to enforce consistency with the ground truth solutions

both at the function value level and across all orders of derivatives. This enables AFDONet

to better capture the inherent smoothness and analytic structure of the target function.
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3.5 Properties of AFDONet

The design of AFDONet architecture is fully guided by the AFD theory, making it mathemat-

ically interpretable in several aspects. Here, we list three important properties of AFDONet:

1. Under the loss function of Equation 3.4.8, we can rigorously bound the error of AF-

DONet in Theorem 3.5.1.

2. By extending the work of Caragea et al. (2022), we can rigorously prove the existence

of RKHS H(M) through the construction of feature map FM(·) in the latent-to-RKHS

network in Theorem 3.5.2.

3. To ensure convergence of AFDONet, we leverage the convergence mechanism of AFD

to design a convergent dynamic CKN decoder by regulating the layer width, depth,

and kernel complexity based on the number of samples and the intrinsic smoothness

of the target function.

3.5.1 Main theorems

Theorem 3.5.1 Let P ⊂ Rd be compact and {(pi, ui)}Zi=1 be Z i.i.d. samples with ui =

F (pi) + ξi, ξi ∼ SubGaussian(H(M)), and E[ξi] = 0, where F : P → H(M) is holomorphic,

and H(M) is an RKHS with a kernel km whose eigenvalues decay polynomially with rate k.

Suppose Ld = O(logZ) and Wd = O(Z
1

2(k+1) ) in the decoder network. For the minimizer θ̂

of the loss function L(θ) in Equation 3.4.8, there exists a constant C > 0 such that:

E
[∥∥∥ûN,θ̂ − F∥∥∥2H(M)

]
≤ CZ− 2k+1

2(k+1) (logZ)2.

Theorem 3.5.2 Let H be a Hilbert space on a manifold M. Fix d, n ∈ N, then for

any x̃ ∈ H(M) and any ε > 0, there exist a convolutional kernel K defining an RKHS

H(M) and a complex-valued modReLU neural network FMθ′ with at most C ln(2/ε) layers,

Cη−2d/n ln2(2/ε) weights, and weights bounded by Cε−44d such that

FMθ′(x̃) ∈ H(M) and ∥x̃− FMθ′(x̃)∥H(M) ≤ inf
θ
∥x̃− FMθ(x̃)∥H(M) + ε,
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where C = C(d, n) > 0 depends only on the dimension d and the smoothness parameter n.

Theorem 3.5.3 Let Ld, Wd, and N denote the depth, width, and number of layers of

dynamic CKN decoder network satisfying Equation 3.4.6. For any ε > 0, there exist

Ld = O
(
log 1

ε

)
,Wd = O

(
ε−

1
k+1

)
, N = O

(
log 1

ε

)
and θ ∈ NLd,Wd,N such that

sup
p∈P
∥ûN,θ − F (p)∥H(M) ≤ ε,

where NLd,Wd,N is the class of complex-analytic networks with depth Ld and width Wd.

3.6 Proof of Theorem 3.5.1

We introduce and prove a few lemmas before proving Theorem 3.5.1. We assume that the

neural network fθ is Lipschitz continuous with respect to hyperparameters θ (i.e., ∥fθ −

fθ′∥H ≤ Lf∥θ − θ′∥2).

Lemma 3.6.1 For any 0 < δ < 1, for the class of complex-analytic networks with depth Ld

and width Wd, denoted as NLd,Wd,N , there exists Ċ > 0 such that:

logN (δ,NLd,Wd,N , ∥·∥H) ≤ ĊWdLd log

(
WdLd
δ

)
,

where N (δ,NLd,Wd,N , ∥·∥H) means the δ-covering number of (NLd,Wd,N , ∥·∥H).

Proof. Let us consider the p-dimensional ℓ2-unit ball Bp(1) = {x ∈ Rp : ∥x∥2 ≤ 1}. Results

for covering Bp Wainwright (2019) concludes:

logN (δ,Bp(1), ∥ · ∥2) ≤ p log

(
1 +

2

δ

)
≤ p log

(
3

δ

)
. (3.6.1)

Extending this result to a ℓ2-ball of radius R, Equation 3.6.1 becomes:

logN (δ,Bp(R), ∥ · ∥2) ≤ p log

(
1 +

2R

δ

)
≤ p log

(
3R

δ

)
(3.6.2)

by rescaling δ in the RHS of Equation 3.6.1 with δ/R. Furthermore, by letting p = 2WdLd,

Equation 3.6.2 becomes:

logN (δ,B2WdLd(R), ∥ · ∥2) ≤ 2WdLd log

(
3R

δ

)
. (3.6.3)
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From the Lipschitz property and the fact that the parameter space of NLd,Wd,N can be

controlled by B2WdLd(R), we have:

logN (δ,NLd,Wd,N , ∥ · ∥H) ≤ logN
(
δ

Lf
,B2WdLd(R), ∥ · ∥2

)
≤ 2WdLd log

(
3LfR

δ

)
, (3.6.4)

where Lf is the Lipschitz constant. With R = O(WdLd), Equation 3.6.4 leads to:

logN (δ,NLd,Wd,N , ∥ · ∥H) ≤ ĊWdLd log

(
WdLd
δ

)
, (3.6.5)

which completes the proof.

Lemma 3.6.2 For a > 1 and 0 < r ≤ min(a, e) where e is the base of the natural logarithm,

there exists b > 0 that satisfies the following inequality:

r

√
log
(a
r

)
≤
√
b
√
r log a.

Proof. For the case 1 < r ≤ min(a, e), we may choose b = e. Squaring both sides of the

inequality and rearranging lead to (r − e) log a ≤ r log r. Suppose r = e, the inequality is

automatically satisfied for any a > 1. Suppose r < e, since a ≥ r, we have: (r − e) log a ≤

(r − e) log r. Thus, it suffices to show (r − e) log r ≤ r log r, which is equivalent to showing

e log r ≥ 0. This is automatically satisfied because 0 < log r ≤ 1.

For the case 0 < r ≤ 1, we rearrange the inequality and obtain b ≥ r(log a−log r)
log a

> 0.

Furthermore, r(log a−log r)
log a

reaches its maximum, a
e log a

, at r = a
e
. Thus, suppose a ≤ e, then we

may choose b ≥ a
e log a

and the inequality is satisfied. Suppose a ≥ e, then max r(log a−log r)
log a

= 1

within 0 < r ≤ 1. Thus, we may choose b ≥ 1 and the inequality is satisfied.

Lemma 3.6.3 There exists C̃ > 0 such that:

Eϵ

[
sup
f∈F

∣∣∣∣∣ 1Z
Z∑
i=1

ϵifθ(pi)

∣∣∣∣∣
]
≤ C̃

√
rWdLd log(WdLd)

Z
,

where ϵi are i.i.d. Rademacher variables and F is a function class for a radius 0 < r ≤ e

defined as {f ∈ NLd,Wd,N : ∥f − F∥H ≤ r}.
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Proof. From Dudley’s entropy integral bound Wainwright (2019), we have:

Eϵ

[
sup
f∈F

∣∣∣∣∣ 1Z
Z∑
i=1

ϵif(pi)

∣∣∣∣∣
]
≤ 24√

Z

∫ 2r

ε

√
logN (t,F , ∥ · ∥H)dt. (3.6.6)

Since N (δ,F , ∥ · ∥H) ≤ N (δ,NLd,Wd,N , ∥ · ∥H) and according to Lemma 3.6.1, Equation 3.6.6

becomes:

Eϵ

[
sup
f∈F

∣∣∣∣∣ 1Z
Z∑
i=1

ϵif(pi)

∣∣∣∣∣
]
≤ 24√

Z

∫ 2r

ε

√
logN (t,NLd,Wd,N , ∥ · ∥H) dt

≤ 24√
Z

∫ 2r

ε

√
ĊWdLd log

(
WdLd
t

)
dt.

(3.6.7)

To evaluate the integral on the RHS of Equation 3.6.7, we apply the change of variables

technique by defining u = log
(
WdLd

t

)
(and thus dt = −WdLde

−udu):∫ 2r

ε

√
log

(
WdLd
t

)
dt =

∫ log(
WdLd

ε
)

log(
WdLd

2r
)

√
u ·WdLde

−u du

= WdLd

[
Γ

(
3

2
, log

(
WdLd
2r

))
− Γ

(
3

2
, log

(
WdLd
ε

))]
= 2r

√
log

(
WdLd
2r

)
+O

(
r

log(WdLd

2r
)

)
,

(3.6.8)

where Γ(s, x) =
∫∞
x
ts−1e−tdt is the upper incomplete gamma function.

Substituting Equation 3.6.8 into Equation 3.6.7 and applying Lemma 3.6.2 lead to:

Eϵ

[
sup
f∈F

∣∣∣∣∣ 1Z
Z∑
i=1

ϵif(pi)

∣∣∣∣∣
]
≤ 24 · 2r

√
ĊWdLd log

(
WdLd

2r

)
Z

≤ 24
√
b

√
2rĊWdLd log (WdLd)

Z

≤ C̃

√
rWdLd log (WdLd)

Z
,

(3.6.9)

where C̃ ≥ 24
√
2bĊ.

Lemma 3.6.4 Let θ̂ minimize the loss function L in Equation 3.4.8. With probability at

least 1− e−t for all t ≥ 0,

L(θ̂) ≤ inf
θ
L(θ) + Ĉ

WdLd log(WdLd) + t

Z

holds for some Ĉ.
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Proof. From the symmetrization inequality Boucheron et al. (2012), we have:

E
[
L(θ̂)− L(θ)

]
≤ 2E

[
sup
f∈F

1

Z

Z∑
i=1

ϵif(pi)

]
, (3.6.10)

where ϵi are i.i.d. Rademacher variables.

Let us define the centered process:

Z = sup
f∈F

Z∑
i=1

(f(pi)− E[f(pi)]) (3.6.11)

under the assumptions that there exists Z ′
k such that: (i) Z ′

k ≤ Z − Zk ≤ 1 almost

surely; (ii) Ek[Z ′
k] ≥ 0, where Ek is the expectation taken conditionally to the sigma field

generated by (p1, . . . , pk−1, pk+1, . . . pZ); and (iii) there exists q > 0 such that Z ′
k ≤ q almost

surely. Here, Zk = supf∈F

∑
i̸=k (f(pi)− E[f(pi)]).

Applying Bennett concentration inequality Bousquet (2002) to the process Z leads to:

P
(

Z ≥ E[Z ] +
√
2vt+

t

3

)
≤ e−t, (3.6.12)

where v = (1 + q)E[Z ] + Zσ2 and σ2 ≥ 1
Z

∑Z
k=1 Ek [(Z ′

k)
2].

Combining Equations 3.6.10, 3.6.12 and 3.6.12 with probability at least 1− e−t, we have:

L(θ̂)− L(θ) ≤ 2E

[
sup
f∈F

1

Z

Z∑
i=1

ϵif(pi)

]
+

1

Z

(√
2vt+

t

3

)
. (3.6.13)

Moreover, by putting Eϵ
[
supf∈F

∣∣∣ 1Z ∑Z
i=1 ϵif(pi)

∣∣∣] ≍ r for Lemma 3.6.3 (≍ stands for asymp-

totic equivalence), we obtain:

r ≍ WdLd log(WdLd)

Z
. (3.6.14)

Extending the result of Equation 3.6.10 to Z defined in Equation 3.6.11 leads to:

E[Z ] ≤ 2ZE

[
sup
f∈F

1

Z

Z∑
i=1

ϵif(pi)

]

≤ 2ZC̃

√
rWdLd log(WdLd)

Z
≍ 2C̃WdLd log(WdLd),

(3.6.15)

where the second inequality and last asymptotic equivalence come from Lemma 3.6.3 and

Equation 3.6.14, respectively.
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According to Efron-Stein inequality Boucheron et al. (2012), there exists Z ′
k = Z −Zk,

such that:

σ2 ≤
Z∑
k=1

E
[
(Z − E[Z | pk])2

]
≤ Ek[(Z ′

k)
2], (3.6.16)

where Z | pk excludes pk from Z . Thus, to derive an upper bound on Ek[(Z ′
k)

2], we write:

(Z ′
k)

2 ≤
(
sup
f∈F
|f(pk)− E[f(pk)]|

)2

≤ 2

(
sup
f∈F

f(pk)
2 + E[f(pk)]2

)
≤ 4 sup

f∈F
f(pk)

2,

(3.6.17)

where the second inequality comes from (a − b)2 ≤ 2(a2 + b2) and the last inequality holds

by Jensen’s inequality (E[f(pk)]2 ≤ E[f(pk)2]). Then, for f ∈ F and a bounded function F ,

it follows:

E[f(pk)2] ≤ 2(∥f − F∥2H + ∥F∥2H) ≤ 2(r2 + ∥F∥2H). (3.6.18)

Substituting the result of Equation 3.6.18 into Equation 3.6.17 and combining it with

Equation 3.6.16 give:

σ2 ≤ Dr2 ≍
(
WdLd log(WdLd)

Z

)2

, (3.6.19)

for some D > 0.

Substituting Equations 3.6.19 and 3.6.15 into 3.6.12 gives:

v = (1 + q)E[Z ] + Zσ2 ≤ C ′(1 + q)WdLd log(WdLd) +
(WdLd log(WdLd))

2

Z

≤
(
C ′(1 + q) +

1

Z

)
(WdLd log(WdLd))

2 .

(3.6.20)

Substituting Equations 3.6.20 and 3.6.14 into 3.6.13 gives:

L(θ̂) ≤ L(θ) + 2C̃
WdLd log (WdLd)

Z
+

√
2

[
C ′(1 + q) +

1

Z

]
t
WdLd log(WdLd)

Z
+

t

3Z

≤ L(θ) + Ĉ
WdLd log(WdLd) + t

Z
(3.6.21)

holds for any θ, where Ĉ = max
{
2C̃,

√
2
[
C ′(1 + q) + 1

Z

]
t, 1

3

}
. Thus, we conclude that

L(θ̂) ≤ infθ L(θ) + ĈWdLd log(WdLd)+t
Z

.
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Proof of Theorem 3.5.1

Proof. From Lemma 3.6.4, we know that with probability at least 1− e−t for all t ≥ 0 and

some Ĉ,

L(θ̂) ≤ inf
θ
L(θ) + Ĉ

WdLd log(WdLd) + t

Z
. (3.6.22)

Realizing L(θ) ≍ ∥ûN,θ − F∥2H, then for s0 = infθ L(θ) + ĈWdLd log(WdLD)+t0
Z

, it holds that:

E[L(θ̂)] ≤
∫ ∞

0

P(L(θ̂) ≥ s)ds

=

∫ s0

0

P(L(θ̂) ≥ s)ds+

∫ ∞

s0

P(L(θ̂) ≥ s)ds

≤ s0 +M · e−t0

= s0 +
M

Z
,

(3.6.23)

where t0 = logZ and we assume that L ≤M for t > t0.

Since Ld = O(logZ) and Wd = O(Z
1

2(k+1) ), we have:

WdLd log(WdLd)

Z
≍ Z

1
2(k+1) · logZ · log(Z

1
2(k+1) logZ)

Z

=
Z

1
2(k+1) · logZ ·

(
1

2(k+1)
logZ + log logZ

)
Z

≍ Z
1

2(k+1)
−1 · logZ · logZ

= Z− 2k+1
2(k+1) (logZ)2.

(3.6.24)

Combining Equations 3.6.22, 3.6.23 and 3.6.24 leads to the final result:

E
[∥∥∥ûN,θ̂ − F∥∥∥2H

]
≤ CZ− 2k+1

2(k+1) (logZ)2 +O(Z−1), (3.6.25)

where C > 0 is a constant and the term O(Z−1) vanishes for a large Z.

3.7 Proof of Theorem 3.5.2

Proof. First, we show that H(M) exists by introducing a map Φ : H(M)→ H(M) and the

reproducing kernel is defined as K(x, x′) = ⟨Φ(x),Φ(x′)⟩H(M). Specifically, the map Φ(x)

corresponding to a convolutional kernelK can be represented asAL◦ML◦PL · · · A1◦M1◦P1x
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where L is the depth of the kernel and Al,Ml and Pl are the linear operators related to

pooling, kernel mapping and patch extraction, respectively Bietti (2022). Without loss of

generality, we assume that H(M) ⊂ H(M). Next, we point out that H(M) is convex by

showing that, for any two functions f, g ∈ H(M):

αf + (1− α)g = α⟨f,AL ◦ML ◦ PL · · · A1 ◦M1 ◦ P1x⟩H(M) + (1− α)

⟨g,AL ◦ML ◦ PL · · · A1 ◦M1 ◦ P1x⟩H(M)

= ⟨αf + (1− α)g,AL ◦ML ◦ PL · · · A1 ◦M1 ◦ P1x⟩H(M)

(3.7.1)

for α ∈ [0, 1]. Thus, H(M) is closed due to the closedness of manifoldM and the complete-

ness of Hilbert space H.

Next, from the Hilbert projection theorem, for x̃ ∈ H(M), there exists a unique y ∈

H(M) such that, for any ỹ ∈ H(M), ||x̃− y||H(M) ≤ ||x̃− ỹ||H(M). Let us denote y as Ψ(x̃),

where Ψ is a map from H(M) to H(M). Following the main result of Caragea et al. (2022),

for any ỹ ∈ H(M) and any ε > 0, there exists a complex-valued modReLU neural network

with hyperparameters θ, FMθ, containing no more than C ln(2/ε) layers, Cη−2d/n ln2(2/ε)

weights (all weights bounded by Cε−44d), such that ||ỹ − FMθ(x̃)||H(M) <
ε
2
. In addition,

there also exists another complex-valued modReLU neural network with hyperparameters

θ′, FMθ′ , such that ||Ψ(x̃)− FMθ′(x̃)||H(M) <
ε
2
. Thus, we have:

||x̃− FMθ′(x̃)||H(M) = ||x̃−Ψ(x̃) + Ψ(x̃)− FMθ′(x̃)||H(M)

≤ ||x̃−Ψ(x̃)||H(M) + ||Ψ(x̃)− FMθ′(x̃)||H(M)

≤ ||x̃− ỹ||H(M) +
ε

2

= ||x̃− ỹ + FMθ(x̃)− FMθ(x̃)||H(M) +
ε

2

≤ ||x̃− FMθ(x̃)||H(M) + ||FMθ(x̃)− ỹ||H(M) +
ε

2

≤ ||x̃− FMθ(x̃)||H(M) + ε.

(3.7.2)

This completes the proof.
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3.8 Proof of Theorem 3.5.3

To prove Theorem 3.5.3, we first introduce and/or prove a few lemmas.

Lemma 3.8.1 (Yarotsky (2017)) For any dimension n, smoothness parameter k+1, and

error tolerance ε ∈ (0, 1), there exists a ReLU neural network architecture such that it can

approximate any function f with accuracy ε, i.e., with approximation error at most ε. The

network has depth at most c(ln(1/ε) + 1), and uses at most cε−
d
n (ln(1/ε) + 1) weights and

computation units, where c = c(d, n) is a constant depending only on d and n.

Lemma 3.8.2 Let f ∈ Ck([0, 1]d) orW k+1,∞([0, 1]d), for ε > 0, there exists a ReLU network

fθ with width Wd = O
(
ε−

d
k+1

)
such that ∥f − fθ∥L∞ ≤ ε.

Proof. The result follows from Lemma 3.8.1, which states that for any d ∈ N, n ∈ N, and

ε ∈ (0, 1), there exists a ReLU neural network of depth O(log(1/ε)) and size O(ε− d
n log(1/ε))

that can uniformly approximate any function in the class Fd,n, which includes functions in

W n,∞([0, 1]d) with bounded norm. By setting n = k + 1, it holds that f ∈ W k+1,∞([0, 1]d),

with the network width scaling as O(ε−
d

k+1 ), up to a logarithmic factor. Note that any

f ∈ Ck([0, 1]d) with bounded derivatives up to order k also belongs to W k,∞([0, 1]d) and can

be embedded into W k+1,∞. Thus, Lemma 3.8.2 holds for any f ∈ Ck([0, 1]d).

Remark 3.8.1 The result of Lemma 3.8.2 is nearly optimal. (Yarotsky, 2017, Theorem 5)

shows that there exist functions f ∈ W n,∞([0, 1]d) for which the complexity N(f, ε) is not

o(ε−
d
9n ) as ε → 0. This implies that no network architecture can uniformly approximate all

such functions with significantly better scaling in ε.

Lemma 3.8.3 Let H be a separable Hilbert space and f ∈ H belong to a class of functions

with k-th order smoothness. For ε > 0, there exists a ReLU network fθ with width Wd =

O
(
ε−

d
k+1

)
such that ∥f − fθ∥H ≤ ε.

Proof. Assume f ∈ dom(A−k) with respect to its operator A with input dimension d. Let

{ej}∞j=1 be an orthonormal basis of H with associated eigenvalues λj ≍ j2α (assuming that
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α ≥ k+1
2dk

) of A. Then, we have ∥Akf∥2H =
∑∞

j=1 λ
2k
j |⟨f, ej⟩|2 < ∞. We can define the

eigenexpansion of f as PNf =
∑N

j=1⟨f, ej⟩ej and ∥f − PNf∥H ≤ CN−(k+ 1
2
)α ≤ ε/2 holds

for N = ⌈ε−
1

2αk+α ⌉ ≍ ε−
1

2kα . In the finite-dimensional subspace span{e1, ..., eN} ∼= RN ,

each coordinate function fj = ⟨f, ej⟩ inherits Ck regularity and can be approximated by

a ReLU network f̃j with |f̃j(x) − fj(x)| ≤ ε
2
√
N

using width O(ε−
d

k+1 ) per coordinate from

Lemma 3.8.2. The RELU network fθ =
∑N

j=1 f̃jej then satisfies ∥f − fθ∥H ≤ ∥f −PNf∥H +√∑
j ∥f̃j − fj∥2L∞ ≤ ε. The total width Wd = O(N · ε−

d
k+1 ) = O(ε−

d
k+1 )

Proof of Theorem 3.5.3

Proof. First, we show that, for a sufficiently large N and any ε > 0,

∥ûN,θ − FM(ũ) ∥H(M) ≤
ε

4
(3.8.1)

holds. From Equation 3.4.7, we have ûN,θ =
∑N

i=1⟨FM(ũ) ,Bi+τi⟩Bi+τi . Here, we prove by

contradiction. Suppose ∥ûN,θ − FM(ũ) ∥H(M) >
ε
4
, then there exists an open ball B and

C > 0 such that:∥∥∥∥∥FM(ũ(x, ·))−
N∑
i=1

⟨FM(ũ(x, ·)) ,Bi+τi⟩Bi+τi

∥∥∥∥∥
H(M)

= Cmax
m,ξ

(∥km(ξ)∥) >
ε

4
, (3.8.2)

for (x, ·) ∈ B ⊂ M. Furthermore, since the term
∑N

i=1 ∥⟨FM(ũ(x, ·)) ,Bi+τi⟩∥2H(M) < ∞ is

finite, there exists N0 such that for any n ≥ N0, we have:

N∑
i=n

∥⟨FM(ũ(x, ·)) ,Bi+τi⟩∥
2
H(M) <

(
ρ0C

2

)2

. (3.8.3)

Next, we examine the term ∥⟨un, kb
∥kb∥
⟩∥H(M), where (x, b) ∈ B and

un = FM(ũ(x, ·))−
n−1∑
i=1

⟨FM(ũ(x, ·)) ,Bi+τi⟩Bi+τi

= FM(ũ(x, ·))−
N∑
i=1

⟨FM(ũ(x, ·)) ,Bi+τi⟩Bi+τi +
N∑
i=n

⟨FM(ũ(x, ·)) ,Bi+τi⟩Bi+τi .

(3.8.4)
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Therefore, we have:∥∥∥∥⟨un, kb
∥kb∥
⟩
∥∥∥∥
H(M)

=

∥∥∥∥∥
〈
FM(ũ)−

N∑
i=1

⟨FM(ũ) ,Bi+τi⟩Bi+τi +
N∑
i=n

⟨FM(ũ) ,Bi+τi⟩Bi+τi ,
kb
∥kb∥

〉∥∥∥∥∥
H(M)

≥

∥∥∥∥∥
〈
FM(ũ)−

N∑
i=1

⟨FM(ũ) ,Bi+τi⟩Bi+τi ,
kb
∥kb∥

〉∥∥∥∥∥
H(M)

−

∥∥∥∥∥
〈

N∑
i=n

⟨FM(ũ) ,Bi+τi⟩Bi+τi ,
kb
∥kb∥

〉∥∥∥∥∥
H(M)

≥

∥∥∥∥∥∥
(
FM(ũ)−

∑N
i=1⟨FM(ũ) ,Bi+τi⟩Bi+τi

)∣∣∣
b

∥kb∥

∥∥∥∥∥∥
H(M)

−

√√√√ N∑
i=n

∥⟨FM(ũ(x, ·)) ,Bi+τi⟩∥
2
H(M)

≥ C − C

2
=
C

2
,

(3.8.5)

where the third inequality holds due to the reproducing property of RKHS: ⟨f, km⟩ = f(m).

Meanwhile, there exists γ > 0 satisfying Equation 3.4.6 such that:∥∥∥∥⟨un, kb
∥kb∥
⟩
∥∥∥∥
H(M)

=

∥∥⟨un, kb −∑n−1
i=1 ⟨kb,Bi+τi⟩Bi+τi⟩

∥∥
H(M)

∥kb∥

≤

∥∥⟨un, kb −∑n−1
i=1 ⟨kb,Bi+τi⟩Bi+τi⟩

∥∥
H(M)∥∥kb −∑n−1

i=1 ⟨kb,Bi+τi⟩Bi+τi

∥∥
H(M)

=
∥∥〈un,Bb

n+τn

〉∥∥
H(M)

≤
∥∥∥∥ 1

ρ0
⟨un,Bn+τn⟩ −

γ

ρ0

∥∥∥∥
H(M)

≤ 1

ρ0
· ρ0C

2
− γ

ρ0

<
C

2
.

(3.8.6)

Hence, Equations 3.8.5 and 3.8.6 lead to a contradiction. Therefore, Equation 3.8.1 must

hold.

Next, from Theorem 3.5.2, there exists a network FM with appropriate hyperparameters
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θ′ such that:

∥ũ− FMθ′(ũ)∥H(M) ≤ inf
θ
∥ũ− FMθ(ũ)∥H(M) +

ε

4
. (3.8.7)

Let us denote FMθ′ as FM. Note that ũ in Equation 3.8.7 lies in the Hilbert space H(M),

not the RKHSH(M). Furthermore, from Lemma 3.8.1, there exists a set of hyperparameters

θ̃ such that ∥ũ− FMθ̃(ũ)∥H(M) ≤ ε
4
. Therefore, Equation 3.8.7 reduces to:

∥ũ− FM(ũ)∥H(M) ≤ inf
θ
∥ũ− FMθ(ũ)∥H(M) +

ε

4

≤ ∥ũ− FMθ̃(ũ)∥H(M) +
ε

4

≤ ε

4
+
ε

4
=
ε

2
.

(3.8.8)

From Lemma 3.8.3, for ũ which is the output of a neural network with width Wd =

O
(
ε−

d
k+1

)
, we have:

∥ũ− F∥H(M) ≤
ε

4
. (3.8.9)

Putting Equations 3.8.1, 3.8.8 and 3.8.9 together leads to:

∥ûN,θ − F (p)∥H(M) ≤ ∥ûN,θ − FM(ũ) ∥H(M) + ∥ũ− FM(ũ)∥H(M) + ∥ũ− F∥H(M)

≤ ε

(3.8.10)

for any p ∈ P . Therefore, taking supremum on LHS and RHS of Equation 3.8.10, we have

proven Theorem 3.5.3.

3.9 Proof that the Helmholtz equation spans an RKHS

Let us consider the Helmholtz equation ∆Mu+ k2u = 0 without loss of generality. We first

introduce some background and preliminaries before proceeding with the proof.

Let ∆ =
∑n

i=1
∂2

∂x2i
be the Euclidean Laplace operator acting on the Sobolev space of

weakly twice differentiable functions defined on Rn. Let k > 0 be a fixed constant. A

function u defined on Rn is called a solution of the Helmholtz equation, if ∆u+ k2u = 0 on

Rn. In other words, u satisfies one of the following:

• u ∈ C2(Rn) is a classical solution of the above equation on Rn; or
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• u ∈ W 2(Rn) is a solution in the weak L2-sense, i.e., u is locally square integrable, and

satisfies
∫
Rn u(x) [ ∆φ(x) + k2φ(x) ] dx = 0 for any (test) function φ ∈ C∞(Rn) with

compact support.

It follows from Axler et al. (2001) that any solution of homogeneous Helmholtz equation

is real analytic on Rn. We define the following space:

WHelm,k(Rn) = {u ∈ C∞(Rn) | ∆u+ k2u = 0 on Rn}. (3.9.1)

Hartman & Wilcox (1961) introduced the concept of Herglotz wave function. The Her-

glotz wave functions consists of all the entire solutions u of the homogeneous Helmholtz

equation ∆u+ k2u = 0 on Rn with k > 0 such that Herglotz boundedness condition:

lim
R→+∞

1

R

∫
∥x∥<R

|u(x)|2 dx < +∞ (3.9.2)

holds. Hartman & Wilcox (1961) characterized the Herglotz wave functions as the entire

solutions u of the homogeneous Helmholtz equation with far-field pattern in L2(Sn−1). That

is, functions u defined on Rn can be written as:

u(x) =

∫
Sn−1

eik⟨x,ξ⟩g(ξ) dσ(ξ), (3.9.3)

for some g ∈ L2(Sn−1).

With this, let us consider the Helmholtz equation on the standard n-dimensional unit

sphere Sn = {x ∈ Rn+1 : ∥x∥ = 1} in Rn+1 with canonical spherical Riemannian metric

g. Let ∆Sn be the spherical Laplacian acting on the Sobolev space W 2(Sn) of real-valued,

square-integrable, and twice weakly differentiable functions on Sn. Consider the Helmholtz

equation on the Riemannian manifold (Sn−1, g) with canonical spherical metric g. Its entire

solution can be expressed as:

u =Wϕ(x) = (2π)
1−n
2

∫
Sn−1

eikx·ξϕ(ξ)dσ(ξ), (3.9.4)

where W is the Fourier extension operator and ϕ ∈ L2(Sn−1) is Herglotz wave function. It

has been shown that W defined in Equation 3.9.4 is an isomorphism of L2(Sn−1) onto the
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spaceW 2 consisting of all solutions of Helmholtz equation with radial and angular derivatives

satisfying:

||u||2 =
∫
|x|>1

(|u(x)|2 + |∂u
∂r

(x)|2 + |∂u
∂θ

(x)|2) dx
|x|3

<∞, (3.9.5)

(see Pérez-Esteva & Valenzuela-Dı́az (2017)). In this sense, the space W 2 in R2 is a Hilbert

space with reproducing kernel (i.e., RKHS).

Meanwhile, to the best of our knowledge, there exists no such formal analysis on Helmholtz

equation on any smooth (Riemannian) manifold (M, g). In this case, the Laplace-Beltrami

operator extends the Laplace operator to Riemannian manifold (M, g) and is defined as

∆Mu := divg(∇u), where ∇u denotes the gradient of u and divg is the metric-induced

divergence. In local coordinates (x1, . . . , xn), the operator takes the form:

∆Mu =
1√
|g|

n∑
i,j=1

∂

∂xi

(√
|g| gij ∂u

∂xj

)
, (3.9.6)

where gij is the Riemannian metric tensor, gij is its inverse, and |g| denotes the determinant

of the metric matrix.

For any smooth manifold (M, g), the Laplace-Beltrami operator ∆M, defined in Equation

3.9.6, has orthonormal eigenbases on L2(∂M) as {ψλ}λ with corresponding eigenvalues λ ≥ 0.

For each ψλ, let us consider:

(∆M + k2)ϕλ = 0 inM, ϕλ|∂M = ψλ. (3.9.7)

By elliptic regularity, ϕλ ∈ H2(M). Furthermore, we extend the Fourier extension

operator in Equation 3.9.4 to WM on any smooth manifoldM:

WMf(x) =

∫
∂M

Ψ(x, ξ)f(ξ)dσ(ξ), where Ψ(x, ξ) =
∑
λ

ϕλ(x)ψλ(ξ). (3.9.8)

Now, we present the main result in Theorem 3.9.1 thatW 2(M) is the space of all Herlotz

wave functions.

Theorem 3.9.1 The operator WM : L2(∂M) → W 2(M) defined in Equation 3.9.8 is a

topological isomorphism, where W 2(M) = {u ∈ H2(M) : (∆M + k2)u = 0}.
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Remark 3.9.1 Theorem 3.9.1 implies that WM is an isomorphism between L2(∂M) and

W 2(M), the space of H2-solutions to the Helmholtz equation (∆M + k2)u = 0. Such an iso-

morphismWM implies that H(M) inherits a Hilbert space or RKHS structure from L2(∂M).

In other words, W 2(M) is an RKHS.

To prove Theorem 3.9.1, we first introduce and prove a lemma.

Lemma 3.9.1 Let Jν(z) be the Bessel function of order ν ∈ R. For each eigenfunction ψj

of ∆∂M, define Fj = WMψj. Then:

1. Fj(x) = (2π)1/2iν(j)r−
n−2
2 Jν(j)(kr)ψj(ξ), where x = rξ in normal coordinates near ∂M.

2. The family {Fj} is orthogonal in W 2(M), and

∥Fj∥H2(M) =
√
2 +O

(
1

λj

)
.

3. For f =
∑

j ajψj ∈ L2(∂M) and u =
∑

j ajFj ∈ W 2(M),

∥u∥H2(M) ∼ ∥f∥L2(∂M),

with absolute and uniform convergence on compact subsets ofM.

Proof. We prove the three components of Lemma 3.9.1 as follows:

1. Helmholtz equation (∆M + k2)ϕj = 0 can be written as:(
∂2r +

n− 1

r
∂r +

1

r2
∆∂M + k2

)
(r−

n−2
2 Rj(r)ψj(ξ)) = 0. (3.9.9)

Substituting ϕj = r−
n−2
2 Rj(r)ψj(ξ) into Equation 3.9.9 yields:

R′′
j +

1

r
R′
j +

(
k2 − ν(j)2

r2

)
Rj = 0, (3.9.10)

whose solution is Rj(r) = Jν(j)(kr). By the Funk-Hecke formula Xu (2000), we have:

Fj(x) =

∫
∂M

Ψ(x, ξ)ψj(ξ)dσ(ξ) = (2π)1/2iν(j)r−
n−2
2 Jν(j)(kr)ψj(ξ). (3.9.11)
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2. Since ψj and ψk are orthonormal eigenbases, ψj and ψk are orthogonal on ∂M. There-

fore,

⟨Fj, Fk⟩H2(M) =

∫
M

(
ϕjϕk +∇ϕj · ∇ϕk

)
dVg = 0 (3.9.12)

for any j ̸= k. Using the asymptotic Jν(j)(kr) ∼ (kr/2)ν(j)

Γ(ν(j)+1)
for r → 0+ and oscillatory

decay for r →∞, we have:

∥Fj∥2H2(M) = 2 +O
(

1

λj

)
,

where the error term comes from the next-order Bessel asymptotics.

3. From Part 2, the map f 7→ u is bounded:

∥u∥2H2(M) =
∑
j

|aj|2∥Fj∥2H2(M) ∼
∑
j

|aj|2 = ∥f∥2L2(∂M). (3.9.13)

Next, we prove |Jν(kr)| ∼ O(ν−1/2) uniformly holds on compact subsets K ⊂ M.

According to Watson (1922), we have:

Jν(ν sec β) ∼
(

2

πν tan β

)1/2
[
cos
(
ν tan β − νβ − π

4

) ∞∑
m=0

(−1)mΓ(2m+ 1
2
)

Γ(1
2
)

·

A2m

(1
2
ν tan β)2m

+ sin
(
ν tan β − νβ − π

4

) ∞∑
m=0

(−1)mΓ(2m+ 3
2
)

Γ(1
2
)

·

A2m+1

(1
2
ν tan β)2m+1

]
,

(3.9.14)

where Ak is defined following A0 = 1, A1 = 1
3
+ 5

24
cot2 β, A2 = 3

128
+ 77

576
cot2 β +

385
3456

cot4 β, and so on.

Let z = sec β, which implies tan β =
√
z2 − 1 and cot β = 1√

z2−1
. Moreover, η is defined

as η(z) = tan β − β =
√
z2 − 1− sec−1 z. Then, by cos θ = ℜ(eiθ), sin θ = ℑ(eiθ), we

have:

cos(νη − π/4) · S0 + sin(νη − π/4) · S1 = ℜ
[
ei(νη−π/4)(S0 − iS1)

]
, (3.9.15)

where S0 =
∑∞

m=0

(−1)mΓ(2m+ 1
2
)

Γ( 1
2
)

· A2m

( 1
2
ν tanβ)2m

and S1 =
∑∞

m=0

(−1)mΓ(2m+ 3
2
)

Γ( 1
2
)

· A2m+1

( 1
2
ν tanβ)2m+1 .
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We say that there exists Uk(p) which is a polynomial combination of Ak by comparing

A2m

(ν tanβ)2m
and Uk(p)

νk
. By tan β =

√
z2 − 1 and p = 1√

1+z2
, we have:

(
2

πν tan β

)1/2

=
1

(1 + z2)1/4
· 1√

2πν
·
(

2z2

z2 − 1

)1/4

. (3.9.16)

Combining Equation 3.9.14, Equation 3.9.15, and Equation 3.9.16 leads to:

Jν(νz) ∼
exp

(
νη − π

4

)
(1 + z2)1/4

√
2πν

[
∞∑
k=0

Uk(p)

νk

]
. (3.9.17)

Next, for ν ≫ 1 and r ∈ K (i.e., z = kr
ν
is bounded), we have:

Jν(kr) ≈
(

2

πν

)1/2 cos
(
νη(z)− π

4

)
(1 + z2)1/4

. (3.9.18)

Since | cos(·)| ≤ 1 and (1 + z2)1/4 has positive lower bound G on K, we have:

|Jν(kr)| ≤ G

(
2

πν

)1/2

= O(ν−1/2). (3.9.19)

Finally, substituting Equation 3.9.19 into 3.9.13, we have, for compact subsetsK ⊂M:

∑
j

|aj||Fj(x)| ≤

(∑
j

|aj|2
)1/2(∑

j

|Jν(j)(kr)|2
)1/2

<∞. (3.9.20)

This completes the proof.

Proof of Theorem 3.9.1

Proof. For f =
∑

j ajψj ∈ L2(∂M), let us define:

WMf =
∑
j

ajFj, where Fj = WMψj. (3.9.21)

From Part 3 of Lemma 3.9.1, the series converges absolutely and uniformly on compact

subsets K as:

∑
j

|aj|∥Fj∥L∞(K) ≤ C

(∑
j

|aj|2
)1/2(∑

j

λ
−1/2
j

)1/2

<∞, (3.9.22)

83



where ∥Fj∥L∞(K) ≤ Cλ
− 1

4
j comes from Bessel decay Matviyenko (1993) and λj ∼ j

2
n−1 comes

from Weyl’s law Liokumovich et al. (2018).

Then, from Part 2 of Lemma 3.9.1:

∥WMf∥2H2(M) =
∑
j

|aj|2∥Fj∥2H2(M) ∼
∑
j

|aj|2 = ∥f∥2L2(∂M). (3.9.23)

Next, we prove the surjectivity of WM. Let u ∈ W 2(M). On ∂M, we expand u in

eigenfunctions using:

u(r, ξ) =
∑
j

Aj(r)ψj(ξ), Aj(r) = ⟨u(r, ·), ψj⟩L2(∂M). (3.9.24)

This way, the Helmholtz equation (∆M + k2)u = 0 reduces to an ordinary differential equa-

tion:

A′′
j +

n− 1

r
A′
j +

(
k2 −

λj + (n−2
2
)2

r2

)
Aj = 0, (3.9.25)

whose solution is Aj(r) = ajr
−n−2

2 Jν(j)(kr), where ν(j) =
√
λj + (n−2

2
)2. Therefore, u =∑

j ajFj = WMf for f =
∑

j ajψj ∈ L2(∂M). Finally, the inverse W−1
M : u 7→ u|∂M is

bounded by the trace theorem Adams & Fournier (2003):

∥W−1
M u∥L2(∂M) = ∥u|∂M∥L2(∂M) ≤ C∥u∥H2(M). (3.9.26)

This completes the proof.

3.10 Experiments

We evaluate the performance of our proposed model across three different PDEs on different

manifolds whose solution spaces are not necessarily an RKHS, and compare it with recent

neural PDE solvers including FNO Li et al. (2020b, 2023b), WNO Tripura & Chakraborty

(2023), D-FNO Li & Ye (2025), and DeepONet Lu et al. (2019). Then, we present some key

results from selected ablation studies to demonstrate the need for each of the core components

of our AFDONet framework.
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3.10.1 PDE problem settings

Helmholtz equation on planar manifold with boundary. Let (M, g) be a smooth

planar Riemannian manifold with boundaryM⊂ R2 equipped with the Euclidean-induced

metric g. We consider the 2-D Helmholtz equation on M with perfectly-matched layer

(PML) absorption on ∂M as follows:

∆Mu(x, y) + k2n2(x, y)u(x, y) = −S(x, y), (x, y) ∈M,

PML absorption on ∂M,

(3.10.1)

where wavenumber k is a positive constant, n :M→ C is the complex refractive-index field,

and S :M→ C is the source density. In our experiment, the planar manifold is constructed

following Marchand (2023). Furthermore, one can show that the solutions of the Helmholtz

equation naturally span an RKHS (see Section 3.9).

Incompressible Navier-Stokes equation on a torus. Let (T2, g) denote a flat two-

dimensional torus T2 =
(
[0, 2π] × [0, 2π]

)/
∼ obtained by identifying opposite edges of the

square and endowed with the Euclidean metric g. For viscosity ν > 0, we study the 2-D

incompressible Navier-Stokes system:

∂tu+ (u·∇)u = −∇p + ν∆T2u, (x, y, t) ∈ T2 × (0, T ],

∇T2 · u = 0, (x, y, t) ∈ T2 × [0, T ],

u( · , 0) = u0, x ∈ T2,

(3.10.2)

where u = (u, v) : T2 × [0, T ] → R2 is the velocity field and p : T2 × [0, T ] → R is the

pressure.

Homogeneous Poisson equation on a quarter-cylindrical surface. Let (M, g) be

a smooth two-dimensional Riemannian manifold M =
{
(cosϕ, sinϕ, z) ∈ R3 : 0 < ϕ <

π
2
, 0 < z < L

}
, which restricts the lateral surface of the unit cylinder to a single quadrant.

The metric g is the Euclidean metric pulled back by the embedding, so that in local coordi-

nates (ϕ, z) one has ∆M = ∂ϕϕ+ ∂zz. We study the 2-D homogeneous Poisson problem with
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Dirichlet boundary conditions on ∂M:

− ∆Mu(ϕ, z) = f(ϕ, z), (ϕ, z) ∈ (0, π
2
)× (0, L),

u(ϕ, z) = 0, (ϕ, z) ∈ ∂M,

(3.10.3)

where the source term f(ϕ, z) = β
[(

απ
L

)2
(1− cosϕ)−

(
cosϕ+sinϕ− 4 sinϕ cosϕ

)]
sin
(
απz
L

)
Kamilis (2013).

Since Helmholtz and Poisson equations are stationary, we focus on the static task for both

problems. And for the Navier-Stokes equation, we consider both static and autoregressive

tasks.

3.10.2 Datasets

Helmholtz equation. We generate the dataset using helmhurts-python, a Helmholtz

equation solver Marchand (2023). This solver computes the electric field distribution u(x, y)

for given n(x, y) and source terms S(x, y), discretized on a uniform grid with resolution

∆x = ∆y = 1 cm. S(x, y) is constructed by assigning a complex-valued excitation P · eiϕ to

all pixels marked as sources (RGB (255,0,0)) in the input image, where P is the transmitter

power and ϕ = 0 denotes a uniform phase alignment. Perfectly matched layers (PMLs)

of thickness 12 cells absorb outgoing waves to approximate open boundary conditions. We

select randomized physical parameters to generate the full dataset, including transmitter

power P ∼ U(0.5, 2.0), frequency f ∼ U(1.5, 3.0)GHz, and wall properties η ∼ U(1.5, 3.0),

κ ∼ U(0.05, 0.2). The resulting field intensities |u| are log-scaled and normalized to [0, 1].

Navier-Stokes equation. The dataset is generated by numerically solving the 2D in-

compressible Navier-Stokes equations using a spectral method solver adapted from the

NSsimulation repository lavenderses (2021) on a torus. The viscosity ν are sampled follow-

ing ν ∼ U(0.001, 0.1). For the static task, the dataset contains the value of parameters α and

the numerical solutions u. For the autoregressive task, the dataset contains the numerical

solutions u(x, t) and u(x, t+ 1).
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Poisson equation. Using isogeometric analysis with NURBS basis functions of order p = 2

proposed in Kamilis (2013), we generate the dataset for this problem by specifying α ∼ (2, 6).

3.10.3 Implementation details

We run all experiments in a Dell Precision 7920 Tower equipped with Intel Xeon Gold 6246R

CPU and NVIDIA Quadro RTX 6000 GPU (with 24GB GGDR6 memory).

For FNO-based solvers Li et al. (2020b, 2023b); Li & Ye (2025), the number of Fourier

modes considered in the spectral convolutions is an important hyperparameter. We find that

no more than 16 Fourier modes are enough to solve the three benchmark PDE problems. In

fact, increasing the number of Fourier modes beyond 16 could lead to worse performance.

From Figure 16, we plot the average MAE and total computational time of FNO with

8, 12, 16, 32, 64, 128 Fourier modes. As a result, in our experiments, we set the number of

Fourier modes to be 12 for all FNO and D-FNO models. Similar trends happen to other

benchmark PDE problems, so we use 12 Fourier modes in all benchmark PDE problems.

Figure 16: Average MAE and total computational time (in seconds) of FNO solver with re-

spect to number of Fourier modes (averaged over five random seeds) for solving the Helmholtz

equation 3.10.1.

In addition, for AFDONet, increasing the dimension of the latent space helps achieve

higher accuracy. However, this also comes with an increase in computational costs. This is

illustrated in Table 11 below taking Navier-Stokes equation. Therefore, to demonstrate the
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effectiveness of our AFDONet solver even in the worst-case scenario, we set the latent space

dimension to 10 for all benchmark PDE problems.

Table 11: Average MAE, relative L2 error, and computational time (in seconds) of AFDONet

(averaged over five random seeds) for solving Navier-Stokes equation 3.10.2 (autoregressive

task) under different latent space dimensions.

Latent dimension MAE Relative L2 error Time (sec)

16 6.40E-04 ± 9.90E-05 1.11E-03 ± 1.91E-04 1058.39 ± 19.30

20 5.35E-04 ± 1.36E-04 1.40E-03 ± 1.03E-03 1190.61 ± 15.67

32 3.77E-04 ± 1.28E-04 9.60E-04 ± 8.03E-04 1110.57 ± 18.38

64 4.62E-04 ± 1.35E-04 1.22E-03 ± 8.92E-04 1173.40 ± 17.22

100 4.05E-04 ± 1.09E-04 1.06E-03 ± 9.94E-04 1365.03 ± 21.89

128 3.89E-04 ± 1.26E-04 9.99E-04 ± 8.48E-04 1406.05 ± 23.98

256 5.03E-04 ± 1.98E-04 1.27E-03 ± 1.14E-03 1743.28 ± 27.64

The AFDONet loss function and training specifications are listed in Table 12 below.

Table 12: Specifications of loss function and training for AFDONet solver.

Parameter Value

Training epochs 100

Loss weights (ω) 10−5

Loss weights (wi) 10−8

Optimizer Adam

Learning rate 10−3

Batch size 16

Encoder hidden layers dimension 256

Latent space dimension 10
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For the benchmark solvers, their detailed architectures are as follows:

• The FNO solver Li et al. (2020b, 2023b) consists of an initial linear projection layer P

(width is 32) followed by 5 Fourier layers with 12 Fourier modes and GeLU activation

function. A neural network with two fully connected layers Q (the first layer has 128

neurons and the second layer has 2 neurons) is used to project back to the target

dimension. The Adam optimizer (learning rate: 10−3) is used to train the FNO solver

based on minimizing the MSE loss.

• The D-FNO solver Li & Ye (2025) has a similar architecture as the FNO solver, except

that a reduction layer is introduced between the initial linear projection layer P and

the 5 Fourier layers to decompose the output of P into a series of two one-dimensional

vectors. The reduction layer does not use traditional neurons. Instead, it projects

inputs into a rank-16 subspace via factor matrices (see Equation 6 of Li & Ye (2025)).

The Fourier layers have 12 Fourier modes (also suggested by Li & Ye (2025)) and use

GeLU activation function. After that, an operation called product is used to put the

two vectors together. In D-FNO, Q has two layers (the first layer has 128 neurons and

the second layer has one neuron). The Adam optimizer (learning rate: 10−3) is used

to train the D-FNO solver based on minimizing the MSE loss.

• The WNO solver Tripura & Chakraborty (2023) adopts the FNO architecture by re-

placing Fourier layers with wavelet integral layers that decompose the inputs using

Daubechies wavelets and apply learnable linear transformations to the wavelet coeffi-

cients before reconstruction. The structure of Q is the same as that of FNO. GeLU

activation function and the Adam optimizer (learning rate: 10−3) are used.

• The DeepONet solver Lu et al. (2019) consists of two subnetworks: a branch network

and a trunk network. The branch network which handles the high-dimensional input

functions has three fully-connected layers with 64 neurons per layer. The truck network

which handles spatial coordinates also has three fully-connected layers with 64 neurons

89



per layer. Their outputs are combined via a dot product. ReLU activation function is

employed in both branch and truch networks. We use the Adam optimizer (learning

rate: 10−3) to minimize the MSE loss.

3.10.4 Results and discussions

Comparison with benchmark methods. In Table 13, we report the performance of

AFDONet and benchmark methods in terms of average mean absolute error (MAE) and rel-

ative L2 error, as well as their standard deviations (±) obtained using five random seeds and

dataset size of 5000. Synthetic datasets are generated using finite difference and isogeometric

methods, and each model is trained on a 60/20/20 split of training, validation, and testing

data. We conclude that, given different dataset sizes, our AFDONet solver consistently out-

performs FNO-based solvers and DeepONet across all PDE cases on manifolds. Note that

FNO, D-FNO, AFNO, and WNO solvers rely on fast Fourier transform and wavelet trans-

form, both of which are inherently defined on Euclidean domain and thus do not generalize

well to curved geometries. Meanwhile, DeepONet does not exploit the spectral sparsity of

the solution space. In contrast, AFDONet adaptively selects analytic modes and employs

pullback operators to ensure accurate, manifold-aware representations.

Scalability of AFDONet. In Figure 17, we show that AFDONet is scalable subject to

increasing dataset size for all benchmark PDE problems considered.

Latent-to-RKHS network vs. Latent-to-kernel network. Our decoder operates

within an RKHS H(M), which is constructed via a latent-to-RKHS network. This network

maps latent representations to their nearest RKHS within a Hilbert space. To understand

the need for function restrictions within an RKHS, we conduct an ablation study and com-

pare the latent-to-RKHS network with the latent-to-kernel network Lu et al. (2020a), which

directly maps latent representations to a kernel function that does not necessarily satisfy the

reproducing property. By comparing the results in Tables 13 and 14, we observe that latent-
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Table 13: Average MAE and relative L2 errors and their standard deviations for different

PDE benchmark solvers obtained using five random seeds. Dataset size is 5000. The best

results are bolded. All values in the table have been multiplied by 100.

Equation Metric AFDONet (Ours) FNO D-FNO WNO DeepONet

Helmholtz 3.10.1
MAE 0.937 ± 0.063 1.855 ± 0.165 6.085 ± 0.355 11.701 ± 1.429 16.224 ± 1.054

Rel. L2 8.141 ± 1.401 11.915 ± 0.935 39.191 ± 9.361 69.735 ± 12.675 46.310 ± 10.540

Navier-Stokes MAE 0.332 ± 0.030 2.908 ± 0.741 0.375 ± 0.103 3.974 ± 0.005 3.189 ± 0.164

(Static) 3.10.2 Rel. L2 0.882 ± 0.059 7.567 ± 0.173 0.996 ± 0.263 9.989 ± 0.004 7.251 ± 0.422

Navier-Stokes MAE 0.068 ± 0.037 2.386 ± 0.249 0.142 ± 0.009 3.826 ± 0.191 3.168 ± 0.221

(Autoreg.) 3.10.2 Rel. L2 0.170 ± 0.104 6.288 ± 0.820 0.298 ± 0.060 9.541 ± 0.475 7.071 ± 0.897

Poisson 3.10.3
MAE 0.158 ± 0.033 0.777 ± 0.093 0.343 ± 0.066 0.770 ± 0.161 0.531 ± 0.030

Rel. L2 0.472 ± 0.109 2.567 ± 0.502 0.513 ± 0.242 1.754 ± 0.943 0.483 ± 0.305

to-RKHS network consistently outperforms the latent-to-kernel network. Both MAE and

relative L2 error show at least an order of magnitude reduction for all PDE cases except the

Helmholtz equation 3.10.1, which only yields a slight performance gain. This is due to the

fact that the solution space for the the Helmholtz equation 3.10.1 is already an RKHS (See

Section 3.9). This illustrates the need and benefit of restricting the latent representations to

their RKHS.

AFD-type decoder vs. other decoder architectures. We conduct ablation studies

by replacing our full AFD-type dynamic CKN decoder with three alternatives, namely an

MLP decoder, a propagation decoder Lu et al. (2020a); Buchberger et al. (2020), and an

AFD-type decoder with a static CNN. As shown in Table 14, full AFD-type dynamic CKN

decoder achieves the best performance for all PDE cases. The improvements are especially

significant for the Navier-Stokes equation 3.10.2 and Poisson equation 3.10.3, where both the

MAE and relative L2 error are reduced by one to two orders of magnitude compared to the

benchmark decoders. Also, we observe that AFD-type decoder with a static CNN performs

slightly worse than our AFD-type dynamic CKN decoder since CNN uses stationary kernels
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Figure 17: Average MAE, relative L2 error, and total computational time comparisons with

respect to dataset size (averaged over five random seeds) for Navier-Stokes equation (static

task) (top row), Helmholtz equation (middle row), and Poisson equation (bottom row).

that lack adaptability to the varying spatiotemporal dynamics in PDE solutions. In contrast,

dynamic CKN enables data-driven, non-stationary kernel learning, which can better capture

these inherent dynamics, especially for heterogeneous equations such as the Poisson equation

3.10.3 or time-dependent equations like the Navier-Stokes equation 3.10.2.

Need for VAE backbone. We design a new ablation study for the Navier-Stokes ex-

ample with randomized vortex field dataset. The randomized vortex field dataset exhibits

sharp gradients and turbulence-like behavior and includes a phase shift for the v-component.

Therefore, the dynamics of this dataset are challenging to learn. Our goal is to determine
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Table 14: Ablation studies of our AFDONet architecture show that latent-to-RKHS and

AFD-type dynamic CKN decoder work synergistically to improve the solution accuracy.

Note that the results for the full architecture are presented in Table 13. The dataset size is

5000.

Equation Metric Latent-to-kernel Latent-to-RKHS Latent-to-RKHS Latent-to-RKHS Latent-to-RKHS network

network + AFD-type network + MLP-type network + propagation + AFD-type decoder + AFD-type decoder

decoder decoder decoder (static CNN) (without Equation 3.4.6)

Helmholtz 3.10.1
MAE 1.27E-02 ± 1.91E-03 2.11E-01 ± 2.04E-03 1.93E-01 ± 5.11E-02 2.41E-02 ± 1.16E-02 1.81E-01 ± 5.16E-02

Rel. L2 8.89E-02 ± 6.90E-03 1.17 ± 1.22E-02 1.07 ± 2.64E-01 1.72E-01 ± 9.13E-02 1.10 ± 2.62E-01

Navier-Stokes MAE 8.32E-02 ± 1.46E-02 4.00E-01 ± 4.46E-03 3.98E-01 ± 4.68E-04 7.12E-02 ± 1.20 E-02 1.27E-02 ± 2.03E-03

(Static) 3.10.2 Rel. L2 2.19E-01 ± 3.44E-02 1.00 ± 9.36E-03 1.00 ± 8.30E-06 1.85E-01 ± 3.54E-02 3.71E-02 ± 6.29E-03

Navier-Stokes MAE 6.11E-02 ± 2.92E-03 1.45E-01 ± 2.59E-02 1.48E-01 ± 1.09E-01 8.32E-02 ± 9.28E-03 2.53E-03 ± 8.26E-04

(Autoreg.) 3.10.2 Rel. L2 1.58E-01 ± 9.20E-03 3.85E-01 ± 6.84E-02 3.91E-01 ± 2.30E-01 2.16E-01 ± 2.35E-02 7.80E-03 ± 1.10E-03

Poisson 3.10.3
MAE 3.16E-01 ± 8.76E-04 1.71E-02 ± 7.73E-03 1.81E-02 ± 1.84E-03 6.08E-02 ± 6.88E-03 3.53E-02 ± 5.51E-03

Rel. L2 9.77E-01 ± 2.31E-03 5.10E-02 ± 2.22E-02 5.61E-02 ± 2.17E-02 1.77E-01 ± 5.16E-03 1.30E-01 ± 1.44E-02

whether the v-component solution profile would visually match with the ground truth solu-

tion when the VAE backbone and its components are removed or replaced. From Table 15,

it is clear that the synergistic integration of VAE backbone, latent-to-RKHS network, and

AFD-type decoder is essential in accurately capturing v-component solution profile in the

dataset. Guided by the AFD theory in their design and integration, these components come

together to establish the accuracy of our AFDONet solver.

Visualization of solver performance in benchmark PDE problems

In Figures 18 through 20, we plot the ground truth and predicted solutions of AFDONet

and baseline methods for the three case studies. The corresponding MAE and relative L2

error results are listed in Table 13.

AFDONet performance on Navier-Stokes equation problem with randomized

vortex dataset

We extend the ablation study shown in Table 14 with a new ablation study for the Navier-

Stokes example with randomized vortex field dataset. The initial condition is set by vortex
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Figure 18: Ground truth and predicted solutions (u, v) of the Navier-Stokes equation (static

task) on the torus and heat map.

Figure 19: Ground truth and predicted solutions u(x, y) of the Helmholtz equation on the

planar manifold.

structures via Gaussian-based stream functions ψ = A · exp
(
− (x−cx)2+(y−cy)2

2r2

)
with ran-

domized parameters vortex centers (cx, cy) ∼ U(1, 5)2, radii r ∼ U(0.5, 2), and strengths
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Figure 20: Ground truth and predicted solutions u(ϕ, z) of the Poisson equation on the

quarter-cylindrical surface.

A ∼ U(−2, 2).

Table 15: Ablation study of replacing VAE with multi-layer fully-connected feedforward

(MLP) network as the encoder. Here, ✓: v-component solution dynamics visually matches

with the ground truth solution; ✗: v-component solution dynamics does not visually match

with the ground truth.

Backbone Full AFDONet (latent-to-RHKS Latent-to-kernel Latent-to-RKHS Latent-to-RKHS + Latent-to-RKHS + Latent-to-RKHS + AFD-type

network + AFD-type decoder + network + AFD- + MLP-type propagation AFD-type decoder decoder (without maximal

Equation 3.4.6 type decoder decoder decoder (static CNN) (without Equation 3.4.6)

VAE ✓ ✗ ✗ ✗ ✓ ✓

Without VAE (encoder
✗ ✗ ✗ ✗ ✗ ✗

deterministic MLP)
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Figure 21: Ground truth and predicted fields (u, v) of the Navier-Stokes equation (for

static task) on both the torus T2 and the heatmap for various solvers. Here, the dataset is

generated from Gaussian-based randomized vortex fields (dataset size is 5000) Pedergnana

et al. (2020). Average MAE and relative L2 errors and their standard deviations obtained

using five random seeds are also reported.
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CHAPTER IV

ADAPTIVE MAMBA NEURAL OPERATORS

4.1 Problem Statement

We frame our task as learning a solution operator for a family of parametric PDEs. In

general, consider a PDE defined on a spatial domain Ω ⊂ Rd and a time interval (0, T ]:

La[u(x, t)] = f(x, t), ∀(x, t) ∈ D × (0, T ], (4.1.1)

which is subject to a set of initial and boundary conditions. Here, the parameter function a ∈

A specifies the coefficients and initial and boundary conditions of Equation 4.1.1. In operator

learning, our goal is to construct an accurate approximation for G : A → F(D × [0, T ]),

which maps the parameter function a to the corresponding solution function u(x, t) ∈ F ,

via a parametric mapping Gθ. The aim is to learn θ such that Gθ ≈ G from a set of training

data {(aj, uj)}j.

4.2 Related work

Frequency-based neural operators. Early advancements in operator learning exploited

spectral decompositions to encode global information efficiently. A notable example is FNO

Li et al. (2020b), which parameterizes integral kernels in the Fourier domain to enable

resolution-invariance. However, FNO does not generalize well to irregular geometries Li

et al. (2020b). Later, Geo-FNO Li et al. (2023b) was proposed to solve PDEs on general

geometries. U-FNO Wen et al. (2022) introduced architectural modifications to better cap-

ture localized details while maintaining FNO’s global properties. Meanwhile, F-FNO Tran
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et al. (2021) generalizes the FNO architecture for more efficient spectral layers and deeper

architectures. On the other hand, neural operators based on the wavelet transform include

WNO Tripura & Chakraborty (2023), MWT Gupta et al. (2021), Padé Gupta et al. (2022),

and CMWNO Xiao et al. (2023a). Fourier and wavelet transforms are both special cases of

spectral decomposition, and neural operators based on spectral decomposition has recently

been proposed Fanaskov & Oseledets (2023).

Attention-based neural operators. Attention mechanisms have been widely studied

in neural operator domain. Some of the notable works include orthogonal attention Xiao

et al. (2023b), physics-cross-attention Wang & Wang (2024), and nonlocal attention Yu et al.

(2024). The Transformer structure is also a promising building block for neural operators.

Some of the related works include OFormer Li et al. (2022b), LSM Wu et al. (2023), and

Transolver Wu et al. (2024). However, Transformers struggle to capture kernel integral

transforms efficiently in complex, high-dimensional continuous PDEs Guibas et al. (2021).

SSM-based neural operators. To address the computational inefficiency of Transformer-

based neural operators, SSM and Mamba emerge as promising architectures for neural op-

erator designs Tiwari et al. (2025). Previous studies of SSM-based neural operators Zheng

et al. (2024); Cheng et al. (2024); Hu et al. (2024); Tiwari et al. (2025) have been applied

to nonlinear PDEs on irregular geometries and dynamical systems. These works incorporate

traditional SSMs with different scan strategies without considering the information in the

frequency domain. On the other hand, our AFMO considers the frequency information via

its explicit kernel and SSMs from a transfer function perspective Parnichkun et al. (2024).
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Figure 22: Phase error of solutions predicted by LaMO.

4.3 Illustrative Examples

1-D advection PDE with high-frequency perturbation. We evaluate LaMO on a

1-D linear advection benchmark governed by

ut + c ux = 0 (4.3.1)

on a periodic unit interval. Initial conditions u0(x) are synthesized as smooth Fourier mix-

tures
∑kmax

k=1 ak sin(2πkx+ ϕk) with amplitudes decaying as ak ∼ (1 + k)−1, to which we add

a weak high-frequency spike at wavenumber khi to probe aliasing and phase accuracy. Tra-

jectories are advanced to time T with a conservative first-order upwind scheme at Courant

number CFL = c∆t/∆x ≤ 0.5, ensuring stability while preserving sharp phase relationships;

the target is the advected field u(·, T ).

Figure 22 visualizes the phase error of LaMO’s predictions, revealing a pronounced degra-

99



dation for high-frequency modes (approximately k ∈ [140, 250]). This suggests that LaMO

struggles to faithfully capture phase at the upper end of the spectrum.

2-D Darcy flow equation with fractal noise. We construct a challenging 2-D Darcy

dataset by solving

−∇·
(
k(x, y)∇u(x, y)

)
= f(x, y) (4.3.2)

on [0, 1]2 with homogeneous Dirichlet boundaries, where the permeability k is positive, highly

heterogeneous, and fractal-like. Specifically, k is generated by exponentiating a band-limited

fractional Gaussian field (small Hurst parameter for roughness) and then modulating it with

narrow channel masks and inclusions to induce strong anisotropy and high contrast. The

forcing f combines a weak background term with several randomized Gaussian sources/sinks,

which produce near-singular behavior in the solution. The variable-coefficient elliptic prob-

lem is discretized on a Cartesian grid using a flux-conservative 5-point stencil with harmonic

averaging of k, and solved to tight tolerance via conjugate gradients. For learning, each

sample is subsampled irregularly: we draw P points {(xi, yi)} and record u(xi, yi), yielding

pairs (XY, U) without exposing k or f .

To visualize and stress singular structures, we show in Figure 23 (a) and (c): (i) contours

of the potential u highlighting global flow topology, and (ii) a logarithmic map of the gradient

magnitude, log |∇u|, computed on a reconstructed dense grid via triangulation. Figure 23

shows LAMO cannot capture the singularities of u and log |∇u|. Furthermore, once the

complex singularities appear, the performance of LAMO will be affected.

4.4 Adaptive Fourier Mamba operator

4.4.1 AFMO Architecture

AFMO is a novel neural operator architecture that synergizes the mathematical groundness

of AFD theory with the efficiency of structured SSMs in the frenquency domain Gu &

Dao (2023); Parnichkun et al. (2024). Different from LaMO Tiwari et al. (2025), which
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Figure 23: The predicted results produced by LaMO compared to the ground truth.
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compresses the physical tokens into a fixed-size latent representation, AFMO utilizes a multi-

layer fully-connected feedforward neural network (MLP) to first map the encoded tokens to

their counterparts on the reproducing kernel Hilbert space (RKHS), and then iteratively

refine them by a series of processing blocks. Each block uniquely integrates two components:

(i) a TM layer containing global spectral transform via data-dependent TM bases, and (ii) a

bidirectional SSM Gu et al. (2021); Gu & Dao (2023) parameterized by transfer functions in

the frequency domain Parnichkun et al. (2024) to efficiently capture long-range dependencies

within the RKHS.

Neural architecture. Given the parameter function (input) a, the output of AFMO,

denoted as ûN,θ, is:

ûN,θ = Gθ(a) =
(
Q ◦ SN ◦ LN ◦ · · · ◦ S1 ◦ L1 ◦ R ◦ P

)
(a), (4.4.1)

where ◦ is the function composition, N is the number of processing blocks, P is the lifting

operator which encodes into a lower-dimensional space (maps the input to the first latent

representation z0) Tiwari et al. (2025); Li et al. (2020b), Q is the corresponding projection

operator mapping the lower-dimensional space back to the original space (maps the final

latent representation zN+1 to the output) Tiwari et al. (2025); Li et al. (2020b), R is a

multi-layer neural network mapping the physical token to an RKHS, Li = SSMi ◦ TMi (i =

1, . . . , N) is the processing block of AFMO (which consists of a TM layer and a bidirectional

SSM), and S i (i = 1, . . . , N) are aggregation layers with skip connections. These aggregation

layers not only receive the final output from the layer sequence but also have access to the

intermediate outputs from each of the preceding layers.

The lifting operator, P , projects the Ns physical token inputs into a compressed set

of M encoded tokens, where M ≪ Ns. This projection is achieved via a cross-attention

mechanism. A learnable query array, L ∈ RM×Dembed , acts as the query. The key and value

pairs are constructed by combining a linear projection of the input features xphys with a
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positional embedding of their coordinates gphys generated by a positional encoding network

PEN. Here, xphys ∈ RNs×Din stacks the feature vectors {xi}Ns
i=1 and gphys ∈ RNs×d stacks

the coordinates {gi}Ns
i=1, and the physical token is essentially pair (gi,xi). The process for

generating the initial representation z0 is formally defined as:

kv = Linear(xphys) + PEN(gphys),

z′0 = CrossAttn(query = L, key = kv, value = kv),

z0 = z′0 + FFN(z′0),

(4.4.2)

where the output of the cross-attention module is processed through a residual connection

and a standard feed-forward network FFN.

The mapping operator, denoted by R, acts on the encoded representation produced by

the lifting operator P , which transforms this discrete encoded tokens into a representation

within a continuous function space. Let z0 ∈ RM×Dembed be the set of encoded tokens

generated by P , the operatorR : RM×Dembed → H maps this representation to its counterpart

in an RKHS H. This mapping is typically implemented as a multi-layer fully-connected

feedforward network MLP, which processes each token independently as:

z1 = R(z0) = MLP(z0), (4.4.3)

where z1 denotes the projected tokens in the RKHS. We remark that, the mapping operator

R maps the encoded tokens z0 to the new tokens z1 in H without knowing the physical

information xphys and gphys.

The TM layer, denoted by TMi (i = 1, . . . , N), performs a global convolution via a

spectral transform, where the reproducing kernels and TM bases are constructed from data-

dependent poles. To define the reproducing kernels, we parameterize a small MLP to predict

a set of i complex values called “poles” {ak}ik=1 (denoted as a1:i) located in the unit disk

D = {z ∈ C : |z| < 1} from tokens zi. Once we have the set of poles, we can explicitly define
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the reproducing kernel Ka(z) as:

Ka(z) =
1

1− az
, (4.4.4)

where z ∈ H and a is a single pole satisfying |a| < 1. Intuitively, we remark that each pole

can be viewed as a “tuning knob” that selects a particular spatial pattern in the solution,

with its location in the complex plane controlling how localized that pattern is. Adaptive

poles allow AFMO to survey more heavily in regions where the parameters change rapidly,

while using fewer poles in smooth regions. Across layers, the poles evolve from broad, coarse

patterns in early layers to more refined, problem-specific patterns in deeper layers.

To generalize on irregular geometries, the kernels in Equation 4.4.4 need to be modified

to become orthonormal. These modified kernels are also known as the TM bases due to their

deep connection to TM systems. The first basis, denoted as B1, is simply the normalized

kernel of Equation 4.4.4 with pole a1 as B1(z; a1) =

√
1−|a1|2
1−a1z . Then, we start with

√
1−|a2|2
1−a2z ,

but it is not orthogonal to B1. We reach the orthogonality by subtracting its projection

onto B1, and we get B2(z; a1:2) =

√
1−|a2|2
1−a2z

(
z−a1
1−a1z

)
after normalization. This way, the bases

Bi are finally formulated as:

Bi(z; a1:i) =

√
1− |ai|2
1− aiz

i−1∏
j=1

z − aj
1− ajz

, (4.4.5)

where z ∈ H and a1:i are poles learned by the small MLP satisfying |ak| < 1 for k = 1, . . . , i.

Overall, the i-th TM layer TMi applies a small MLP zi 7→ a1:i, and then construct the TM

bases Bi according to 4.4.5. We remark that, the tokens zi will be kept as the input of SSM
i

along with the TM bases Bi.

Bidirectional SSM block is effective in solving PDEs on irregular geometries Tiwari et al.

(2025) and employs inherent kernel integrals. However, this inherent kernel does not contain

information in the frequency domain, thereby falling short in capturing high-frequency and

singular features. To address this limitation, we utilize the transfer function in training

SSMs in the frequency domain Parnichkun et al. (2024). The SSM block SSMi generates the
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spectrum of output in the frequency domain Yi(e
iω) as the product of the spectrum of input

Z(eiω) and the transfer function Hi(e
iω), i.e., Z(eiω)Hi(e

iω). We point out that the output

is essentially the coefficient of discrete AFD operation with the form ⟨zi,Bi⟩ Qian (2010);

Qian et al. (2011), where the inner product is defined as ⟨x, f⟩ = 1
Ñ

∑Ñ−1
n=0 x[n]f(e

i2πn/Ñ).

Here, Ñ denotes the length of signal x = {x[n]}Ñ−1
n=0 .

Let us consider the impulse response hi of SSM block SSMi (linear time-invariant system)

as:

hi[n] =
1

2π

∫ 2π

0

Bi (eiω; a1:i)e
iωn dω. (4.4.6)

Then, the corresponding transfer function Hi can be obtained as:

Hi(e
iω) = Bi (eiω; a1:i). (4.4.7)

By setting the transfer function of SSM to be Equation 4.4.7, the SSM block computes

a correlation of the input zi and Bi:

Yi(e
iω) = Hi(e

iω)X(eiω) = Bi(eiω; a1:i)X(eiω) (4.4.8)

in the frequency domain. In the time domain, Equation 4.4.8 leads to the update of zi:

ẑi+1[ℓ] = (hi ∗ zi)[ℓ] =
M−1∑
n=0

zi[n]Bi

(
ei2π(n−ℓ)/M ; a1:i

)
, (4.4.9)

where ℓ denotes the time shift in the correlation operations. The zero-lag sample gives the

final output:

ẑi+1[0] = (hi ∗ zi)[0] =
M−1∑
n=0

zi[n]Bi

(
ei2πn/M ; a1:i

)
= ⟨zi,Bi⟩. (4.4.10)

Aggregation layers S i has N neural layers and combines the skip connection zi with the

intermediate outputs ẑi+1[0] = Li(zi) and Bi = TMi(zi):

z2 = S i(z1, ẑ2[0],B1) = ẑ2[0]⊙B1 for i = 1,

zi+1 = S i(zi, ẑi+1[0],Bi) = zi + (ẑi+1[0]⊙Bi) for i > 1,

(4.4.11)

where ⊙ denotes the element-wise (Hadamard) product.
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Output. Finally, the output of ûN,θ is the projection of zN+1 by the local transformation

Q as Li et al. (2020b):

ûN,θ = Q

(
N+1∑
i=1

(
M−1∑
n=0

zi[n]Bi

(
ei2πn/M ; a1:i

))
⊙Bi

)
. (4.4.12)

4.5 Properties of AFMO

Connections to AFD theory. Adaptive Fourier decomposition (AFD) is a novel signal

decomposition technique that leverages the Takenaka-Malmquist system and adaptive or-

thogonal bases Qian (2010); Qian et al. (2012). It admits a proved convergence of any signal

s ∈ H such that s =
∑∞

i=1⟨s,Bi⟩Bi Qian et al. (2011); Wang et al. (2022) for the chosen or-

thonormal bases Bi Saitoh et al. (2016). Thus, the output of Equation 4.4.11 zi+1, is equiva-

lent to the AFD operation, i.e., zi+1 =
∑i

k=1⟨zk,Bk⟩Bk. Furthermore, the output in Equa-

tion 4.4.12 can be approximated as ûN,θ = Q
(∑N+1

i=1 ⟨zi,Bi⟩Bi

)
≈
∑N+1

i=1 ⟨ûi−1,θ,Bi⟩Bi,

where ûi−1,θ = Q(zi). This is also equivalent to the AFD operation. Thus, several theoret-

ical properties of AFMO, including convergence and error bound (see theorems and proofs

in Section 4.6), can be guaranteed with efficiently large layers, thanks to AFMO’s deep

connections with AFD theory.

Connections to Parnichkun et al. (2024). Parnichkun et al. (2024) proposed a state-

free inference of SSMs by learning the coefficients of the rational transfer function H instead

of the traditional state-space matrices A,B, and C Gu & Dao (2023), which is called rational

transfer function (RTF) approach. Specifically, the RTF learns H as:

H(z) = h0 +
b1z

−1 + b2z
−2 + · · ·+ bnz

−n

1 + a1z−1 + a2z−2 + · · ·+ anz−n
, (4.5.1)

where ai, bi, and h0 are denominator coefficients, numerator coefficients, and feedthrough

term, respectively. When it comes to AFMO, we push the formulation of transfer function

in Equation 4.4.7 and learn the rational transfer function by learning the poles a1:n (for n
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terms). Next, we show that our way of learning poles leads to a similar form of Equation

4.5.1 with n learned parameters (poles) as opposed to learning 2n+ 1 parameters in RTF.

We consider a (finite) Blaschke product

H(z) =
n∏
j=1

1− pjz
z − pj

, |pj| < 1, (4.5.2)

and convert it into a single ratio of polynomials whose coefficients match the parameterization

used to train SSMs. Denote numerator and denominator polynomials

Bpoly(z) =
n∏
j=1

(z − pj), Apoly(z) =
n∏
j=1

(1− pjz), (4.5.3)

so that H(z) =
Apoly(z)

Bpoly(z)
. Let d = degBpoly = degApoly = n. To obtain the form with a

unit constant term in the denominator, divide numerator and denominator by zd and then

normalize:

H̃(z) =

∑d
k=0 αkz

−k∑d
k=0 βkz

−k
normalize−−−−−→ h0 +

d∑
k=1

bk
1
z−k

/ (
1 +

d∑
k=1

akz
−k
)
. (4.5.4)

The SSM coefficients are then reduced as:

h0=
α0

β0
, bk=

αk
β0
, ak=

βk
β0
, k = 1, . . . , d.

Example (n = 2). With p1, p2 ∈ C, expand

Bpoly(z) = (z − p1)(z − p2) = z2 − (p1+p2)z + p1p2,

Apoly(z) = (1− p1z)(1− p2z) = 1− (p1+p2)z + (p1p2)z
2.

Divide by z2 to get polynomials in z−1 and normalize by the denominator’s constant term

(β0 = p1p2), yielding

H(z) =
1− (p1+p2)z

−1 + (p1p2)z
−2

p1p2 − (p1+p2)z−1 + z−2
=

h0 + b1z
−1 + b2z

−2

1 + a1z−1 + a2z−2
,

with

h0 =
1

p1p2
, b1 = −

p1 + p2
p1p2

, b2 = 1, a1 = −
p1 + p2
p1p2

, a2 =
1

p1p2
.
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Efficient computation for large n. Direct symbolic expansion scales poorly. Instead,

we multiply degree-1 polynomials using FFT-based convolution. Represent each factor by

its coefficient vector:

(z − pj) ↔ [1, −pj], (1− pjz) ↔ [1, −pj],

and iteratively convolve to form Bpoly and Apoly. By the convolution theorem, polynomial

multiplication is element-wise in the frequency domain, giving O(d log d) complexity. After

both polynomials are assembled, convert to z−1 by dividing by zd, then normalize by the

denominator’s constant term to obtain (h0, {ak}, {bk}) as in 4.5.4.

Computational complexity. In terms of computational complexity, AFMO has an over-

all computational complexity of O
(
N(M logM +MD)

)
+ O(NsMD). The former is from

the processing block, whereas the latter comes from P and Q. When M is treated as

a constant with M ≪ Ns and a local decoder is used, the dominant cost reduces to

O(NsD) + O(N M logM). Consequently, the complexity grows linearly with the number

of mesh points Ns. With mesh size fixed, it is approximately linear in the number of latent

tokens M and the number of blocks N .

4.6 Theoretical Results of AFMO

Basic settings. Let D = {z ∈ C : |z| < 1}. Consider a reproducing kernel Hilbert space

(RKHS) (H, ⟨·, ·⟩H) of complex-valued functions on D with the following properties.

Assumption 4.6.1 There is a family of normalized reproducing kernels {ea : a ∈ D} ⊂ H

such that

ea(z) =

√
1− |a|2
1− az

∈ H, ⟨f, ea⟩H = f(a)
√
1− |a|2 ∀ f ∈ H, a ∈ D. (4.6.1)

Given a pole sequence a1:∞ = (a1, a2, . . . ) ⊂ D, define the Takenaka–Malmquist (TM) system

by

B1(z) = ea1(z), Bi(z) = eai(z)
i−1∏
j=1

z − aj
1− ajz

(i ≥ 2). (4.6.2)
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Assume {Bi}i≥1 is an orthonormal system in H, and its closed linear span equals the model

space

KB := span{Bi : i ≥ 1} ⊆ H, (4.6.3)

where B is the Blaschke product with zeros {ai}.

AFMO notation. Let s ∈ H be the latent target representation and u⋆ = Q(s), where

Q : H → U is a Lipschitz decoder with constant LQ. Define the ideal TM coefficients and

partial sums

c⋆i := ⟨s,Bi⟩H, sN :=
N∑
i=1

c⋆i Bi. (4.6.4)

AFMO learns estimates ĉi of c
⋆
i (via an SSM in the frequency domain) and aggregates them

through the skip connection:

zi+1 := zi + ĉi Bi, z1 := 0. (4.6.5)

4.6.1 Aggregation identity and frequency-domain coefficient extraction

Lemma 4.6.1 Under 4.6.5, one has, for every N ∈ N,

zN+1 =
N∑
i=1

ĉi Bi. (4.6.6)

Proof. The proof is by induction. For N = 1, z2 = z1+ ĉ1B1 = ĉ1B1, so 4.6.6 holds. Assume

4.6.6 holds for N , i.e., zN+1 =
∑N

i=1 ĉi Bi. Then

zN+2 = zN+1 + ĉN+1BN+1 =
N+1∑
i=1

ĉi Bi,

which establishes the claim for N + 1.

Lemma 4.6.2 Suppose the i-th SSM has transfer function

Hi(e
iω) = Bi(eiω), (4.6.7)
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so that the block multiplies the input spectrum by Bi and outputs the zero-lag correlation. If

the discrete inner product used by AFMO is a consistent quadrature for ⟨·, ·⟩H on the class

{s} ∪ {Bi}, then

ĉi → ⟨s,Bi⟩H = c⋆i as the quadrature is refined. (4.6.8)

Proof. By 4.6.7, the block forms (pointwise on the grid) Yi = Bi · s in the transform do-

main; the zero-lag correlation is the discretized inner product ⟨s,Bi⟩disc. Consistency of the

quadrature implies ⟨s,Bi⟩disc → ⟨s,Bi⟩H as the grid is refined. Hence ĉi → c⋆i .

4.6.2 Convergence in the model space and projection error

Theorem 4.6.1 Under Assumption 4.6.1, if AFMO recovers the exact coefficients c⋆i =

⟨s,Bi⟩H, then

sN :=
N∑
i=1

c⋆iBi
H−−−→

N→∞
ΠKB

s, (4.6.9)

the orthogonal projection of s onto KB. Consequently,

∥u⋆ −Q(sN)∥ ≤ LQ ∥s− ΠKB
s∥H + LQ ∥ΠKB

s− sN∥H −−−→
N→∞

LQ dist(s,KB). (4.6.10)

Proof. Because {Bi} is an orthonormal basis (ONB) of KB, the Fourier expansion of ΠKB
s

in this ONB has coefficients ⟨s,Bi⟩H, and the N -th partial sum equals sN . Convergence in

norm to the projection is standard for orthogonal series in a Hilbert space, giving 4.6.9. The

bound 4.6.10 follows from Lipschitz continuity of Q:

∥u⋆ −Q(sN)∥ = ∥Q(s)−Q(sN)∥ ≤ LQ∥s− sN∥ ≤ LQ
(
∥s− ΠKB

s∥+ ∥ΠKB
s− sN∥

)
.

Remark 4.6.1 No greedy or maximal selection is used. The MLP-generated poles determine

KB; AFMO converges to ΠKB
s, and to s whenever s ∈ KB.
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4.6.3 Best N-term error and rates without greedy selection

Definition 4.6.1 Let D := {Bi(·; a1:i) : a1:i ∈ Di, i ∈ N} be the TM dictionary. Define the

best N-term error

EN(s) := inf
a1:N , c1:N

∥∥∥s− N∑
i=1

ci Bi(·; a1:i)
∥∥∥
H
. (4.6.11)

Theorem 4.6.2 Let ã1:N be the poles output by the MLP and set c⋆i = ⟨s,Bi(·; ã1:i)⟩H. If

AFMO learns ĉi, then∥∥∥s− N∑
i=1

ĉi Bi(·; ã1:i)
∥∥∥
H
≤ EN(s) + ∆pole(N) +

( N∑
i=1

|ĉi − c⋆i |2
)1

2
, (4.6.12)

where

∆pole(N) := inf
c1:N

∥∥∥s− N∑
i=1

ci Bi(·; ã1:i)
∥∥∥
H
− EN(s) ≥ 0. (4.6.13)

Proof. Choose abest1:N , c
best
1:N that attain (or ε-attain) EN(s) and denote

sbestN :=
N∑
i=1

cbesti Bi(·; abest1:i ).

Then∥∥∥∥∥s−
N∑
i=1

ĉiBi(·; ã1:i)

∥∥∥∥∥ ≤ ∥s− sbestN ∥+

∥∥∥∥∥sbestN −
N∑
i=1

c⋆iBi(·; ã1:i)

∥∥∥∥∥+
∥∥∥∥∥

N∑
i=1

(c⋆i − ĉi)Bi(·; ã1:i)

∥∥∥∥∥
≤ EN(s) + ∆pole(N) +

( N∑
i=1

|c⋆i − ĉi|2
)1/2

.

The last inequality uses the definition of ∆pole(N) and orthonormality of {Bi(·; ã1:i)}Ni=1.

Corollary 4.6.1 Assume for the fixed MLP-produced poles ã1:i that the exact TM coefficients

satisfy the weak-ℓp decay

|c⋆i |∗ ≤ C i−1/p, 0 < p < 2,

where (|c⋆i |∗) is the nonincreasing rearrangement. Then

inf
c1:N

∥∥∥s− N∑
i=1

ci Bi(·; ã1:i)
∥∥∥
H
= O

(
N

1
2
− 1

p
)
. (4.6.14)

If, in addition, ∆pole(N) = o(1) and
(∑N

i=1 |ĉi − c⋆i |2
)1/2

= o(1), then the AFMO error in

4.6.12 is O
(
N

1
2
− 1

p
)
.
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Proof. For an orthonormal system, the best N -term error equals the ℓ2 tail of the rearranged

coefficients. With |c⋆i |∗ ≤ Ci−1/p and p < 2,∑
i>N

(|c⋆i |∗)2 ≤ C2
∑
i>N

i−2/p = O
(
N1− 2

p
)
,

hence the norm error (square root) is O(N
1
2
− 1

p ).

4.6.4 Learning and discretization errors

Assumption 4.6.2 Each ĉi is obtained by ERM over m i.i.d. frequency samples using a

hypothesis class with effective capacity deff under sub-Gaussian noise, so that

E
[
|ĉi − c⋆i |

]
= O

(√
deff
m

)
. (4.6.15)

Lemma 4.6.3 Let ⟨·, ·⟩Ñ be a discrete inner product (e.g., uniform frequency grid) that is

a consistent quadrature for ⟨·, ·⟩H on the class generated by {s} ∪ {Bi}. Then there exists

εdisc(Ñ) ↓ 0 such that∣∣⟨f, g⟩H − ⟨f, g⟩Ñ ∣∣ ≤ εdisc(Ñ) for all f ∈ {s}, g ∈ {Bi}i≥1. (4.6.16)

Proof. Since point evaluations are continuous linear functionals in an RKHS and the involved

functions are continuous on compact subsets, standard quadrature consistency yields 4.6.16.

(If f, g are analytic in an annulus around the unit circle, one gets exponential rates; under

Sobolev regularity, algebraic rates.)

Theorem 4.6.3 Under Assumptions 4.6.1 and 4.6.2 and Lemma 4.6.3, the AFMO output

after N blocks and Ñ grid points satisfies

∥u⋆ − ûN,θ∥ ≤ LQ

(
EN(s) + ∆pole(N) +

( N∑
i=1

|ĉi − c⋆i |2
)1/2)

+ εdisc(Ñ), (4.6.17)

with E[|ĉi − c⋆i |] = O(
√
deff/m) and εdisc(Ñ)→ 0 as Ñ →∞.

Proof. Apply Theorem 4.6.2 to bound the latent H-error. Then use Lipschitz continuity of

Q to transfer the bound to the output space. The discretization error adds εdisc(Ñ) due to

4.6.16.
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4.6.5 Stability to pole perturbations

Lemma 4.6.4 For a, b ∈ D and z ∈ D,∣∣∣ 1

1− az
− 1

1− bz

∣∣∣ ≤ |a− b|
(1− |a|)(1− |b|)

, (4.6.18)∣∣∣√1− |a|2 −
√

1− |b|2
∣∣∣ ≤ |a− b|√

1−max{|a|, |b|}2
, (4.6.19)

and for F (z; a) =
z − a
1− az

,

|F (z; a)− F (z; b)| ≤ 4 |a− b|
(1− |a|)(1− |b|)

, |F (z; a)| ≤ 1. (4.6.20)

Proof. For 4.6.18,

1

1− az
− 1

1− bz
=

(a− b)z
(1− az)(1− bz)

,

and |1−az| ≥ 1−|a||z| ≥ 1−|a|, |z| ≤ 1, yielding the bound. For 4.6.19, use the mean-value

theorem on x 7→
√
1− x with x = |a|2, |b|2 and ||a|2− |b|2| ≤ |a− b|(|a|+ |b|) ≤ 2|a− b|. For

4.6.20, expand

F (z; a)− F (z; b) = (b− a) + (a− b)z2 + (ab− ba)z
(1− az)(1− bz)

,

and bound the numerator by C|a− b| for |z| ≤ 1, while the denominator is bounded below

by (1− |a|)(1− |b|).

Theorem 4.6.4 Let a1:i, ã1:i ∈ D with |ãj − aj| ≤ δj. Then there exist constants Ci > 0

(depending on a1:i) such that

∥Bi(·; ã1:i)−Bi(·; a1:i)∥H ≤ Ci

i∑
j=1

δj
1− |aj|

. (4.6.21)

Consequently, for any coefficients ĉi,∥∥∥ N∑
i=1

ĉi Bi(·; ã1:i)−
N∑
i=1

ĉi Bi(·; a1:i)
∥∥∥
H
≤
( N∑
i=1

|ĉi|Ci
)( N∑

j=1

δj
1− |aj|

)
. (4.6.22)

Proof. Write

Bi(·; a1:i) = eai

i−1∏
j=1

F (·; aj), Bi(·; ã1:i) = eãi

i−1∏
j=1

F (·; ãj).
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Use the product telescoping identity

i∏
k=1

Pk −
i∏

k=1

Qk =
i∑

k=1

(∏
j<k

Pj

)
(Pk −Qk)

(∏
j>k

Qj

)
,

with P1 = eãi , Q1 = eai , and Pk = F (·; ãk−1), Qk = F (·; ak−1) for k ≥ 2. Taking sup-norms

on D and using |F (·; a)| ≤ 1,

∥Bi(·; ã1:i)−Bi(·; a1:i)∥∞ ≤ ∥eãi − eai∥∞ +
i−1∑
j=1

∥F (·; ãj)− F (·; aj)∥∞.

Apply Lemma 4.6.4 to bound each term by a constant times δj/(1− |aj|). Since evaluation

functionals are continuous and the kernel is bounded on compact subsets, there exists an

embedding constant Cemb with ∥f∥H ≤ Cemb∥f∥∞ on the set considered; thus 4.6.21 follows

with Ci absorbing all constants. Finally,

∥∥∥ N∑
i=1

ĉi
(
Bi(·; ã1:i)−Bi(·; a1:i)

)∥∥∥
H
≤

N∑
i=1

|ĉi| ∥Bi(·; ã1:i)−Bi(·; a1:i)∥H,

giving 4.6.22.

4.6.6 End-to-end convergence without greedy selection

Theorem 4.6.5 Assume:

1. s ∈ KB;

2.
∑∞

i=1 E[|ĉi − c⋆i |2]1/2 <∞ (as sample size m→∞ and model capacity increase);

3. εdisc(Ñ)→ 0 as Ñ →∞.

Then

lim
N→∞

∥u⋆ − ûN,θ∥ = 0.

Proof. Since s ∈ KB and {Bi} is an ONB of KB, Theorem 4.6.1 gives sN → s in H. In

4.6.17, for this fixed pole sequence one has EN(s) = ∆pole(N) = 0. Using (2) and (3), we

obtain ∥u⋆ − ûN,θ∥ → 0.
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4.6.7 Connection of SSM to correlation and AFMO output

Proposition 4.6.1 With Hi(e
iω) = Bi(eiω), the i-th SSM block computes ĉi ≈ ⟨zi,Bi⟩H.

Hence, by Lemma 4.6.1, after N blocks

zN+1 =
N∑
i=1

ĉi Bi, ûN,θ = Q(zN+1). (4.6.23)

Proof. The coefficient claim follows from Lemma 4.6.2 applied to zi in place of s. The

aggregation identity is Lemma 4.6.1. The last equality is the definition of Q.

Corollary 4.6.2 All latent-space error bounds transfer to the PDE output space via

∥u⋆ − ûN,θ∥ ≤ LQ

∥∥∥s− N∑
i=1

ĉiBi

∥∥∥+ εdisc(Ñ).

4.7 Numerical Experiments

To illustrate the effectiveness of AFMO, we conduct numerical experiments with multiple

baseline neural operators on diverse datasets including three categories: (i) regular grids:

2-D Darcy flow equation and 2-D Navier-Stokes equation Li et al. (2020b), (ii) irregular

geometries: plasticity, airfoil, pipe, and elasticity Li et al. (2023b), (iii) PDEs with singu-

larities: European option pricing under the Black-Scholes equation, and 3-D Brusselator

(reaction-diffusion) equation from Cao et al. (2024).

Metric. In the training and evaluation stage, we utilize relative L2 error as the metric for

accuracy for all problems:

Rel-L2 =
1

N

N∑
i=1

||Gθ(ai)− G(ai)||L2

||G(ai)|L2

, (4.7.1)

where N denotes the number of samples. We also consider training time, the number of

parameters, and/or GPU memory usage as metrics for computational efficiency.
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Implementation details. For baselines, we follow the implementation settings of their

works. Note that the architecture of FNO Li et al. (2020b) has been updated after publica-

tion, we evaluate FNO using the newest architecture. For AFMO, we train 500 epochs on

all datasets. We use AdamW optimizer with decoupled weight decay 1× 10−5, base learning

rate 2×10−4, and a cosine decay schedule Loshchilov & Hutter (2017) with a linear warm-up

over the first 10% of total steps. The nonlinearity is GELU inside the processing blocks.

We clip global grad-norm at 0.5 each step. Unless stated otherwise, we use batch size 16,

latent width 128, 64 latent tokens, 32 adaptive poles, and 4 processing blocks with SSM

state size 16, depthwise 1-D convolution (per channel) of kernel size 4, channel expansion

ratio 2. Experiments are conducted on a Linux workstation running Ubuntu (kernel 6.14,

glibc 2.39) with Python 3.13.5 (Anaconda), PyTorch 2.8.0+cu129 (CUDA 12.9), an AMD

Ryzen 9 9950X (16-core) processor, and a single NVIDIA GeForce RTX 4090 (48 GB) GPU.

CUDA is enabled.

4.7.1 Numerical results of benchmark datasets

Table 16 shows the comprehensive comparison with various baselines on the six benchmark

problems. Among those problems, N-S and Darcy flow datasets apply regular grids, elas-

ticity dataset uses point clouds, whereas others are generated under structured meshes Li

et al. (2020b, 2023b). AFMO consistently outperforms existing SOTA models by an average

improvement of 28.42%. In particular, for airfoil, Darcy, and N-S datasets, the relative L2

error decreased more than 30% compared to the existing SOTA models, demonstrating the

superior performance of AFMO compared to existing frequency-, transformer-, and Mamba-

based models when solving complex dynamics and handling irregular geometries. To solve

the complex dynamics, Tiwari et al. (2025) incorporates latent representations and SSMs,

which can be considered as integral kernels without orthogonality. Meanwhile, ONO Xiao

et al. (2023b) uses an orthogonal attention to ensure orthogonality. Numerical results on

irregular geometries, including elasticity (0.0050 → 0.0043), plasticity (0.0007 → 0.0006),
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airfoil (0.0041→ 0.0020), and pipe (0.0026→ 0.0023), show that the systematic integration

of orthonormal kernels and SSMs leads to an exact AFD approximation and in turn improves

PDE solution accuracy in irregular geometries.

Table 16: Relative L2 error comparisons of AFMO with baselines across six benchmark

datasets. Lower relative L2 error is better. We quantify the improvement as the gain of

AFMO relative to the L2 error of the second best model. Bold means the best model,

underline means the second best model, red means the third best model, and blue means

the fourth best model.

Models Elasticity Plasticity Airfoil Pipe N-S Darcy

FNO Li et al. (2020b) 0.0229 0.0074 0.0138 0.0067 0.0417 0.0052

U-FNO Wen et al. (2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183

F-FNO Tran et al. (2021) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077

LNO Wang & Wang (2024) 0.0052 0.0029 0.0051 0.0026 0.0845 0.0049

ONO Xiao et al. (2023b) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076

WMT Gupta et al. (2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082

Galerkin Cao (2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084

LSM Wu et al. (2023) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065

OFormer Li et al. (2022b) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124

Transolver Wu et al. (2024) 0.0062 0.0013 0.0053 0.0047 0.0879 0.0059

Transolver++ Luo et al. (2025) 0.0064 0.0014 0.0051 0.0027 0.1010 0.0089

LAMO Tiwari et al. (2025) 0.0050 0.0007 0.0041 0.0038 0.0460 0.0039

AFMO (ours) 0.0043 0.0006 0.0020 0.0023 0.0278 0.0021

Improvement 14.0% 14.3% 51.2% 11.5% 33.3% 46.2%

Computational Efficiency. To explore the computational efficiency of AFMO, we focus

on Darcy and airfoil problems. On average, AFMO reaches 46.2% and 51.2% reduction in

training time over SOTA models in these two problems, as shown in Figure 24. With light
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architectures and small GPU memory, AFMO achieves the best training speed. Compared to

the SOTA neural operator, LaMO Tiwari et al. (2025), AFMO is ∼ 1.2× faster and ∼ 2.5×

lighter with similar GPU memory. Instead of using orthogonal attention as in ONO Xiao

et al. (2023b), AFMO employs bases in the orthogonal form (Equation 4.4.5), which does

not require an orthogonalization process, thereby saving ∼ 2.7× in training time and ∼ 3×

in GPU memory compared to ONO.

Scalability. We examine the computational scalability of AFMO on 2-D Darcy flow prob-

lem. From Table 17, we observe that, as the grid dimension changes from 64 to 128 (Ns

becomes 4 times larger), both training and inference times increase approximately linearly

(by about 4 times), which aligns with the computational complexity result mentioned ear-

lier. The memory usage remains relatively constant with only a slight increase. This reflects

the architectural characteristics of AFMO, where the main computations (SSM blocks) are

performed on M latent tokens rather than on Ns physical points, and thus the memory

footprint is largely decoupled from the input resolution Ns.

Table 17: AFMO is computationally scalable with respect to input resolution Ns.

Grid dimensions Grid size Ns Training time (sec/epoch) Inference time (sec/epoch) GPU memory (GB)

64× 64 4096 14.0 0.007 2.3

128× 128 16384 52.5 0.28 2.4

256× 256 65536 205.0 1.12 2.7

Learned pole distributions across layers. To understand how the adaptive poles are

selected and evolved, Figures 26 and 27 showcase the distributions per layer for 2-D Darcy

flow and 3-D Brusselator equations. The learned poles of AFMO on Darcy flow problem

tend to approach to the boundary of the unit disk, while those on the Brusselator problem

tend to be in the interior of the unit disk. The reason is that, the challenging characteristics

and singularities of the Darcy flow problem are located at the boundaries, and then more
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adaptive poles would be put there. Meanwhile, the complexity of the Brusselator problem

does not come from the boundaries. It comes from the local, non-linear reaction that happens

at every single point inside the domain. Therefore, most of the learned poles should be put

inside the unit disk.

4.7.2 European Options Pricing

To demonstrate the versatility of AFMO in solving different PDEs in different contexts, we

consider the European calls/puts problem modeled using the Black–Scholes equation with

continuous dividend yield q. For contract/market parameters (r, σ, q,K, T, is call), the

price V (S, t) satisfies the Black–Scholes equation Barles & Soner (1998):

∂tV + 1
2
σ2S2 ∂SSV + (r − q)S ∂SV − rV = 0, S ∈ [Smin, Smax], t ∈ [0, T ], (4.7.2)

with terminal payoff V (S, T ) = max(±(S − K), 0) (+ sign for calls, − for puts) and the

linear boundary conditions V (0, t) = 0 for calls, V (0, t) = Ke−r(T−t) for puts, and controlled

growth as S → ∞. This problem setting leads to two singular features: (i) the terminal

payoff kink at S = K (jump in ∂SV , concentration in ∂SSV ) as tnorm ↑ 1; and (ii) degeneracy

near small S as a result of the S2∂SSV diffusion term. Our goal is to learn the operator

that maps the parameters (r, σ, q,K, T, is call) to the price V (S, t). By comparing AFMO

with a set of top-performing solvers, we observe from Table 18 that average improvements of

25%, 4.1%, and 52.7% have been achieved by AFMO in terms of relative L2 error, training

time, and parameter counts, respectively. This indicates that AFMO can accurately and

efficiently solve PDE problems with singular features.

4.7.3 Ablation studies

Adaptive kernels vs. static kernels. We now consider the need and benefits of using

adaptive kernels. A kernel is adaptive when its parameterization (e.g., coefficients) varies

with the input. In this work, the formulation of Equation 4.4.5 varies with the learned poles
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Figure 24: Comparisons of training time per epoch, number of parameters, and GPU mem-

ory among existing SOTA models on (a) Darcy and (b) airfoil, where AFMO exhibits the

strongest incremental gains.

a1:i and thus is an adaptive kernel. We also randomly fix the value of a1:i for static kernels

for comparison. Furthermore, although a total of i poles are needed for i-th processing block,

one can still identify more poles and select the best i poles for implementation. Table 19

shows the relative L2 error results across six benchmark datasets and the European options

(EO) dataset. We find that, using adaptive kernels, the relative L2 errors reduce significantly

compared to using static poles for all benchmark problems considered. In fact, the relative

L2 errors when selecting only 4 poles are lower than those when selecting 32 static poles.

Need for ensuring orthogonality. To understand how orthogonal kernels affect AFMO

performance, we conduct another ablation study by using non-orthogonal kernels (i.e., Equa-

tion 4.4.4) in the AFMO framework. In this case, the transfer functions used in SSMs are

Hi(e
iω) = (1− |ai|2)

∑∞
n=0(ai)

neinω to match the output of AFD operation. Without orthog-

onality, AFMO experiences higher relative L2 error, especially for problems with irregular

geometries (e.g., airfoil 0.0020→ 0.0083 and elasticity 0.0043→ 0.0094). At the same time,

the training time also increases by ∼ 50.3% per epoch on average across all six benchmark
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Table 18: European option pricing: relative L2 error and resource profile. Lower is better

for error, GPU memory, and training time. Parameter counts shown in millions. Bold =

best, underline = second best, and red = third best.

Models Rel. L2 (↓) Training Time (sec/epoch, ↓) Params (M, ↓)

FNO Li et al. (2020b) 0.0016 25.1 3.78

LNO Wang & Wang (2024) 0.0010 21.7 2.56

Transolver Wu et al. (2024) 0.0012 22.3 5.91

LAMO Tiwari et al. (2025) 0.0008 22.5 3.52

AFMO (ours) 0.0006 20.8 1.21

Table 19: Relative L2 error comparisons for Static vs.Adaptive kernels across seven bench-

marks. Lower is better.

Models Number of poles Elasticity Plasticity Airfoil Pipe N-S Darcy EO

AFMO (static) 32 0.0097 0.0021 0.0067 0.0072 0.1103 0.0174 0.0035

AFMO (adaptive)

4 0.0056 0.0012 0.0033 0.0029 0.0311 0.0057 0.0014

6 0.0051 0.0010 0.0031 0.0027 0.0298 0.0047 0.0010

8 0.0049 0.0008 0.0027 0.0025 0.0281 0.0036 0.0009

16 0.0046 0.0008 0.0023 0.0028 0.0290 0.0029 0.0008

32 0.0043 0.0006 0.0020 0.0023 0.0278 0.0021 0.0006

64 0.0048 0.0007 0.0036 0.0031 0.0372 0.0046 0.0009
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datasets. This shows that the use of orthogonal kernels (i.e., TM systems) helps improve

both accuracy and computational efficiency of AFMO solver.

Choice of SSMs. Finally, we evaluate the choice of bidirectional SSMs in AFMO com-

pared to unidirectional SSMs and multidirectional SSMs. Results in Figure 25 indicate that

the choice of bidirectional SSMs in AFMO consistently outperforms other two SSMs in all

datasets.

Figure 25: Contribution of three SSMs across seven benchmark datasets. Note that we do

not apply weights shared for all experiments. Lower is better.

4.7.4 Experiment using real-world noisy dataset

To validate AFMO’s performance on noisy real-world datasets, we perform experiments us-

ing the latex glove DIC (Digital Image Correlation) original dataset You et al. (2022). The

goal is to learn the mechanical response of a nitrile glove sample directly from experimental

data, without assuming a known constitutive law. The goal is to predict the displacement

field at the current loading step. The input includes the spatial coordinates, the displace-

ment field from the previous step, and the current boundary displacement. We compare
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the performance of AFMO to the current SOTA of this dataset, IFNO, as well as FNO as

follows. To ensure fair comparison, we conduct experiments using the same settings as IFNO

with the number of hidden layers ranging from 3 to 12.

Table 20: Relative L2 error of AFMO and other baselines using the latex glove DIC (Digital

Image Correlation) original dataset.

Number of hidden layers AFMO IFNO FNO

3 2.87E-02 ± 4.29E-04 3.43E-02 ± 4.96E-04 3.40E-02 ± 4.09E-04

6 2.50E-02 ± 3.28E-04 3.34E-02 ± 4.53E-04 3.84E-02 ± 4.21E-04

12 2.32E-02 ± 4.20E-04 3.32E-02 ± 4.41E-04 4.66E-02 ± 1.47E-03

In addition, You et al. (2022) also reported the results of generalized Mooney-Rivlin (GMR)

model in two settings. The relative L2 errors of GMR model fitting and GMR inverse anal-

ysis are 3.30E-01 and 2.91E-01, respectively. We can observe that our AFMO consistently

outperforms other models in every L. Finally, the best reported result of IFNO is 3.30E-02

± 4.63E-04 when L = 24 You et al. (2022). Although we do not conduct the experiment

L = 24, our AFMO still performs better than the best result of IFNO.

3-D Brusselator problem. We introduce a new 3-D Brusselator (diffusion-reaction equa-

tion) problem using the dataset from Laplace neural operator (LNO) Cao et al. (2024). The

Brusselator problem is formulated as:

D
∂2y

∂x2
+ ky2 − ∂y

∂t
= f(x, t), (4.7.3)

where y(x, t) represents the concentration of chemical substances or particles at location x

and time t, f(x, t) is the source term and A is the amplitude of the source term. In this

problem, the diffusion coefficient, D = 0.01, and the reaction rate, k = 0.01.
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Figure 26: Learned poles distribution for the 2-D Darcy flow equation.

4.8 Distribution of selected poles reflects problem characteristics

To understand how AFMO’s pole selection process is adaptive to the characteristics and

nature of the problem, we illustrate the learned pole distributions for the 2-D Darcy flow

problem and 3-D Brusselator problem in Figures 26. To clarify, here we give a brief overview

of the visualization results: The distribution of selected poles for the 2-D Darcy flow problem

is shown in Figures 26 and 27, respectively.

We observe that, across the layers, the learned poles of AFMO on Darcy flow problem

tend to approach to the boundary of the unit disk, while those on the Brusselator problem

tend to be in the interior of the unit disk. The reason is that, Darcy flow problem is an
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Figure 27: Learned poles distribution for the 3-D Brusselator equation.
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elliptic equation, which is a smoothing operator. Thus, even though the input coefficient

(the permeability) is very rough and discontinuous, the solution inside the domain will be

well-behaved. Therefore, the challenging characteristics and singularities of the Darcy flow

problem are located at the boundaries, and then more adaptive poles would be put there.

Meanwhile, the complexity of the Brusselator problem does not come from the boundaries.

It comes from the local, non-linear reaction that happens at every single point inside the

domain. Therefore, most of the learned poles should be put inside the unit disk.

126



CHAPTER V

INVERSE PROBLEMS IN BANACH SPACE

5.1 Preliminaries

5.1.1 Inverse problem in Hilbert vs. Banach spaces

A Hilbert space is a complete inner product space (i.e., a vector space equipped with an

inner product that induces a norm), and every Cauchy sequence in the space converges with

respect to this norm. The interpretability given by the inner product has enabled rigorous

convergence analysis and comprehensive application regularization techniques to be applied

for solving inverse problems in Hilbert spaces over the last decades. However, for numerous

inverse problems in PDEs, the reasons for using a Hilbert space setting seem to be based on

conventions rather than an appropriate and realistic model choice. In fact, it has been shown

that the nature of Hilbert spaces cannot accurately capture the structures of parameter space

for many PDEs, and often a Banach space setting would be closer to reality Schuster et al.

(2012). As a generalization of the Hilbert space, a Banach space is a complete normed

vector space (i.e., a vector space equipped with a norm such that every Cauchy sequence

in the space converges with respect to this norm), and the main difference between Hilbert

and Banach spaces is the existence of an inner product and thus orthogonality. Banach

spaces are more suitable for solving inverse problems involving sparsity, discontinuities, or

measure-valued representations.
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5.1.2 Adaptive Fourier decomposition (AFD)

Adaptive Fourier decomposition (AFD) is a novel signal decomposition technique, which

is essentially established as a new approximation theorem in a reproducing kernel Hilbert

space (RKHS) sparsely in a given domain Ω as
∑∞

i=1⟨s,Bi⟩Bi for the chosen orthonormal

bases Bi Qian (2010); Qian et al. (2012); Saitoh et al. (2016). Compared to conventional

signal decomposition approaches, AFD achieves higher accuracy and significant computa-

tional speedup. AFD was first proposed for the Hardy space Qian (2010); Qian et al. (2011,

2012), then extended to the Bergman space Wu et al. (2022), random signals Qian (2022),

and manifolds Song & Sun (2022).

For classic AFD in RKHS, the sparse bases {Bi}i are made orthonormal to each other

by applying the Gram-Schmidt orthogonalization process to the normalized reproducing

kernels associated with different “poles”, which are a set of complex numbers {ai}i that

are adaptively selected. For instance, in classic AFD in Hardy space H2 (a specific type of

Hilbert space consisting of holomorphic functions defined on the unit disk), a common choice

of reproducing kernel is the normalized Szegö kernel, defined as ea(z) =

√
1−|a|2
1−az , where a

belongs to the unit disk. Then, to construct the orthonormal bases Bi, one selects a sequence

of distinct poles {ai}i, substitutes them into the normalized Szegö kernel expression, and

applies the Gram-Schmidt orthogonalization process on eai(z).

To adaptively select the sequence of poles such that convergence of AFD approximation

is ensured, one shall follow the so-called “maximal selection principle” Song & Sun

(2022), such that the resulting |⟨s,Bi⟩| is as large as possible. This is similar to a greedy

search algorithm. Specifically, to select the next pole ai given i − 1 already selected poles,

a1, . . . , ai−1 (hence bases B1, . . . ,Bi−1), the corresponding orthonormal basis Bi needs to

satisfy:

|⟨s,Bi⟩| ≥ ρi sup
{
⟨s,Bbi

i ⟩ |bi ∈ Ω\{a1, . . . , ai−1}
}
, (5.1.1)

where 0 < ρ0 ≤ ρi < 1, Bb1
1 =

kb1
∥kb1∥H(Ω)

and Bbi
i =

kbi−
∑i−1

j=1⟨kbi ,Bj⟩Bj

||kbi−
∑i−1

j=1⟨kbi ,Bj⟩Bj ||H(Ω)

. Here, kbi is
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the reproducing kernel at bi. Under the under maximal selection principle, the convergence

of AFD approximation has been proven in Song & Sun (2022). In actual implementation,

however, we often want to strengthen Equation (5.1.1) by introducing an extra bias term

denoted as γi > 0 to enhance convergence. Essentially, this ensures that |⟨s,Bi⟩| is always

greater than the RHS of Equation (5.1.1) by at least γi. And the resulting updated maximal

selection principle formulation becomes:

γi ≤ |⟨s,Bi⟩| − ρi sup
{
⟨s,Bbi

i ⟩ |bi ∈ Ω\{a1, . . . , ai−1}
}
. (5.1.2)

5.2 AFD in reproducing kernel Banach space (RKBS)

The classic AFD, which operates on RKHS, leverages orthonormal bases. On the other hand,

one cannot properly define orthogonality and inner product in a Banach space. Instead, we

extend the inner product definition by adopting the concept of “dual pairing”, denoted

as ⟨·, ·⟩B,B∗ for the primal RKBS B and its dual B∗. Essentially, a dual pairing is a non-

degenerate bilinear map between two vector spaces that produces a scalar Brezis & Brézis

(2011). With this, we will adaptively identify poles following a similar maximal selection

principle, such that |⟨ri−1, J(Bi)⟩B,B∗| is as large as possible. Here, ri−1 = s − si−1 is the

residual between the true signal s and its (i−1)-th decomposed component, si−1. And J is

called duality map, which satisfies J(Bi) ∈ B∗ and ⟨Bi, J(Bi)⟩B,B∗ = ||Bi||2B. Specifically,

to select the next pole ai, the corresponding basis Bi needs to satisfy:

γi ≤ |⟨ri−1, J(Bi)⟩B,B∗| − ρi sup
Bi∈D

{|⟨ri−1, J(Bi)⟩B,B∗|} , (5.2.1)

which is analogous to Equation (5.1.2). In actual implementation, we find that setting γi to a

fixed value of 0.5 works well for most problem settings. Here, we define set D = {Bi|ai ∈ B}

(note that we no longer need to exclude already selected poles as the concept of orthogonality

does not hold in RKBS anymore), γi is the bias term, and 0 < ρ0 ≤ ρi < 1. With this, the

AFD operations in RKBS give s =
∑∞

i=1⟨ri−1, J(Bi)⟩B,B∗Bi. We remark that, to the best
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of our knowledge, such generalization of the AFD theory to Banach spaces has not been

proposed before.

Mathematical Properties of AFD in RKBS

.

The AFD operations in RKBS are conceptually illustrated in Algorithm 1. Note that

here, we do not yet consider the bias term γi.

Algorithm 1 AFD in RKBS

Require: Target function αtrue, dictionary D, duality map J , parameter ρi, tolerance ε,

maximum levels of decomposition N

1: Initialize: α0 ← 0, r0 ← αtrue

2: for i = 1 to N do

3: Kernel selection:

4: Choose Bi ∈ D such that

|⟨ri−1,Bi⟩B,B∗ | ≥ ρi sup
B∈D
|⟨ri−1,B⟩B,B∗|

5: Coefficient selection:

6: Compute ai ← ⟨ri−1, J(Bi)⟩B,B∗

7: Update:

8: αi ← αn−1 + aiBi

9: ri ← αtrue − αi

10: if ∥ri∥ < ε then

11: break

12: end if

13: end for

Here, we assume the following assumption holds. Especially, Assumption 3 is the property

(Γ) from Ganichev & Kalton (2009).
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1. B is a uniformly smooth and uniformly convex Banach space of functions on a domain

Ω, with dual space B∗.

2. D is defined as {Bai |ai ∈ B}, where Bai(·) =
Kz(·,ai)

||Kz(·,ai)||B
with poles ai. The linear span

of D is dense in B.

3. There exists C̃ > 0 such that for all x ∈ B with ∥x∥B = 1 and y ∈ B with ⟨y, J(x)⟩B,B∗ =

0, we have ⟨y, J(x+ y)⟩B,B∗ ≤ C̃(∥x+ y∥B − 1).

With these assumptions, we first show that the residual ri is decreasing with respect to i:

Theorem 5.2.1 At each iteration i ≥ 1, it holds that:

∥ri∥B < ∥ri−1∥B,

unless ⟨J(ri−1),Bi⟩B,B∗ = 0.

Proof. Define ϕ̃(a) = ∥ri−1 − aBi∥B. From Assumption 1, the uniform convexity of B

ensures ϕ̃ is strictly convex with a unique minimizer. Moreover, ϕ̃ is Gâteaux differentiable

in terms of its norm due to the uniform smoothness of B. Its directional derivative is

d
dt
∥ri−1 + th∥B

∣∣∣∣
t=0

=
ℜ⟨J(ri−1),h⟩B,B∗

∥ri−1∥B
. Now, we aim to find a direction h based on Bi that

decreases the norm, i.e., ℜ⟨J(ri−1), h⟩B,B∗ < 0. From , we choose h = − ⟨J(ri−1),Bi⟩B,B∗

|⟨J(ri−1),Bi⟩B,B∗ | , then

ℜ⟨J(ri−1), h⟩B,B∗ = ℜ⟨J(ri−1),−
⟨J(ri−1),Bi⟩B,B∗

|⟨J(ri−1),Bi⟩B,B∗|
Bi⟩B,B∗

= −ℜ( ⟨J(ri−1),Bi⟩B,B∗

|⟨J(ri−1),Bi⟩B,B∗|
⟨J(ri−1),Bi⟩B,B∗)

= −|⟨J(ri−1),Bi⟩B,B∗|.

(5.2.2)

If ⟨J(ri−1),Bi⟩B,B∗ ̸= 0, the results of Equation (5.2.2) is negative. So, ϕ̃(t) < ϕ̃(0) for t > 0.

Strict convexity then implies ϕ̃(ai) < ϕ̃(0) if ai ̸= 0, hence ∥ri∥B < ∥ri−1∥B.

Then, the convergence of AFD in RKBS can be shown as:

Theorem 5.2.2 The sequence {αi}Ni=1 generated by Algorithm 1 satisfies:

lim
i→∞
∥αtrue − αi∥B = 0.
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Proof. From Theorem 5.2.1, the sequence {∥ri∥B} is nonincreasing and its lower bound is

0. Thus, the sequence {∥ri∥B} converges. Assume its limit l > 0 for contradiction. Uniform

convexity from Assumption 1 implies the bounded {ri} has weak limit points r′ with ∥r′∥B ≤ l

by weak lower semicontinuity. By properties of the duality map J , we have:

sup
B∈D
|⟨ri−1, J(B)⟩B,B∗| = ∥ri−1∥B. (5.2.3)

Combining Equation (5.2.3) and |⟨ri−1,Bi⟩B,B∗| ≥ ρi supB∈D |⟨ri−1,B⟩B,B∗| leads to:

|⟨ri−1, J(Bi)⟩B,B∗| ≥ ρi∥ri−1∥B. (5.2.4)

From Xu & Roach (1991), we have the following inequality by setting p = 2:

∥x+ y∥2B ≤ ∥x∥2B + 2⟨J(x), y⟩B,B∗ + 2∥x∥2Bρ
(
∥y∥B
∥x∥B

)
, (5.2.5)

where ρ is the modulus of smoothness. By setting x = ri−1 and y = −aiBi and as-

suming that ai is chosen such that ⟨J(ri−1), aiBi⟩B,B∗ > 0, the term 2⟨J(x), y⟩B,B∗ =

−2⟨J(ri−1), aiBi⟩B,B∗ = −2|⟨J(ri−1), aiBi⟩B,B∗|. Then, the Equation (5.2.5) becomes:

∥ri∥2B ≤∥ri−1∥2B − 2|⟨J(ri−1), aiBi⟩B,B∗ |

+ 2ρ

(
|ai|
∥ri−1∥B

)
∥ri−1∥2B.

(5.2.6)

Assume, for contradiction, that supB∈D |⟨ri, J(B)⟩B,B∗| ̸→ 0. Then there exists δ > 0 such

that for infinitely many i, supB∈D |⟨ri, J(B)⟩B,B∗ | ≥ δ. For such i, the Equation (5.2.4)

yields |⟨ri−1, J(Bi)⟩B,B∗| ≥ ρiδ. Then, we normalize u = ri−1

∥ri−1∥B
and bi =

ai
∥ri−1∥B

, so ri
∥ri−1∥B

=

u−biBi. Then, the normalized version of Equation (5.2.4) is |⟨u, J(Bi)⟩B,B∗ | ≥ ρiδ
∥ri−1∥B

≥ ρiδ
l
.

Next, we utilize the decomposition technique as y = −biBi = αJ(u) + z, where α ∈ C and

⟨z, J(u)⟩B,B∗ = 0. Since ⟨y, J(u)⟩ = α, we have |⟨u, J(y)⟩B,B∗ | = |α|. And |α| ≥ ρiδ
′bi with

δ′ ≥ δ/l. The optimality condition is ⟨J(u+y), y⟩B,B∗ = 0, leading to α⟨J(u+y), J(u)⟩B,B∗ =

−⟨J(u + y), z⟩B,B∗ . If bi < kρi for a small k > 0, then y small implies that for ε > 0,

∥J(u + y) − J(u)∥B < ε. Therefore, we also have ∥α − ⟨J(u + y), z⟩B,B∗∥B < ε. From

Assumption 3, since ⟨z, J(u)⟩B,B∗ = 0, |⟨z, J(u + y)⟩B,B∗| ≤ C̃(∥u + y∥B − 1). With bi → 0,
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by smoothness, we obtain ∥u+y∥B−1 = O(bi), so |α| → 0, contradicting |α| ≥ ρiδ
′bi. Thus,

it holds that bi ≥ kρi for k > 0 depending on C̃ and the smoothness modulus. Substitute

them into Equation (5.2.5) leads to the term −2|⟨J(ri−1), aiBi⟩B,B∗| is at least c′ρ2i ∥ri−1∥2B

for the constant c′, and the term 2∥ri−1∥2Bρ(bi) is o(ρ2i ∥ri−1∥2B) since ρ(·) = o(·), yielding

∥ri∥2B ≤ ∥ri−1∥2B − cρ2i ∥ri−1∥2B, (5.2.7)

for c > 0. Assume that there exists δ > 0 such that for infinitely many indices ik (with

∥rik∥2B → l2), the decrease satisfies

∥rik∥2B − ∥rik+1∥2B ≥ cρ2ik∥rik∥
2
B ≥ cρ2l2/2 =: d > 0, (5.2.8)

where the last inequality holds for sufficiently large k since ∥rik∥2B → l2 and ρik ≥ ρ > 0.

Let S =
∑∞

k=1(∥rik∥2B − ∥rik+1∥2B) ≥
∑∞

k=1 d = ∞. Since the overall sequence decreases by

at most ∥r1∥2B − l2 <∞, but includes S =∞, which leads to a contradiction. Therefore, for

large M , the remaining decrease after iM is at least
∑

k>M d =∞, but it is upper bounded

by ∥riM∥2B − l2 <∞. Between ik and ik+1, the decrease is nonnegative. Thus, after m such

steps,

∥rik+m
∥2B ≤ ∥rik∥2B −md→ −∞ (m→∞), (5.2.9)

which is impossible for norms. The exponential form follows recursively. If decrease ≥

cρ2∥ri∥2B at each of m steps, finally it leads to

∥ri+m∥2B ≤ (1− cρ2)m∥ri∥2B → 0, (5.2.10)

contradicting convergence to l2 > 0.

Thus, supB∈D |⟨ri, J(B)⟩B,B∗ | → 0. For weak limit r′ of {rik}, ⟨rik , J(B)⟩ → ⟨r′, J(B)⟩ =

0 for all B ∈ D. Bijectivity of J and density of spanD imply {J(B)} generates dense

functionals, forcing r′ = 0. All weak limits are 0, but ∥ri∥B → l > 0 = ∥0∥B, contradicting

weak lower semicontinuity unless l = 0. Hence, limi→∞ ∥ri∥B = 0, so limi→∞ ∥αtrue−αi∥B =

0.
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5.3 AFD-guided Neural Operator Design
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Figure 28: Our proposed AFDONet-inv framework, whose design is guided by the AFD

theory and operation, for solving inverse PDE problems in Banach space. Note that the

elements in the figure are static representations of the corresponding theoretical component,

whereas the actual computation follows the dynamic, recursive update defined by Equation

(5.3.9).

Once we establish the theoretical framework for AFD in Banach space, we design a

tailored neural operator architecture, which we name as AFDONet-inv, that reproduces and

realizes this theoretical framework. AFDONet-inv is an AFD-based VAE architecture (see

Figure 28) to solve inverse PDE problems in Banach space. After the encoder, AFDONet-inv

identifies the closest RKBS where the latent variables reside using a latent-to-RKBS network.

Subsequently, AFDONet-inv reconstructs the PDE parameters by adaptively selecting the
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poles in a specially designed decoder network, thereby resembling the AFD operation.

5.3.1 Neural architecture

The encoder network. The encoder network maps the input x ∈ Rd (e.g., PDE solutions

in training dataset during training or test dataset during inference stage) to latent variables

in both the primal and dual latent spaces, which correspond to a Banach space B and its

dual space B∗, respectively. Note that during training, since the PDE parameters αtrue only

appear in the loss function, they are part of training dataset but not part of the input x to

the encoder. Each encoding branch follows the standard VAE framework. That is, for the

primal branch:

(
µp(x), log σ

2
p(x)

)
= Wp,2 (ϕ (Wp,1x)) , (5.3.1)

zp = µp(x) + σp(x)⊙ ε, ε ∼ N (0, I), (5.3.2)

where Wp,1 ∈ Rw×d, Wp,2 ∈ R2r×w are the weight matrices, ϕ(·) is the activation function,

and zp ∈ Rr is the latent variable in the primal space.

Similarly, for the dual branch:

(
µd(x), log σ

2
d(x)

)
= Wd,2 (ϕ (Wd,1x)) , (5.3.3)

zd = µd(x) + σd(x)⊙ ε, ε ∼ N (0, I), (5.3.4)

where Wd,1 ∈ RWe×d and Wd,2 ∈ R2r×We are the dual encoder weight matrices, and zd ∈ Rr

is the dual latent variable in B∗.

The latent-to-RKBS network. Given the latent variables zp and zd, our goal is to

determine their values in the parameter space, which lies in a RKBS. To do this, we extend

the latent-to-kernel idea from Lu et al. (2020a) and design a latent-to-RKBS network to

project the latent variable zp to its nearest RKBS where the kernel is constructed. And

then, its dual space in which the latent variable zd lie is obtained via the duality map

J(v) = ∥v∥p−2
p ·|v|p−2·v in the form of Lp norm. First, zp and zd are respectively mapped to the
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parameter space α̃ ∈ B and α̃∗ ∈ B∗ through two identical multilayer perceptron networks

(MLPs). Then, feature maps FM(·) will project α̃ and α̃∗ onto their corresponding RKBS

B and its dual B∗, respectively. In other words, the feature map network is designed to map

the latent vector zp ∈ Rr to N scalar coefficients in R needed for the kernel decomposition

(i.e., FM : Rr → RN). The latent-to-RKBS network learns the feature maps from a Banach

space B to its nearest RKBS B, where the reproducing kernel Kz for any pair of encoder

inputs (i.e., PDE solutions in training or test dataset) is given by:

Kz(x1, x2) =
N∑
i=1

FMi(zp) · ki(x1, x2). (5.3.5)

In Equation 5.3.5, N is the total number of basis kernels, FMi(zp) is the i-th feature map

coefficient for latent variable zp, and {ki(x1, x2)}i are the learned basis kernels are based on

a Fourier spectral kernel formulation. Here, ki(x1, x2) contains a series of learned parameters

in the spectral domain. Since these basis kernels are in RKBS, which is closed under finite

linear combinations, Kz lies in the RKBS as well.

Primal-dual propagation. The concept of dual pairing is realized in a primal-dual prop-

agation network. Consisting of a primal net and a dual net, it propagates and refines the

feature representations FM(α̃) ∈ B and J (FM(α̃)) ∈ B∗, which correspond to the latent

variables zp and zd, respectively. Here, the primal net performs the spectral convolution

S(f)(x), which transforms a given function f into the frequency domain via a 2D Fourier

transform Li et al. (2020b):

S(f)(x) = F−1 [χ(ξ) · F (f) (ξ) ·W (ξ)] (x), (5.3.6)

where F [·](ξ) is the Fourier transform at ξ, F−1[·](x) is its inverse Fourier transform at x,

χ(ξ) denotes the mode selector, and W (ξ) refers to the learnable weights in the frequency

domain. From an RKBS perspective, the spectral convolution S(f)(x) is equivalent to

a nonlocal kernel operator
∑

ξ wξ · ⟨f, φξ⟩ · ψξ(x), where wξ are learnable weights in the

frequency domain, φξ ∈ B∗ is the basis in the dual space, and ψξ ∈ B is the biorthogonal
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primal basis which satisfies ⟨ψξ, φη⟩ = δξη = 1 if ξ = η and = 0 otherwise Zhang et al. (2009).

On the other hand, the dual net performs a point-wise convolution C(f)(x) as Hua et al.

(2018):

C(f)(x) =
C∑
c′=1

Wcc′f
(c′)(x), (5.3.7)

where C is the number of input channels of f , f (c′)(x) refers to the value of f at x and

channel c′, and Wcc′ denotes the learned map from channel c′ to channel c. This point-wise

convolution resembles a Dirac-type kernel integral on its domain Ω as:

C(f)(x) =
∫
Ω

δ(x− y) ·W · f(y)dy. (5.3.8)

Finally, the residuals in the primal space and its dual space after each layer are updated

and propagated to the corresponding latent variables as:

zp,i = GELU ◦ BN (zp,i−1 + S(zp,i−1) + C(zp,i−1)) ,

zd,i = zd,i−1 + S(zd,i−1) + C(zd,i−1),

(5.3.9)

where zp,i, zd,i are the residuals of i-th layer in the primal space and its dual space with

zp,0 = FM(α̃) and zd,0 = J (FM(α̃)), respectively. The initial latent vector, zp, is used to

define α̃, and α̃ then defines the initial decoder input, zp,0. Here, GELU denotes the GELU

activation function and BN is the batch normalizing transform Ioffe & Szegedy (2015).

It can be shown that zp and zd in Equation (5.3.9) actually correspond to the residual ri

and its dual J(ri) defined in the AFD theory as:

Theorem 5.3.1 Let B be a uniformly smooth and uniformly convex Banach space, ri ∈ B

be the residual at step i in the AFD process, zp and zd are defined in Equation (5.3.9). Then,

for any ε > 0, there exists a choice of parameters W (ξ), Wcc′, and BN scalars such that:

∥zp,i − ri∥B < ε, and ∥zd,i − J(ri)∥B∗ < ε.

Note that, even though the variables zp,i are computationally represented as tensors, Theorem

5.3.1 shows that the learned network outputs behave as if they were the true theoretical

Banach space residuals ri.
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Without loss of generality, we consider the case B = Lp([0, L]d) for 1 < p < ∞. Before

giving the complete proof of Theorem 5.3.1, we introduce some lemmas as follows.

Lemma 5.3.1 Let B = Lp([0, L]d) for 1 < p < ∞, a uniformly smooth Banach space

admitting a Fourier transform F . Let (ψξ)ξ∈Zd be the normalized Fourier basis ψξ(x) =

e2πiξ·x/L, with Fourier coefficients f̂(ξ) = F(f)(ξ). Define the partial sum operators Sn :

B → B by Snf =
∑

|ξ|∞≤n f̂(ξ)ψξ, where |ξ|∞ = maxj |ξj|. Then, there exists C ′
p > 0

(depending on p and d, but independent of n) such that ∥Snf∥B ≤ (C ′
p)
d∥f∥B for all f ∈ B

and all n ∈ N.

Proof. First, we prove this lemma for d = 1 (torus T ∼= [0, L]) and then extend it to higher

dimensions. For d = 1, we have:

Snf(x) =
∑
|k|≤n

f̂(k)e2πikx/L

= f ∗Dn

:= f ∗

∑
|k|≤n

e2πikx/L

 .

(5.3.10)

Define f̃(x) = −i
∑

k∈Z sgn(k)f̂(k)e
2πikx/L, ∥f̃∥B ≤ Cp∥f∥B indicates supn ∥Sn∥B <∞ holds.

Consider the Riesz projection P+(f) =
∑

k≥0 f̂(k)e
2πikx/L. Then, P+(f) =

1
2
(f+ if̃)+ 1

2
f̂(0),

so boundedness of P+ on Lp is equivalent to the boundedness of ·̃. Since

Snf = f̂(0) +
n∑
k=1

(
f̂(k)e2πikx/L + f̂(−k)e−2πikx/L

)
= 2Re(P

(n)
+ )− f̂(0),

(5.3.11)

where P
(n)
+ (f) =

∑n
k=0 f̂(k)e

ikx and

∥P (n)
+ (f)− f∥B ≤ (M + 1)ε (5.3.12)

for a constant M > 0 and any ε > 0 from Miao (2014). From the generalized M. Riesz

Theorem Berkson & Gillespie (1985), it follows ∥f̃∥B ≤ Cp∥f∥B, which by the identity
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P+(f) =
1
2
(f + if̃) + 1

2
f̂(0), implies that the Riesz projection P+ is also bounded on B, with

∥P+f∥B ≤ C ′
p∥f∥B. (5.3.13)

Since P
(n)
+ f → P+f in B norm as n → ∞, it follows that {P (n)

+ }n∈N is uniformly bounded

on B, i.e.,

sup
n
∥P (n)

+ ∥B <∞. (5.3.14)

Therefore, one can obtain

∥Snf∥B ≤ 2∥P (n)
+ f∥B + |f̂(0)| · ∥1∥B

≤ 2Cp∥f∥B + C∥f∥B = C ′
p∥f∥B

(5.3.15)

for a constant C > 0 using the triangle inequality.

For d-dimensional case, we define the d-dimensional kernel Dd
n(x) =

∏d
j=1Dn(xj) and

the d-dimensional operator Sdn = Sn ⊗ · · · ⊗ Sn. From Equation (5.3.15), we have:

∥Sdnf∥B ≤ (C ′
p)
d∥f∥B. (5.3.16)

Lemma 5.3.2 Let P denote the space of trigonometric polynomials, i.e., finite linear com-

binations of plane waves ψξ(x) = e2πiξ·x/L for ξ ∈ Zd. Then, P is dense in B, meaning for

any f ∈ B and ϵ > 0, there exists p ∈ P such that ∥f − p∥B < ϵ. For any g ∈ P of degree at

most n, it holds that Sng = g, where Sng =
∑

|ξ|≤n ĝ(ξ)ψξ.

Proof. Since Td is compact with finite measure, continuous functions C(Td) are dense in

B(Td) for any 1 ≤ p < ∞. For f ∈ B, by Lusin’s theorem (every measurable function is

nearly continuous), for any ϵ > 0, there exists a compact K ⊂ Td with µ(Td \K) < ϵ and

f |K continuous, hence can be approximated by continuous g with ∥f − g∥B < ϵ.

Next, we prove that P is dense in C(Td). The Stone-Weierstrass theorem states that if A

is a subalgebra of C(X) that separates points (for any distinct x, y ∈ X, there exists f ∈ A

with f(x) ̸= f(y)) and contains constants, then A is dense in C(X) under the sup-norm.
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Following this, considering the algebra A = PR of real parts of P , A contains constants and

separates points: for distinct x, y ∈ Td, choose ξ ∈ Zd such that ξ · (x − y) ̸≡ 0 (mod 1),

then cos(2πξ ·x/L) ̸= cos(2πξ ·y/L). Moreover, A is closed under multiplication. Thus, A is

dense in C(Td;R). Next, for C(Td;C), density follows by approximating real and imaginary

parts separately, since P includes both cosines and sines. Therefore, given P dense in C(Td)

and C(Td) dense in B, implies P dense in B from transitivity of density.

Then, for g ∈ P with degree at most n, we have ĝ(ξ) = 0 for all |ξ| > n. Therefore, it

follows:

Sng =
∑
|ξ|≤n

ĝ(ξ)ψξ =
∑
ξ∈Zd

ĝ(ξ)ψξ = g, (5.3.17)

the last equality follows

g =
∑
ξ∈Zd

⟨g, ψξ⟩ψξ, (5.3.18)

where ⟨g, ψξ⟩ = ĝ(ξ).

Lemma 5.3.3 With the Assumption 1, by assuming that B admits a Fourier transform

F that is well-defined and invertible on a periodic domain [0, L]d), for the Fourier basis

of plane waves ψξ(x) = e2πiξ·x/L denoted as (ψξ)ξ∈Zd, and the biorthogonal dual functionals

(φξ)ξ∈Zd ⊂ B∗ satisfying f̂(ξ) = F(f)(ξ) = ⟨f, φξ⟩B,B∗ for any f ∈ B, then the inverse Fourier

transform satisfies F−1(f̂(ξ)) =
∑

ξ∈Zd f̂(ξ)ψξ(x) in the sense that the series converges to f

in the B-norm, i.e., limn→∞

∥∥∥f −∑|ξ|≤n f̂(ξ)ψξ

∥∥∥
B
= 0.

Proof. Following Lin et al. (2022), one can show that the plane waves ψξ(x) = e2πiξ·x/L span

a dense subspace of trigonometric polynomials in B. The corresponding dual functionals

φξ ∈ B∗ extract the Fourier coefficients via the pairing f̂(ξ) = ⟨f, φξ⟩B,B∗ . Biorthogonality,

given by ⟨ψξ, φη⟩B,B∗ = δξη, is ensured by the RKBS structure and follows from the spectral

theorem applied to the associated kernel integral operator. Then, we define the operator

Sn : B → B via Snf =
∑

|ξ|≤n f̂(ξ)ψξ. From Lemma 5.3.1, ∥Sn∥B→B is bounded by a

constant (C ′
p)
d independent of n.
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From Lemma 5.3.2 and uniform boundedness principle, Snf → f in B-norm for all

f ∈ B.

Remark 5.3.1 An important consequence is the Hausdorff–Young inequality:(∑
ξ

|f̂(ξ)|q
)1/q

≤ C∥f∥B, where
1

p
+

1

q
= 1, (5.3.19)

which provides a bound on the Fourier coefficients in ℓq, which facilitates convergence of the

Fourier series. For finite modes Λ ⊂ Zd, the sum is finite and exact, and the infinite case

follows by taking limits as |Λ| → ∞. Thus, the reconstruction defines the inverse Fourier

transform F−1(f̂(ξ)) =
∑

ξ f̂(ξ)ψξ(x) in B.

Lemma 5.3.4 It holds that

S(f)(x) =
∑
ξ∈Λ

wξ⟨f, φξ⟩B,B∗ψξ(x),

where wξ = W (ξ), φξ ∈ B∗ are dual bases, and ψξ ∈ B are biorthogonal primal bases with

⟨ψξ, φη⟩B,B∗ = δξη.

Proof. In spectral methods for RKBS, one can show that the Fourier transform diagonalizes

convolution operators Kovachki et al. (2021). Specifically, we assume a biorthogonal Fourier

basis (ψξ, φξ)ξ∈Zd , where ψξ(x) = e2πiξ·x/L for domain [0, L]d, and φξ are dual functionals

satisfying the biorthogonality from the reproducing property: ⟨f, φξ⟩ = f̂(ξ) = F(f)(ξ).

Then, the spectral convolution applies pointwise multiplication in frequency space:

Ŝ(f)(ξ) = χ(ξ)W (ξ)f̂(ξ). (5.3.20)

Taking the inverse Fourier transform on Equation (5.3.20) leads to:

S(f)(x) =
∑
ξ∈Λ

W (ξ)f̂(ξ)ψξ(x), (5.3.21)

where χ(ξ) = 1 for ξ ∈ Λ and 0 otherwise. Substituting f̂(ξ) = ⟨f, φξ⟩B,B∗ into Equation

(5.3.21) leads to

S(f)(x) =
∑
ξ∈Λ

W (ξ)⟨f, φξ⟩B,B∗ψξ(x). (5.3.22)
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Biorthogonality ⟨ψξ, φη⟩ = δξη follows from the Fourier basis orthogonality in the dual pair-

ing, ensured by the RKBS structure Li et al. (2022a).

Remark 5.3.2 Equation (5.3.22) is nonlocal because the kernel involves global frequency

modes rather than localized supports.

Lemma 5.3.5 For any continuous operator T : B → B and δ > 0, there exists a set of

parameters of W (ξ) in Equation (5.3.6) such that ∥S(g)−T (g)∥B < δ for all g in a bounded

subset of B.

Proof. First, we define integral operators T (f)(x) =
∫
KT (x, y)f(y)dy, with kernel KT con-

tinuous. Then, fixing a bounded set G ⊂ B, we say G is weakly compact since B is uni-

formly smooth and reflexive. By Arzelà-Ascoli theorem, continuous kernels KT (x, y) and

thus operator T (f) can be approximated uniformly on G. We denote the Fourier operator

TM(f) = F−1[
∑

|ξ|≤M K̂T (ξ)F(f)(ξ)], where K̂T (ξ) is the Fourier transform of the kernel

KT (x, y). From universal approximation theorem Kovachki et al. (2021), we have:

∥T − TM∥B → 0, as M →∞ (5.3.23)

Next, by setting Λ = {ξ : |ξ| ≤M}, χ(ξ) = 1Λ(ξ), and W (ξ) = K̂T (ξ), it follows

∥S − TM∥B → 0, as M →∞. (5.3.24)

Finally, substituting Equation (5.3.23) to Equation (5.3.24) leads to:

∥S(g)− T (g)∥B ≤ ∥S(g)− TM(g) + TM(g)− T (g)∥B

≤ ∥S(g)− TM(g)∥B + ∥T (g)− TM(g)∥B

<
δ

2
+
δ

2
= δ,

(5.3.25)

which completes the proof.

Lemma 5.3.6 Define C(f)(x) =
∫
Ω
δ(x− y) ·W · f(y) dy, where δ is the Dirac delta distri-

bution. The integral is well-defined in the distributional sense.
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Proof. First, we consider the single channel (C = 1,W = 1). In this case, we have C(f)(x) =

f(x) =
∫
Ω
δ(x−y)f(y) dy, where the integral is the pairing ⟨δx, f⟩B,B∗ in the dual space since

δx ∈ B∗ for spaces admitting point evaluations. Next, for multi-channel f = (f (1), . . . , f (C)),

we extend C(f)(c)(x) to
∑C

c′=1Wcc′f
(c′)(x). Then, it follows

C(f)(c)(x) =
C∑
c′=1

Wcc′f
(c′)(x)

=
C∑
c′=1

Wcc′

∫
Ω

δ(x− y)f (c′)(y) dy

=

∫
Ω

δ(x− y)(Wf(y))(c) dy,

(5.3.26)

where Wf(y) applies the matrix pointwise. Equation (5.3.26) becomes to

C(f)(x) =
∫
Ω

δ(x− y) ·W · f(y) dy, (5.3.27)

for f(y) ∈ RC .

Remark 5.3.3 C(f)(x) is a local projection because the kernel δ(x− y)W has support only

at y = x which projects onto the span of channels without spatial smearing. In practice, for

a discrete domain, it reduces to matrix multiplication at pixels. For a continuous domain, it

is actually the distributional convolution with a point mass.

Lemma 5.3.7 Finite-rank operators are dense in the space of compact operators.

Proof. It is equivalent to show for any δ > 0, there exists a finite-rank operator Km such

that ∥T −Km∥B < δ. Assume the operator T is compact, then its image on a unit ball B has

compact closure. Therefore, for any x ∈ BB, there exists vi ∈ B, such that ∥T (x)− vi∥B < δ

for any δ > 0. Now, we define a projection πV : range(T ) → V , which maps each T (x)

to its best approximation in V . It is well-defined because V is finite-dimensional and B is

a Banach space. Then, one can also define Km := πV ◦ T , which is a linear and bounded

operator. And the range of Km lies in the span of vi, implying that Km is finite-rank. This

way, one can verify ∥T (f)−Km(f)∥B = ∥T (f)− πV (T (f))∥B ≤ δ for any δ > 0 and f ∈ B.

143



Since Km(f) ∈ span{v1, . . . , vm}, one can formulate it as Km(f) =
∑m

i=1 ai(f) vi, for linear

functionals ai.

Lemma 5.3.8 C is finite-rank. For any operator T : B → B following T = I − P , where

P is a projection, and δ > 0, there exists Wcc′ such that ∥C(g) − T (g)∥B < δ for all g in a

bounded subset G ⊂ B, with the error decaying as the matrix rank (channel dimension) C

increases.

Proof. First, we show that C is finite-rank. Since B is an RKBS, the evaluation functional is

continuous, for f ∈ B, f(x) = ⟨f,K(·, x)⟩B,B∗ holds, and K(·, x) ∈ B∗ satisfies ∥K(·, x)∥B∗ <

∞. Let BC = B⊗RC , f = (f (1), . . . , f (C)) has evaluations f(x) = (f (1)(x), . . . , f (C)(x)) ∈ RC ,

with

f (c)(x) = ⟨f (c), K(·, x)⟩B,B∗ . (5.3.28)

For each channel c = 1, . . . , C, we have

C(f)(c)(x) =
C∑
c′=1

Wcc′f
(c′)(x). (5.3.29)

The reproducing property follows

f (c′)(x) = ⟨f (c′), K(·, x)⟩B,B∗ = ⟨f (c′), δx⟩B,B∗ (5.3.30)

in the distributional sense as long as B embeds into a space where δx is defined. Then, it

holds that

⟨f (c′), δx⟩B,B∗ =

∫
Ω

δ(x− y)f (c′)(y) dy (5.3.31)

in the weak sense. Therefore, we have:

C(f)(c)(x) =
C∑
c′=1

Wcc′⟨f (c′), δx⟩B,B∗

=
C∑
c′=1

Wcc′

∫
Ω

δ(x− y)f (c′)(y) dy.

(5.3.32)

Next, Equation (5.3.32) becomes:

C(f) =
C∑
c=1

C∑
c′=1

Wcc′⟨f,Bc′⟩BCBc, (5.3.33)
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where ⟨f,Bc′⟩BC = ⟨f (c′),Bc⟩B,B∗ for the basis Bc of B. The rank of C(f) is at most

c× c′ ≤ C2, so C(f) is finite-rank. We note that if an operator is finite-rank, it is bounded

and compact in Banach space B.

Moreover, we consider the operator T = I−P , where P is a projection operator. Assume

that P is finite-rank and thus compact, and then the operator T is also compact. Since T

is compact, for any δ > 0, there exists finite-rank approximation Km =
∑m

i=1 σi⟨·, ui⟩BCvi,

where ui, vi ∈ BC , such that

∥T (g)−Km(g)∥B <
δ

supg∈G ∥g∥BC

(5.3.34)

for g ∈ G from Lemma 5.3.7.

Then, by denoting A = I − P , from Equation (5.3.34), we have:

∥C(g)− T (g)∥BC =

∥∥∥∥∫
Ω

δ(x− y)(W − A(y))g(y) dy
∥∥∥∥
BC

=

(∫
Ω

∥(W − A(y))g(y)∥2RC dy

)1/2

≤ sup
y
∥W − A(y)∥BC

(∫
Ω

∥g(y)∥2RC dy

)1/2

≤ ϵ∥g∥BC < δ,

(5.3.35)

by choosing ϵ < δ/(2 sup ∥g∥BC ).

Now, we give the full proof of Theorem 5.3.1 assuming GELU is globally Lipschitz with

constant LGELU.

Proof. We start with the residual:

ri = αtrue − αi = (αtrue − αi−1)− (αi − αi−1)

= ri−1 − ⟨ri−1, J(Bi)⟩B,B∗Bi.

(5.3.36)

Then, let T (g) = ⟨g, J(Bi)⟩B,B∗Bi, from Lemma 5.3.5, one can obtain:

∥S(zp,i−1)− ⟨ri−1, J(Bi)⟩B,B∗Bi∥B <
ε

4LGELU

. (5.3.37)
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Next, from Lemma 5.3.8, we can also get:

∥C(zp,i−1)− (ri−1 − zp,i−1)− ⟨ri−1,J(Bi)⟩B,B∗Bi)∥B

<
ε

4LGELU

.
(5.3.38)

By adjusting the parameters in GELU (i.e., γ, β), one can show:

∥BN(zp,i−1 + S(zp,i−1) + C(zp,i−1))− (ri−1

− ⟨ri−1, J(Bi)⟩B,B∗Bi)∥B <
ε

2LGELU

.
(5.3.39)

By Lipschitz continuity of GELU, we have:

∥zp,i − ri∥B < LGELU ·
(

ε

4LGELU

+
ε

4LGELU

+
ε

2LGELU

)
< ε. (5.3.40)

Since J is continuous, one can show ∥zd,i − J(ri)∥B at the same way.

The AFD-type decoder network. Once the RKBS and its reproducing kernel Kz are

constructed, we design a decoder network based on the AFD operation to reconstruct pa-

rameters α from zp,i. First, we normalize the reproducing kernel Kz in Equation (5.3.5) as

Bi(·) = Kz(·,ai)
||Kz(·,ai)||B

, each associated with a pole ai. The set of these normalized reproducing

kernels is denoted as D = {Bi|ai ∈ B}. The decoder then adopts a dynamic convolutional

kernel network (CKN) Mairal et al. (2014); Chen et al. (2020b), in which, for each convolu-

tional layer i, (i) performs dual pairing between zp,i and the normalized reproducing kernel

Bi, (ii) assigns a multiplier 0 < ρ0 ≤ ρi < 1 to the output of each convolutional layer, and

(iii) incorporates skip connections for each convolutional layer. Finally, the output of the

dynamic CKN containing N convolutional layers is:

α̂N,θ =
N∑
i=1

⟨zp,i, J(Bi)⟩B,B∗Bi. (5.3.41)

Guided by the AFD theory, the selection of poles and their reproducing kernels follows

a similar maximal selection principle as in the AFD theory. Here, starting from Equation

(5.2.1), we can write an analogous condition for selecting poles as:

γi ≤ |⟨zp,i−1, J(Bi)⟩B,B∗| − ρi sup
Bi∈D

{|⟨zp,i−1, J(Bi)⟩B,B∗ |} . (5.3.42)
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With this, and leveraging the convergence behavior of AFD, we can show that our decoder

in AFDONet-inv converges as N →∞ by the following theorem:

Theorem 5.3.2 Let B be a uniformly smooth and uniformly convex Banach space, and let

α̂N,θ be the output of the dynamic CKN decoder with N layers. By selecting poles and bias

terms following the modified maximal selection principle of Equation (5.3.42), as N →∞:

∥α̂N,θ − αtrue∥B ≤ Ĉ

N∏
i=1

ρi · ∥r0∥B,

where Ĉ > 0 is a constant and r0 is the initial residual.

Before providing the full proof of Theorem 5.3.2, we give several definitions and lemmas first.

Definition 5.3.1 A Banach space B is uniformly convex if there exists a function δ : [0, 2]→

[0, 1], the modulus of convexity, such that for all u, v ∈ B with ∥u∥B = ∥v∥B = 1 and

∥u− v∥B ≥ τ , ∥∥∥∥u+ v

2

∥∥∥∥
B
≤ 1− δ(τ), δ(τ) > 0 for τ > 0.

B is uniformly smooth if the modulus of smoothness ρ(τ) = sup{∥u+τv∥B+∥u−τv∥B
2

−1 : ∥u∥B =

∥v∥B = 1} satisfies ρ(τ) = o(τ) as τ → 0.

Lemma 5.3.9 For any η > 0, there exist parameters in the primal-dual propagation such

that ∥zp,i − ri∥B < η and ∥zd,i − J(ri)∥B∗ < η for each i. Therefore, it holds that

|⟨zp,i, J(Bi+1)⟩B,B∗ − ⟨ri, J(Bi+1)⟩B,B∗| < η.

Proof. This lemma follows directly from Theorem 5.3.1.

Lemma 5.3.10 In the AFD operations, the residuals satisfy

∥ri∥2B ≤ ρ2i ∥ri−1∥2B,

where ρ2i = 1− δ
(
2
|⟨ri−1,J(Bi)⟩B,B∗ |

∥ri−1∥B

)
< 1, and Bi = maxBj∈D |⟨ri−1, J(Bj)⟩B,B∗|.
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Proof. For u = ri−1

∥ri−1∥B
and v =

⟨ri−1,J(Bi)⟩B,B∗Bi

∥ri−1∥B
, it follows∥∥∥∥ ri

∥ri−1∥B

∥∥∥∥
B
=

∥∥∥∥u− ⟨u, J(Bi)⟩B,B∗Bi

∥ri−1∥B

∥∥∥∥
B
= ∥u− v∥B . (5.3.43)

Since ∥u− v∥2B ≤ 1− δ (2∥u∥B∥v∥B), we have:

∥u− v∥2B ≤ 1− δ (2∥v∥B)

≤ 1− 2δ

(
|⟨ri−1, J(Bai)⟩B,B∗|

∥ri−1∥B

)
:= 1− ρi.

(5.3.44)

Equation (5.3.44) becomes to:

∥ri∥2B ≤ ρ2i ∥ri−1∥2B. (5.3.45)

Iterating Equation (5.3.45) leads to:

∥rN∥B ≤

(
N∏
i=1

ρi

)
∥r0∥B. (5.3.46)

Lemma 5.3.11 The bias terms satisfy

N∑
i=1

|γi| ≤

(
1−

N∏
i=1

ρi

)
∥r0∥B +Nε,

where the bias term satisfying γi ≤ |⟨zp,i−1, J(Bi)⟩|−ρi supBj∈D |⟨zp,i−1, J(Bj)⟩|, and ∥zp,i−1−

ri−1∥B < ε.

Proof. Assume D is rich in B, we have:

|γi| = |⟨zp,i−1, J(Bi)⟩| − ρi sup
Bj

|⟨zp,i−1, J(Bj)⟩|

≤ (1− ρi)∥zp,i−1∥B.
(5.3.47)

Now, from Theorem 5.3.1, one can have:

∥zp,i−1∥B ≤ ∥ri−1∥B + ∥zp,i−1 − ri−1∥B ≤ ∥ri−1∥B + ε (5.3.48)

for ε > 0.
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From Lemma 5.3.10, Equation (5.3.48) becomes to:

∥zp,i−1∥B ≤
i−1∏
j=1

ρj∥r0∥B + ε. (5.3.49)

Substituting Equation (5.3.47) into Equation (5.3.49) leads to:

|γi| ≤ (1− ρi)

(
i−1∏
j=1

ρj∥r0∥B + ε

)
. (5.3.50)

Then, we sum both sides of Equation (5.3.47) over i = 1 to N and get:

N∑
i=1

|γi| ≤
N∑
i=1

(1− ρi)

(
i−1∏
j=1

ρj∥r0∥B + ε

)

= ∥r0∥B
N∑
i=1

(1− ρi)
i−1∏
j=1

ρj + ε
N∑
i=1

(1− ρi)

≤ ∥r0∥B
N∑
i=1

(1− ρi)
i−1∏
j=1

ρj + εN.

(5.3.51)

For the first term in Equation (5.3.51), it follows

N∑
i=1

(1− ρi)
i−1∏
j=1

ρj =
N∑
i=1

(
i−1∏
j=1

ρj −
i∏

j=1

ρj

)

= (1− ρ1) + (ρ1 − ρ1ρ2) + (ρ1ρ2 − ρ1ρ2ρ3)

+ · · ·+ (
N−1∏
j=1

ρj −
N∏
j=1

ρj)

= 1−
N∏
j=1

ρj.

(5.3.52)

Putting everything together, we arrive:

N∑
i=1

|γi| ≤

(
1−

N∏
i=1

ρi

)
∥r0∥B +Nε, (5.3.53)

which completes the proof.

Now, we are safe to give the full proof of Theorem 5.3.2.
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Proof. To start with, we consider

∥α̂N,θ − αtrue∥B =
∥∥∥ N∑
i=1

⟨zp,i, J(Bi)⟩B,B∗Bi +
N∑
i=1

γi−

∞∑
i=1

⟨ri−1, J(Bi)⟩B,B∗Bi

∥∥∥
B

≤
N∑
i=1

|⟨zp,i − ri−1, J(Bi)⟩B,B∗| · ∥Bi∥B

+
N∑
i=1

|γi|+

∥∥∥∥∥
∞∑

i=N+1

⟨ri−1, J(Bi)⟩B,B∗Bi

∥∥∥∥∥
B

.

(5.3.54)

From Lemma 5.3.9, one can have:

|⟨zp,i − ri−1, J(Bi)⟩| < η, (5.3.55)

for any η > 0, which implies

N∑
i=1

|⟨zp,i − ri−1, J(Bi)⟩B,B∗ | < Nη =
ε

2
(5.3.56)

by setting η = ε
2N

. Then, we have:

αtrue =
∞∑
i=1

⟨ri−1, J(Bi)⟩B,B∗Bi, (5.3.57)

so the tail is ∥∥∥∥∥
∞∑

i=N+1

⟨ri−1, J(Bi)⟩B,B∗Bi

∥∥∥∥∥
B

= ∥rN∥B ≤
N∏
i=1

ρi∥r0∥B (5.3.58)

from Lemma 5.3.10. Next, from Lemma 5.3.11, the bias term γi satisfying:

N∑
i=1

|γi| ≤

(
1−

N∏
i=1

ρi

)
∥r0∥B +Nη

=

(
1−

N∏
i=1

ρi

)
∥r0∥B +

ε

2
.

(5.3.59)

By choosing γi ≤ (1− ρi)
∏i−1

j=1 ρj∥r0∥B, we have:

∥α̂N,θ − αtrue∥B ≤
ε

2
+

N∏
i=1

ρi∥r0∥B +
ε

2

= ε+
N∏
i=1

ρi∥r0∥B,

(5.3.60)

which completes the proof.
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5.3.2 Training

Overall, our AFDONet-inv model is trained end-to-end by minimizing the following loss

function:

L(θ) =
∣∣∣∣α̂N,θ − αtrue

∣∣∣∣p′
p′︸ ︷︷ ︸

reconstruction loss in Lp′

+ ωpDKL

(
N (µp, σ

2
p)
∥∥ N (0, I)

)︸ ︷︷ ︸
latent regularization loss in primal space

+ ωdDKL

(
N (µd, σ

2
d)∥ N (0, I)

)︸ ︷︷ ︸
latent regularization loss in dual space

.

(5.3.61)

The training dataset consists of various sets of PDE parameters and their corresponding

PDE solutions. The Adam optimizer with a learning rate of 5 × 10−4 is used to train our

AFDONet-inv model. In actual implementation of the model, we use p′ = 1 (corresponding

to L1 loss) and ωp = ωd = 1× 10−3 in the loss function of Equation (5.3.61).

5.3.3 Connections to the AFD theory

In AFDONet-inv, the encoder network first maps the input to its latent space, followed by a

latent-to-RKBS network which finds the corresponding nearest RKBS using a feature map

FM. During training, when minimizing the loss function of Equation (5.3.61) over different

sets of PDE solutions {xj}mj=1, we find that the optimal feature map FM∗ admits a finite

representation FM∗(α̃)(x) =
∑m

j=1 cjKz(x, xj) with coefficients cj ∈ R (see Section 5.3.4

for details). After that, the primal-dual propagation refines the value of latent variable in

the Banach space and its dual, and produces the input to each layer of the dynamic CKN.

This input is essentially the residual ri of AFD operation at each step i, as illustrated in

Theorem 5.3.1. In this regard, the AFD-type decoder basically replicates the AFD oper-

ations. Formally, let PN(α) =
∑N

i=1⟨ri−1, J(Bi)⟩B,B∗Bi be the N -term partial sum in the

AFD decomposition. Then, the decoder approximation satisfies:

Theorem 5.3.3 Let B be a uniformly smooth and uniformly convex Banach space, and let

α̂N,θ be the output of the AFD-type decoder after N layers. Then, for any ε > 0, there exists
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parameters in the primal net and dual net, such that:

∥α̂N,θ − PN(α)∥B ≤ ε+O

(
1√
N

)
∥α∥B.

Before proving Theorem 5.3.3, we give a lemma first.

Lemma 5.3.12 Let ℓ be a convex and L-Lipschitz loss function on a compact convex subset

B0 ⊆ B, and let Φ be a µ-strongly convex mirror map on B0. Then, the mirror descent

algorithm (MDA) with projected updates achieves a convergence rate of O(1/
√
N) for N

iterations:

ℓ(fN)− ℓ(f ∗) ≤ O

(
1√
N

)
,

where f ∗ is the minimizer, and the constant depends on L, µ, and the diameter of B0.

Proof. It follows from Kumar et al. (2024) by setting gN = gN−1 − η∂fN−1
L and fN =

ΠΦ
B0
((∂Φ)−1(gN)), where Π is the Bregman projection.

Remark 5.3.4 We remark that, AFD can be interpreted as a greedy variant of mirror de-

scent in RKBS, where each layer corresponds to a descent step with duality pairing approx-

imating subgradients, and the normalized kernels Bi are utilized to select the directions. In

AFD, the greedy selection maximizes the projection |⟨ri−1, J(Ba)⟩|, which is equivalent to a

subgradient descent step in the dual space, with the mirror map Φ(f) = 1
2
∥f∥2B. Furthermore,

ri = ri−1 − ⟨ri−1, J⟩B,B∗Bi is a projected mirror descent step.

With this, now we prove Theorem 5.3.3.

Proof. Define the loss function ℓ(f) = ∥α − f∥B on B0 = {f ∈ span(D) : ∥f∥B ≤ ∥α∥B}.

Since B is uniformly convex, B0 is compact. The function ℓ(f) is convex and Lipschitz:

|ℓ(f)− ℓ(g)| = |∥α− f∥B − ∥α− g∥B| ≤ ∥f − g∥B. (5.3.62)

One can know that the minimizer is f ∗ = α and ℓ(f ∗) = 0 holds in this case. In AFD, we

have

ri = ri−1 − ⟨ri−1, J(Bi)⟩B,B∗Bi (5.3.63)
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and

Pi(α) = Pi−1(α) + ⟨ri−1, J(Bi)⟩B,B∗Bi, (5.3.64)

where Bi maximizes |⟨ri−1, J(Bj)⟩B,B∗|. This way, AFD corresponds to a greedy mirror

descent step, where the subgradient direction is approximated by J(Bi). Denote fi = Pi(α),

so ri = α− fi. Furthermore, Equation (5.3.64) is equivalent to:

fi = fi−1 + ηiJ
∗(∂ℓ(fi−1)), (5.3.65)

where ηi = ⟨ri−1, J(Bi)⟩, and J∗ : B∗ → B is the inverse duality map since B is reflexive.

From Lemma 5.3.12, considering ℓ(f) = ∥α− f∥B on B0, we have

ℓ(fN)− ℓ(f ∗) = ∥α− fN∥B0 ≤ O

(
1√
N

)
, (5.3.66)

where the diameter diam(B0) ≤ 2∥α∥B. Since fN = PN(α), and ℓ(f
∗) = 0,

∥PN(α)− α∥B0 = ∥α− fN∥B0 ≤ O

(
1√
N

)
. (5.3.67)

Then, we generalize it to ∥α∥B by scaling diameter:

∥PN(α)− α∥B ≤ O

(
1√
N

)
∥α∥B. (5.3.68)

Finally, from Theorem 5.3.2, we obtain:

∥α̂N,θ − PN(α)∥B ≤ ∥α̂N,θ − α∥B + ∥α− PN(α)∥B

≤ Ĉ
N∏
i=1

ρi · ∥r0∥B +O

(
1√
N

)
∥α∥B

< ε+O

(
1√
N

)
∥α∥B,

(5.3.69)

which completes the proof.

5.3.4 The Optimal Feature Map

We denote the training data points here as (xi, yi). The empirical risk minimization in the

RKBS B is utilized in the form minf∈B
∑m

j=1 ℓ(FM(xj), yj) + λ∥FM∥B, where FM refers to
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the possible feature maps, ℓ is the loss function which is assumed to be convex, continuous,

and Lipschitz, and λ ≥ 0 is the regularization parameter. Since B is reflexive, we know

that the optimal feature map FM∗ as a minimizer exists. Then, we calculate it by solving

∂(
∑
ℓ(FM(xj), yj)) + λ∂∥FM∥B) = 0 following:

∂(
∑

ℓ(FM(xj), yj)) =
∑
j

∂uℓ(u, yj)|u=FM(xj) · ∂FM(xj)

=
∑
j

∂uℓ(u, yj)|u=FM(xj) ·K∗
z (xj, ·),

(5.3.70)

where ∂FM(xj) = K∗
z (xj, ·) ∈ B∗ from evaluation functional. Thus, we have ∂ℓ(FM) ⊂

span{K∗
z (xj, ·)}mj=1 in dual.

On the other hand, we have ∂∥FM∥B = J(FM)
∥FM∥B

if FM ̸= 0. We admit FM∗ follows the

form
∑m

j=1 cjKz(x, xj), where cj needs to be determined. Substituting it into the gradient

condition leads to:

∑
k

ckKz(xk, xj) + λ⟨J(FM∗), Kz(·, xj)⟩B,B∗ = −∂ℓ(FM∗(xj), yj), (5.3.71)

which is a linear system can be solved accordingly.

5.4 Experiments

In this section, we evaluate the performance of our AFDONet-inv on two commonly used

benchmark inverse problems by conducting extensive ablation studies and comparing the

solution accuracy and run time with state-of-the-art neural solvers, including NAO Yu et al.

(2024), NIPS Liu & Yu (2025), LNO Wang & Wang (2024), and MWT Gupta et al. (2021).

Each solver is trained for 1000 epochs for both benchmark problems. All experiments are

performed on a B760M GAMING WIFI PLUS desktop equipped with an Intel Core i5-

14600KF CPU and an NVIDIA GeForce RTX 4090 GPU (with 48GB GDDR6 memory).
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5.4.1 Problem settings and datasets

2-D Darcy flow. The first inverse problem we consider is the 2-D Darcy flow problem

introduced by Li et al. (2020c) and Yu et al. (2024). It takes the following form:

∇ ·
(
a(x)∇u(x)

)
= f(x), x ∈ [0, 1]2,

u(x) = 0, x ∈ ∂[0, 1]2,
(5.4.1)

where a(x) denotes the permeability field, and f(x) is the source term. Given the solution

u(x) and the source term f(x), here we aim to reconstruct the permeability field a(x).

Nonlinear magnetic Schrödinger equation. The second benchmark inverse problem

involves solving the magnetic Schrödinger equation on a complex manifoldM:(
∆A + q(|u(z)|2)

)
u(z) = 0, z ∈M,

u(z) = f, z ∈ ∂M,

(5.4.2)

where M = {z = (z1, z2) ∈ C2 : |z1|2 + |z2|2 ≤ 1} with boundary ∂M = S3, ∆A =

(d+ iA)∗(d+ iA) is the magnetic Laplacian (with d the exterior derivative and ∗ the Hodge

star with respect to the Kähler metric), q is a nonlinear function, and f is the boundary

term. In this problem, we aim to recover the potentials A and q from boundary conditions

in the Dirichlet-to-Neumann (DN) map ΛA,q : f 7→ ∂νu|∂M, where ν is the outward normal

vector, and u is the solution of Equation (5.4.2). Note that this inverse problem is more

challenging to solve than the one directly given solution u, as the DN map only retains

partial information of u.

Two datasets used in this work include Darcy flow (public dataset from Li et al. (2020c))

and nonlinear magnetic Schrödinger. For Darcy flow dataset, the coefficients a are generated

following a measure µ defined as µ = ψ (N (0, (−∆+ 9I)−2)), where the operator (−∆ +

9I)−2 utilizes a Neumann boundary condition. The field a is constructed to be piecewise

constant with random geometry and a fixed contrast of 4, determined by the mapping ψ(x) =

12 for x > 0 and ψ(x) = 3 for x ≤ 0. Solutions u are generated using a second-order finite

difference scheme on a high-resolution 241× 241 grid.
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For nonlinear magnetic Schrödinger dataset, we just need the Dirichlet-to-Neumann (DN)

map without needing to generate PDE solutions. That is, the DN map data serves as

the observation, rather than a solution field u. This data is generated by specifying the

functional class of the potentials A (magnetic) and q (scalar) and the boundary term f

on the complex manifold M. The potentials A and q represent the unknown parameters,

and the DN map Λ A, q : f 7→ ∂ νu| ∂M is computed by numerically solving the highly

nonlinear Schrödinger equation for various input boundary terms f and then calculating the

resulting normal derivative ∂νu at the boundary 2. The complete dataset consists of pairs

of the unknown potentials (A, q) and their corresponding simulated DN maps.

5.4.2 Ablation studies

We conduct the following set of ablation studies to illustrate the need for different components

in AFDONet-inv. In Scneario 1, we consider the AFDONet-inv architecture without primal-

dual propagation. In Scenario 2, we investigate the impact of considering the dual space by

removing the dual branch in the encoder network and the duality map J . Finally, in the third

study, we remove both primal-dual propagation and the dual space. Results in Tables 21

and 22 indicate that incorporating primal-dual propagation and dual space is necessary for

improving the overall accuracy of AFDONet-inv in terms of reducing MAE and relative L2

error. To explain this, we observe that, without the dual branch, the primal-dual propagation

only gives zp,i, which is the approximation of the residual ri in the AFD theory according to

Theorem 5.3.1. In this case, AFDONet-inv essentially approximates
∑N

i=1⟨ri,Bi⟩Bi, which

asymptotically converges under the pairing ⟨·, ·⟩ with an error O( 1√
N
). Meanwhile, when

we remove primal-dual propagation, the input to the AFD-type decoder is simply FM(α̃).

This way, AFDONet-inv essentially performs the operation
∑N

i=1⟨FM(α̃), J(Bi)⟩B,B∗Bi in

the Banach space, which converges with an error O( 1
Nk′ ) if the PDE parameters lie in Ck′ .

Finally, when both primal-dual propagation and the dual branch are removed, AFDONet-inv

performs the operation
∑N

i=1⟨FM(α̃),Bi⟩Bi, which may not even converge since the kernels
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{Bi}i are not necessarily orthogonal to each other.

Specifically, for the 2-D Darcy flow problem, the permeability field a(x) on a regular

domain [0, 1]2 is typically considered as a L∞ (or Cs′ for s′ < 0.5 Teng et al. (2024)) function

from a statistical or computational perspective due to its irregularity. Thus, in Scenario 1,

AFDONet-inv converges with an error O( 1
Ns′ ) while it converges with an error O( 1

N0.5 ) in

Scenario 2. This is consistent with the results shown in Table 21, in which the removal of

primal-dual propagation has more significant impact on solution accuracy compared to the

removal of the dual branch in the encoder. When both primal-dual propagation and dual

branch are eliminated from the AFDONet-inv framework, we observe the highest MAE and

relative L2 error values.

Models MAE Relative L2 error

Full 1.82E-01 ± 6.43E-02 6.64E-02 ± 1.38E-03

w/o prop. 3.18E-01 ± 1.06E-01 7.05E-01 ± 2.19E-02

w/o dual 2.39E-01 ± 5.32E-02 1.07E-01 ± 4.45E-02

w/o p.d. 3.56E-01 ± 7.01E-02 1.93E-01 ± 3.74E-02

Table 21: Comparison of MAE and relative L2 error in permeability field a(x) on Darcy flow

equation. Here and hereinafter, “Full” stands for the full AFDONet-inv model, “w/o prop.”

means “without primal-dual propagation” or Scenario 1 of the ablation studies, “w/o dual”

means “without dual branch” or Scenario 2 of the ablation studies, and “w/o p.d.” means

“without both primal-dual propagation and dual branch”.

For the magnetic Schrödinger equation problem on complex manifolds, the deterministic

results of Krupchyk et al. (2024) indicate that both A and q can be relaxed to C∞. This

implies a super-algebraic convergence behavior for AFDONet-inv when primal-dual propa-

gation is removed, which explains why both MAE and relative L2 error values are slightly

smaller for Scenario 1 compared to Scenario 2. Last but not least, removing both primal-

dual propagation and dual branch leads to the highest MAE and relative L2 error due to the
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worst convergence behavior (or even divergence) for the resulting AFDONet-inv framework.

Models MAE Relative L2 error

Full 1.54E-02 ± 2.78E-03 1.50E-05 ± 6.23E-07

w/o prop. 7.39E-02 ± 1.81E-02 3.06E-04 ± 1.75E-04

w/o dual 7.83E-02 ± 2.20E-05 3.47E-04 ± 1.10E-05

w/o p.d. 8.01E-02 ± 6.75E-03 3.58E-04 ± 3.51E-05

Table 22: Comparison of MAE and relative L2 error in potentials A and q on magnetic

Schrödinger equation.

5.4.3 Comparison with benchmark solvers

Tables 23 shows the MAE, relative L2 error, and computational efficiency of AFDONet-inv

compared to other benchmark solvers for the 2-D Darcy flow problem. In our experiments,

the architecture size and training conditions are the same for all methods, and the number

of parameters are different (due to the different structures present in different methods)

but are in the same order of magnitude. We observe that AFDONet-inv is the second

best performing solver in terms of MAE and outperforms all benchmark solvers in terms

of relative L2 error. Since the Darcy flow equation typically lies in L∞ space, which is a

Banach space, our AFDONet-inv incorporating RKBS into our model outperforms other

models. Furthermore, we also realize that for this problem, Hilbert space suffices because

the permeability field a(x) is often modeled with smoother priors, where the sparsity from

Banach space may not be the most significant. This explains the reason that models such

as NIPS also performs reasonably well.

Meanwhile, for the nonlinear magnetic Schrödinger equation problem, we see from Table

24 that AFDONet-inv achieves remarkable performance, as it has up to one order of mag-

nitude lower MAE and two to four orders of magnitude lower relative L2 error compared

to other solvers. Since the magnetic Schrödinger equation is highly nonlinear, its inverse
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Models MAE Relative L2 error Training time

Ours 1.82E-01 ± 6.43E-02 6.64E-02 ± 1.38E-03 2.69

NAO 1.11 ± 2.10E-01 7.71E-02 ± 2.09E-03 3.40

NIPS 1.05E-01 ± 4.71E-02 1.56E-01 ± 1.03E-01 0.96

LNO 2.78E-01 ± 3.07E-02 1.00 ± 3.48E-05 2.92

MWT 45.95± 2.48 9.73E-01 ± 6.72E-02 1.65

Table 23: Comparison of MAE, relative L2 error, training time (seconds per epoch) among

different models on Darcy flow equation.

problem is ill-posed, and non-smooth regularization such as L1 penalty terms can greatly

help promote sparsity when reconstructing potentials A and q. Note that sparsity is natu-

rally represented in an L1 (Banach) space, not an L2 (Hilbert) space. In this regard, our

proposed AFDONet-inv solver, grounded in a novel Banach space representer theorem Parhi

& Nowak (2021), can better capture irregular, sparse features on complex manifolds when

solving ill-posed inverse problems.

Finally, in terms of computational efficiency, results in Tables 23 suggest that AFDONet-

inv is competitive among all state-of-the-art benchmark solvers.

Models MAE Relative L2 error Training time

Ours 1.54E-02 ± 2.78E-03 1.50E-05 ± 6.23E-07 0.52

NAO 4.65E-01 ± 5.32E-02 6.29E-01 ± 1.96E-01 2.54

NIPS 2.19E-01 ± 9.73E-02 1.32E-01 ± 8.40E-02 0.30

LNO 1.86E-01 ± 6.15E-02 2.89E-03 ± 3.71E-04 0.90

MWT 3.18E-01 ± 1.56E-01 7.05E-01 ± 2.46E-02 1.86

Table 24: Comparison of MAE, relative L2 error, and training time (seconds per epoch)

among different models on magnetic Schrödinger equation.

From the nonlinear magnetic Schrödinger equation results in Table 24, we can quantify
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the limitation of Hilbert-space assumptions. This problem is highly ill-posed, and its solu-

tion on a complex manifold benefits from sparsity-promoting regularization, which naturally

matches a Banach space setting. From Table 24, it is clear that existing state-of-the-art

models including NIPS, NAO, and LNO, which are implicitly or explicitly grounded in

Hilbert-space frameworks, perform poorly. In contrast, our AFDONet-inv, designed for Ba-

nach spaces, achieves a relative error that is two to four orders of magnitude lower than these

benchmarks. This significant performance gap indicates how the Hilbert-space assumption

in existing models limits their performance in practice.

5.5 Additional Experiments

Here, we conduct an additional experiment considering the magnetic Schrödinger equation

problem on a regular rectangular domain [0, 1]× [0, 1]. The results are shown in Table 25.

Models MAE Relative L2 error

Ours 3.20E-02 5.30E-05

NAO 8.09E-01 1.01

NIPS 2.07E-01 8.05E-02

LNO 4.64E-01 1.86E-01

MWT 2.82E-01 1.00

Table 25: Comparison of MAE and relative L2 error among different models on magnetic

Schrödinger equation on [0, 1]× [0, 1].

Furthermore, we also explore the effect of data augmentation. Given that the data

augmentation process is achieved by random permutations. Here, we implement 100 random

permutations on top of the training data containing 6000 solution samples. We compare our

model to NAO and NIPS, whose performance heavily relies on data augmentation.
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Models MAE Relative L2 error Training time

Ours 9.94E-03 1.20E-05 2.52

NAO 5.98E-02 6.11E-03 2.54

NIPS 4.81E-02 4.29E-03 3.26

Table 26: Comparison of MAE, relative L2 error and training time (seconds per epoch)

among different models on magnetic Schrödinger equation on [0, 1]× [0, 1] under 100 random

permutations.
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CHAPTER VI

AUTOMATING THE DESIGN OF NEURAL OPERATORS VIA LARGE

LANGUAGE MODELS

Neural network (NN)–based solvers have shown great promise for efficiently solving non-

linear partial differential equations (PDEs) (Li et al., 2020a; Um et al., 2020; Xu & Darve,

2020; Song & Jiang, 2023a; Smith et al., 2020). Although NN-based approaches can produce

fast and accurate PDE solutions, a key limitation is that they are typically trained at a spe-

cific resolution, which leads to poor generalization to problems at other resolutions. While

Bar-Sinai et al. (2019) proposed an NN-based method that learns discretizations of a given

PDE from fine to coarse resolutions, it cannot be directly extended to PDEs with different

forms or coefficients. Overall, most NN-based approaches must be retrained to handle var-

ious resolutions. This motivates the development of resolution-free variants of NN solvers.

Noting that standard NN-based methods often rely on prior knowledge (e.g., PDE forms,

discretization schemes, coefficients, and boundary/initial conditions), operator learning has

been proposed to train neural operators that learn mappings from parameter/function spaces

to solution spaces with minimal prior knowledge of the PDE (Lu et al., 2019; Li et al., 2020b;

Tripura & Chakraborty, 2023; Gupta et al., 2021; Wang & Wang, 2024).

Among these neural operators, we observe that the top performers differ across PDE

problem types. For example, Wang & Wang (2024) reported that their Latent Neural Op-

erator (LNO) exhibits 1.08× and 2.42× relative ℓ2 error compared to transolver (Wu et al.,

2024) on the airfoil and plasticity datasets (Li et al., 2023b), respectively. Furthermore,

another key observation is that the performance of neural operators can improve or degrade

even with minor architectural changes. To date, the design of neural-operator architectures,
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often guided by intuition, expert experience, and trial-and-error, has been “more of an art

than a science” (Sanderse et al., 2025). Although neural operators such as the Fourier Neural

Operator (FNO) (Li et al., 2020b) and DeepONet (Lu et al., 2019) are grounded in theo-

retical insights, creating novel components that align with these insights still relies heavily

on human expertise. Therefore, theory-driven design of neural operators requires human

engagement and remains far from fully automated.

Large language model (LLM) agents have shown great promise in automating processes

via human interactions, including mobile tasks (Wen et al., 2024; Guan et al., 2024), hardware

design (Xu et al., 2024b), scientific discovery (Zimmermann et al., 2025; Filimonov, 2024;

Aamer et al., 2025), code generation (Koziolek et al., 2024; Xu et al., 2024a), hyperparameter

tuning (Zhang et al., 2023), and mathematical problem solving (Bian et al., 2025). For

solving PDE problems, hybrid approaches (Zhou et al., 2025; Lorsung & Farimani, 2024)

incorporate LLMs as components within neural architectures to improve performance. These

approaches do not involve process automation, and their architectures are not designed by

LLMs. In prior literature, fully automated LLM agents for PDEs include CodePDE (Li et al.,

2025) and PINNsAgent (Wuwu et al., 2025). Li et al. (2025) proposed LLM agents that

generate and evaluate the code of traditional PDE solvers, whereas PINNsAgent generates

code on top of the physics-informed neural network (PINN) architecture. Both methods

design the architectures of traditional and PINN-based solvers primarily based on numerical

performance rather than theoretical insights. To the best of our knowledge, no prior work

has focused on designing neural operators end-to-end with LLM agents guided by theoretical

insights.

To bridge the research gaps, we ask the following question question:

Can LLMs design accurate and efficient neural operators driven by theoretical insights?
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6.1 Related Work

Neural operators. Operator learning targets mappings between infinite-dimensional func-

tion spaces, enabling resolution- and mesh-independent surrogates for PDE families. Two

foundational approaches are DeepONet (Lu et al., 2019), which learns nonlinear operators

via a branch-trunk factorization, and the Fourier Neural Operator (FNO) (Li et al., 2020b),

which applies spectral convolutions to achieve strong resolution transfer on canonical el-

liptic/parabolic problems. Subsequent variants improve accuracy, efficiency, or inductive

bias: U-FNO couples Fourier mixing with U-Net refinements (Wen et al., 2022); F-FNO

factorizes spectral weight tensors to lower complexity (Tran et al., 2021); multiwavelet for-

mulations provide multiresolution locality and sparsity (Gupta et al., 2021, 2022; Tripura

& Chakraborty, 2023); ONO augments operator learning with orthogonalized kernels and

stability enhancements (Xiao et al., 2023b); Galerkin operators embed variational structure

(Cao, 2021); LSM exploits learned spectral methods (Wu et al., 2023); and transformer-style

operators (OFormer, Transolver) leverage attention for long-range coupling (Li et al., 2022b;

Wu et al., 2024). Latent designs (LNO, LaMO) compress fields into compact representations

to balance accuracy and cost (Wang & Wang, 2024; Tiwari et al., 2025). Beyond periodic

grids, irregular geometries and structured meshes (e.g., airfoil, plasticity, pipe, elasticity)

stress resolution transfer and generalization and have motivated the architectural choices

and benchmarks used in this work (Li et al., 2023b). Our study differs by asking whether an

LLM can select or synthesize such operator ingredients end-to-end, guided by mathematical

analysis rather than manual trial-and-error.

LLMs in scientific machine learning. LLMs have been used to automate elements of

scientific workflows: program synthesis and code repair (Koziolek et al., 2024; Xu et al.,

2024a), robotics/mobile task automation (Wen et al., 2024; Guan et al., 2024), hardware

and systems design (Xu et al., 2024b), scientific discovery pipelines (Zimmermann et al.,

2025; Filimonov, 2024; Aamer et al., 2025), hyperparameter tuning (Zhang et al., 2023),
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and mathematical problem solving (Bian et al., 2025). For PDEs, hybrid methods insert

LLMs as components within neural architectures or to provide natural-language rationales,

but stop short of automating the full design loop (Zhou et al., 2025; Lorsung & Farimani,

2024). Closer to our goal are fully automated agents that generate solvers: CodePDE

synthesizes and evaluates traditional PDE codes (Li et al., 2025), and PINNsAgent targets

PINN implementations (Wuwu et al., 2025). However, these systems optimize numerical

performance without enforcing operator-theoretic design principles. In contrast, we position

the LLM as a theory-aware designer that proposes and justifies operator choices (e.g., spectral

vs. multiresolution vs. latent), then compiles them into executable PyTorch implementations

subject to physics and numerical checks.

Automated agent systems. Role specialization and multi-agent coordination have been

shown to improve complex code generation and iterative refinement via planning, self-

critique, and division of labor (Carlander et al., 2024; Dong et al., 2024; Takagi et al.,

2025). Recent agentic SciML systems instantiate plan-execute-review loops for PDE tasks

but largely emphasize execution or empirical tuning (Li et al., 2025; Wuwu et al., 2025).

Our pipeline adopts a four-role decomposition, Theorist (formal derivation and architectural

justification), Programmer (faithful implementation), Critic (adversarial numerical/software

review), and Refiner (targeted fixes), explicitly coupling mathematical validation with soft-

ware iteration. This theory-aware agent design aims to reduce hallucinations, improve sta-

bility under discretization changes, and systematize operator selection, compared with prior

agent frameworks that lack principled operator-level guidance.

6.2 The Proposed LLM Agent Framework

6.2.1 Neural Operators

Neural operators is a mesh- and resolution- independent neural architectures that learn the

mapping from the parameter space to the solution space of the PDE problems. In general,
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consider a PDE defined on a spatial domain Ω ⊂ Rd and a time interval (0, T ]:

La[u(x, t)] = f(x, t), ∀(x, t) ∈ D × (0, T ], (6.2.1)

which is subject to a set of initial and boundary conditions. Here, the parameter function a ∈

A specifies the coefficients and initial and boundary conditions of Equation 6.2.1. In operator

learning, our goal is to construct an accurate approximation for G : A → F(D × [0, T ]),

which maps the parameter function a to the corresponding solution function u(x, t) ∈ F ,

via a parametric mapping Gθ. The aim is to learn θ such that Gθ ≈ G from a set of training

data {(aj, uj)}j.

6.2.2 Framework Overview

Designing neural operators from a scientific perspective requires several core steps: (i) select

or propose a strong neural-operator backbone such as the FNO (Li et al., 2020b) or DeepONet

(Lu et al., 2019); (ii) select or propose an appropriate mathematical theory that guarantees

desirable properties (e.g., convergence, approximation error, function spaces, etc.); (iii) up-

date the backbone architecture to align with the chosen theory; and (iv) implement and

debug the code. As illustrated in Figure, our framework employs a four-agent pipeline to

automate this workflow.

System Prompt. Prior studies show that role-playing instructions enable LLMs to collab-

orate under distinct roles, improving performance, particularly in code generation (Carlander

et al., 2024; Dong et al., 2024; Takagi et al., 2025). Building on this idea, we assign the follow-

ing roles via the system prompt: Theorist, a world-class research mathematician specializing

in scientific machine learning; Programmer, an expert PyTorch developer in scientific ma-

chine learning; Critic, a skeptical but fair adversarial reviewer for a top AI conference; and

Refiner, an expert PyTorch developer focused on debugging and refining complex models.
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Step 1: Problem Specification. For a given PDE problem, we first translate the math-

ematical formulation (6.2.1) into natural language that LLMs can readily understand. This

natural-language specification includes the problem name, equation, spatial domain, time in-

terval, initial conditions, boundary conditions, and source terms. Instead of presenting this

information in a paragraph, we use a concise, structured natural-language format, which is

effective in our framework. For example, we represent 1-D Burgers’ equation as:

Problem Statement

PDE Specification

---

name: 1D Burgers’ Equation

equation latex:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2

domain: x ∈ (0, 1), t ∈ (0, 1)

initial condition: u(x, 0) = u0(x).

boundary conditions: Periodic

viscosity: 0.01

---

Step 2: Propose Mathematical Theory (Theorist). The Theorist’s ultimate task is

to provide rigorous theoretical results to improve the performance of the selected backbone.

First, we provide the Theorist with a factory of existing neural operators, including FNO (Li
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et al., 2020b), DeepONet (Lu et al., 2019), Transolver (Wu et al., 2024), and LNO (Wang &

Wang, 2024), as well as classical architectures such as the variational autoencoder (Kingma

et al., 2013) and the Transformer (Li et al., 2022b). We also allow the Theorist to utilize

other backbones of its choosing. We then prompt the Theorist to develop clear, rigorous,

and efficient mathematical formulations that improve the selected backbone architecture for

the specific problem. In this way, the Theorist offers a complete formulation and provides

a tailored design of an updated neural architecture in natural language and mathematical

form. Finally, we prompt the Theorist to justify its choices and to implement self-correctness

checks as determined by the Theorist. The output of this step is a script that derives the

theoretical results and descriptions of the proposed neural operator.

Step 3: Code Generation (Programmer). After the Theorist provides the detailed

formulation and instructions, we prompt the Programmer to translate them into code for

the proposed neural operator, along with any necessary helper functions and package depen-

dencies. We instruct the Programmer to generate the code in PyTorch due to its wide use

in the machine learning community.

Step 4: Review Theoretical Results & Implementation (Critic). Motivated by

the peer-review mechanism of AI conferences, we prompt the Critic to (i) critically analyze

the mathematical derivation provided by the Theorist and the corresponding PyTorch code

from the Programmer, and (ii) identify potential inconsistencies in the derivation, edge

cases, numerical instabilities, and inefficiencies in the implementation. Finally, we instruct

the Critic to provide a structured list of potential issues and concrete suggestions to improve

the proposed neural operator.

Step 5: Refine Code (Refiner). The Refiner updates the implementation of the pro-

posed neural operator to address all issues and suggestions identified by the Critic.
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Step 6: Code Execution. After the updated Python code is executed, any bugs are

recorded and reported back to the Critic, who identifies issues and provides suggestions.

The Refiner then revises the code accordingly, and this process repeats until no bugs remain.

6.3 Numerical Experiments

Datasets. We evaluate the performance of neural operators designed by our proposed

LLM-agent framework across six benchmark datasets:

1. Darcy Flow (Li et al., 2020b): Represents 2D flow through porous media. The PDE

is discretized on a 421× 421 grid and downsampled to 85× 85. Inputs are coefficient

fields a(x), and outputs are solutions u(x, t). The dataset contains 1,000 training and

200 testing samples with varying medium structures.

2. Navier-Stokes (Li et al., 2020b): Models the 2D incompressible Navier–Stokes equa-

tion in vorticity form on the unit torus. Each sample is a 64× 64 spatiotemporal field

with 20 frames, where the first 10 frames are used to predict the next 10. The dataset

consists of 1,000 training and 200 testing samples.

3. Elasticity (Li et al., 2023b): Predicts the internal stress of an elastic material dis-

cretized into 972 points. Each input is a 972 × 2 tensor of point positions, and the

output is a 972 × 1 tensor of stresses. The dataset contains 1,000 training and 200

testing samples.

4. Plasticity (Li et al., 2023b): Focuses on predicting the deformation of a plastic ma-

terial under a die of arbitrary shape. The input is a structured mesh of size 101× 31,

and the output is the deformation over 20 timesteps, recorded as a 20× 101× 31× 4

tensor. The dataset includes 900 training and 80 testing samples.

5. Pipe (Li et al., 2023b): Estimates horizontal fluid velocity within pipes represented as

a structured mesh of size 129×129. The input tensor (129×129×2) encodes positions,
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while the output tensor (129 × 129 × 1) gives velocity values. The dataset has 1,000

training and 200 testing samples.

6. Airfoil (Li et al., 2023b): Concerns transonic flow over airfoils governed by the Euler

equations. Inputs are structured meshes of size 221×51, and outputs are Mach number

fields. The dataset includes 1,000 training and 200 testing samples derived from various

airfoil designs.

Metrics. We train and evaluate the designed neural operators using the relative ℓ2 error:

relative ℓ2 error =
1

N

N∑
i=1

∥G(ai)−G(ai)∥L2

∥G(ai)∥L2

, (6.3.1)

where N denotes the number of samples.

Furthermore, we evaluate the correctness and rigor of the mathematical formulations

produced by the Theorist through human expert review. The review was conducted by

three independent PhD candidates specializing in computational mathematics and neural

operators (who are not authors of this paper). The rubric was a binary “Yes/No” judgment

based on two criteria: 1) “Is the Theorist’s mathematical formulation (e.g., the derivation)

correct and sound?” and 2) “Is the connection between the chosen theory and the target

PDE justified and logical?”

Baselines. We compare LLM-designed neural operators to 10+ strong baselines and state-

of-the-art (SOTA) models designed by humans, including FNO (Li et al., 2020b), U-FNO

(Wen et al., 2022), F-FNO (Tran et al., 2021), LNO (Wang & Wang, 2024), ONO (Xiao

et al., 2023b), WMT (Gupta et al., 2022), Galerkin (Cao, 2021), LSM (Wu et al., 2023),

OFormer (Li et al., 2022b), Transolver (Wu et al., 2024), and LaMO (Tiwari et al., 2025).

Experimental Settings. We evaluate several LLMs in our framework, such as gpt-5,

gpt-5-mini, and the reasoning models o1 and o3. All experiments are conducted on a Linux
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workstation running Ubuntu (kernel 6.14, glibc 2.39) with Python 3.13.5 (Anaconda), Py-

Torch 2.8.0+cu129 (CUDA 12.9), an AMD Ryzen 9 9950X (16-core) processor, and a single

NVIDIA GeForce RTX 4090 (48 GB) GPU.

6.4 Results and analysis

6.4.1 Can LLMs design neural operators?

We evaluate the capacity of LLM-designed neural operators across six benchmark datasets

and find that they outperform existing SOTA models on five of the six datasets (Table 27).

Notably, the LLM generates diverse neural architectures tailored to different datasets, un-

derscoring its adaptability across a wide range of tasks. In terms of accuracy, LLM-designed

neural operators decrease the relative ℓ2 error by approximately ∼ 6%, depending on the

specific problem. Moreover, they demonstrate superior efficiency, achieving a 30-50% reduc-

tion in computational time and requiring two to three orders of magnitude fewer parameters

(Figure 29). These results suggest that LLMs are capable of designing neural operators

that are both efficient and accurate, grounded in theoretical principles. As a side note,

while LLM-generated neural operators do not achieve the highest performance on the Darcy

dataset, this trade-off in accuracy is made in favor of improved efficiency (see Figure 29(a)).

6.4.2 Does theory-aware design provide benefits?

To further explore the contribution of the theoretical insights provided by the Theorist in

the design process, we conduct ablation studies comparing our LLM-agent framework to a

variant without the Theorist. In the latter, without theoretical guidance, the LLM agents

generate neural-operator code directly (as in (Wuwu et al., 2025; Li et al., 2025)), and the

Critic reviews only the numerical aspects. In this way, neural operators are designed in

an art-driven rather than theory-aware paradigm. To evaluate the effectiveness of theory-

aware design, we measure the performance of both frameworks in terms of accuracy and
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Table 27: Relative ℓ2 error comparisons of LLM-designed neural operators with baselines

across six benchmark datasets. Lower relative ℓ2 error is better.

Models Elasticity Plasticity Airfoil Pipe N-S Darcy

FNO (Li et al., 2020b) 0.0229 0.0074 0.0138 0.0067 0.0417 0.0052

U-FNO (Wen et al., 2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183

F-FNO (Tran et al., 2021) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077

LNO (Wang & Wang, 2024) 0.0052 0.0029 0.0051 0.0026 0.0845 0.0049

ONO (Xiao et al., 2023b) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076

WMT (Gupta et al., 2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082

Galerkin (Cao, 2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084

LSM (Wu et al., 2023) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065

OFormer (Li et al., 2022b) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124

Transolver (Wu et al., 2024) 0.0062 0.0013 0.0053 0.0047 0.0879 0.0059

LAMO (Tiwari et al., 2025) 0.0050 0.0007 0.0041 0.0038 0.0460 0.0039

LLM (gpt-5) 0.0049 0.0018 0.0043 0.0030 0.0387 0.0132

LLM (gpt-5-mini) 0.0051 0.0023 0.0052 0.0032 0.0420 0.0134

LLM (o1) 0.0047 0.0007 0.0041 0.0023 0.0389 0.0068

LLM (o3) 0.0049 0.0007 0.0038 0.0022 0.0512 0.0064
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Figure 29: Comparison of computational efficiency including training time (sec per epoch),

GPU memory (GB), and parameters count (M) on (a) Darcy and (b) Airfoil datasets.

generalization.

Model Elasticity Plasticity Airfoil Pipe N-S Darcy

With Theorist

LLM (gpt-5) 0.0049 0.0018 0.0043 0.0030 0.0387 0.0132

LLM (gpt-5-mini) 0.0051 0.0023 0.0052 0.0032 0.0420 0.0134

LLM (o1) 0.0047 0.0007 0.0041 0.0023 0.0389 0.0068

LLM (o3) 0.0049 0.0007 0.0038 0.0022 0.0512 0.0064

Without Theorist

LLM (gpt-5) 0.0082 0.0047 0.0134 0.0094 0.1630 0.0188

LLM (gpt-5-mini) 0.0086 0.0055 0.0134 0.0116 0.1635 0.0192

LLM (o1) 0.0079 0.0026 0.0098 0.0102 0.1630 0.0106

LLM (o3) 0.0077 0.0031 0.0104 0.0103 0.1639 0.0117

Table 28: Relative ℓ2 error comparisons of neural operators designed by LLM frameworks

with and without Theorist across six benchmark datasets. Lower is better.
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Table 28 reports the relative ℓ2 errors of neural operators obtained with and without

the Theorist. In general, neural operators designed by the framework with the Theorist

exhibit lower errors, demonstrating the effectiveness of incorporating theoretical insights into

the design process. Moreover, the improvements are particularly evident on more complex

benchmark datasets, such as Airfoil and Pipe, where the error differences between the two

frameworks range from approximately 3× to 5×.

To further examine the generalization of theory-aware neural-operator design via LLMs,

we follow the experimental setting in Wang & Wang (2024) and downsample the Darcy

dataset from a resolution of 421 × 421 to 241 × 241, 211 × 211, 141 × 141, 85 × 85, 61 ×

61, and 43 × 43. Neural operators are trained on the 43 × 43 dataset and tested on the

others. Figure 30 shows that theory-aware neural operators consistently outperform those

without theoretical insights across all resolutions for not only structured grids (e.g., the

Navier-Stokes example) but also irregular geometries (e.g., the Elasticity, Airfoil, Pipe, and

Plasticity examples). This implies that the LLM design, which incorporates theoretical

insights, guarantees that the neural operators exhibit strong generalization capability with

respect to the number of sampling points.

6.4.3 Can Critic and Refiner produce better results?

In our framework, collaboration between the Critic and Refiner to identify drawbacks and

potential issues in both the theory and the code implementation is a key step toward im-

proving mathematical soundness, performance, and generalization. The Refiner step has

been demonstrated to possess strong debugging capability (Li et al., 2025). To analyze the

contributions of the Critic and Refiner steps, we compare our full framework to a variant

that includes only the Refiner step, which revises code according to reported bugs. Without

the Critic step, we hypothesize the following:
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Figure 30: Relative ℓ2 error comparisons of neural operators designed by LLM frameworks

with and without Theorist on different resolutions.

Hypothesis

The quality of the output of Theorist directly decides the performance of the LLM-

designed neural operators.

We then conduct experiments on the Darcy dataset and evaluate the relative ℓ2 error

across different resolutions. Moreover, we introduce another LLM (Gemini 2.0 Thinking) as

a judge, assigning a score (with a full mark of 5) to quantify the quality of the Theorist’s

feedback.

Table 29 reports the relative ℓ2 errors of neural operators designed without the Critic

step. For gpt-5, o1, and o3, the Theorist provides high-quality feedback, resulting in only

a slight decrease in performance. However, for gpt-5-mini, the performance drops by more

than 30%.

6.4.4 Can LLMs design neural operators using obscure math?

One key observation during the design process is stated as follows:
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Model 61× 61 85× 85 141× 141 211× 211 241× 241 Score

With Critic

LLM (gpt-5) 0.0183 0.0194 0.0205 0.0228 0.0246 4.5

LLM (gpt-5-mini) 0.0185 0.0206 0.0213 0.0249 0.0251 4.4

LLM (o1) 0.0122 0.0163 0.0192 0.0207 0.0238 4.6

LLM (o3) 0.0120 0.0164 0.0189 0.0201 0.0240 4.6

Without Critic

LLM (gpt-5) 0.0191 0.0216 0.0224 0.0231 0.0259 4.1

LLM (gpt-5-mini) 0.0305 0.0341 0.0355 0.0368 0.0384 3.5

LLM (o1) 0.0160 0.0177 0.0201 0.0216 0.0249 4.4

LLM (o3) 0.0162 0.0176 0.0204 0.0218 0.0257 4.4

Table 29: Relative ℓ2 error and score comparisons of neural operators designed by LLM

frameworks with and without Critic across six benchmark datasets.

Observation

Theorist tends to generalize the well-established theoretical insights and incorporate

them into the selected backbone.

Although the LLM-designed neural operators are novel, we further analyze whether LLMs

can design neural operators based on obscure mathematical results, thereby extending the

boundary of neural operators from combinations of existing components and incremental

contributions to existing architectures to fully new neural operators first proposed in the

literature. Obscure mathematical results refer to theories that have attracted attention

from only a small fraction of researchers worldwide. Given the lack of training data on

obscure mathematics, LLMs may struggle with these topics. Therefore, we conduct a new

ablation study that instructs the Theorist to design a neural operator utilizing adaptive

Fourier decomposition (AFD) (Qian et al., 2011) on the 1D Burgers’ equation dataset (Li
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et al., 2020b). We find that the relative ℓ2 errors of neural operators guided by AFD are

consistently one to two orders of magnitude lower than those of neural operators designed

using mainstream theories across all four LLM models. For example, with GPT-5, the LLM-

designed AFD neural operator attains a relative ℓ2 error of 0.013, whereas the LLM-designed

neural operator based on FNO achieves 0.0006.

In contrast, we also design a neural operator based on AFD ourselves, which reaches a

relative ℓ2 error of 0.0009. That said, AFD has the potential to be integrated into neural

operators to improve their performance. However, LLM-designed AFD neural operators

perform worse than the human-designed version. Ultimately, we find that the reason is that

the Theorist does not fully understand AFD. To illustrate this, we showcase the Choice

and justification section of the Theorist’s feedback, where red indicates the parts of AFD

understood by the Theorist:
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Choice and justification

- Choose an adaptive Fourier decomposition-based neural operator (AFD-NO): a

Fourier neural operator in space with an adaptive, data-dependent selection/mixing

of Fourier modes, wrapped inside a stable exponential time-differencing (ETD-1) in-

tegrator for the viscous term.

- Why it is best here:

1) Periodic boundary conditions and low-frequency initial conditions make the Fourier

basis the natural eigenbasis; Burgers’ nonlinearity redistributes energy across modes,

so learning in the spectral domain is efficient.

2) Adaptivity is key: noisy initial data and the incipient formation of steep gradients

require selectively attending to and mixing the subset of active modes. AFD layers

learn soft, sample-dependent spectral masks and frequency-wise linear maps, improv-

ing data efficiency and robustness versus fixed-mode FNOs.

3) Stability and inductive bias: we treat the viscous linear part exactly in Fourier

(ETD-1), leaving the network to learn only the convective nonlinearity. This aligns

with the PDE’s semigroup structure and improves numerical stability for µ = 0.01.

With domain knowledge of AFD, this statement has been evaluated by several senior

researchers in the field. It was found that LLMs do not grasp the essence of AFD, which is

the rational approximation via pole selection in a reproducing kernel Hilbert space. Instead,

LLMs conflate Fourier decomposition with the Fourier transform and interpret poles as

active modes. Additionally, they ignore the requirements on the basis and the function

space needed to implement AFD. Overall, LLMs produce misleading and incorrect content

due to hallucination. Moreover, LLMs tend to overfit to similar terms involving adaptivity

in Fourier transform theory, overlooking their differences.

We point out that our prompting strategy is highly structured to constrain the LLM’s

reasoning space, rather than relying on it to invent mathematics from scratch. Specifically,
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the prompt first explicitly provides the Theorist with a factory of existing neural operators

(including FNO, DeepONet, LNO, etc.) as an in-context “toolbox”. It then instructs it to

first select the most appropriate backbone architecture from this toolbox. Next, it guides it

to propose a specific mathematical modification to align that backbone with the specific the-

oretical properties of the given PDE (such as stiffness, boundary conditions, or conservation

laws). Meanwhile, the AFD failure case validates this strategy: when the LLM was forced to

use an “obscure” theory not in its pre-trained knowledge base, it began to “hallucinate” and

conflate concepts. Therefore, our framework’s success relies on guiding the LLM to apply

theories it already understands well and are validated, not on its ability to perform novel or

obscure mathematical derivations.

Furthermore, it is worth noting that the ablation study presented in Section 6.4.2 only

shows the impact of the Theorist component, not its initial correctness. The mechanism we

used for the independent validation of the Theorist’s output was the human expert review.

To clarify, this review was not conducted after the Critic or Refiner intervened. Instead,

it was performed specifically on the initial mathematical formulation and architecture de-

scription generated by the Theorist, before they were passed to the Critic. For 5 of the 6

benchmark problems we tested, the Theorist’s initial theoretical proposal was judged “Yes”

(i.e., theoretically correct and logically sound) by the human experts. This indicates that

the Theorist provided a solid theoretical foundation in the majority of cases. Subsequently,

the Critic’s role was focused on identifying implementation-level issues (such as numerical

instability, code inefficiency, or edge cases) rather than correcting fundamental theoretical

errors. The only exception was the AFD case, where the initial theory was indeed flawed, and

this was accurately identified by our human expert review. This confirms that the Theorist’s

output is, by and large, theoretically reliable before entering the Critic’s review loop.

6.4.5 How much time does it take for LLM to design a neural operator?

In terms of design time cost, for a typical benchmark problem (e.g., 2D Navier-Stokes),
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the average wall-clock time for our four-agent framework to go from receiving the problem

specification to generating a validated, bug-free final operator code is about 35-45 minutes.

This process, running on our experimental workstation (equipped with a single NVIDIA

RTX 4090), requires an average of 7-9 full agent iterations (i.e., the Theorist→ Programmer

→ Critic → Refiner loop).

While the “human expert effort” baseline is difficult to quantify precisely, it is known that

neural operator design is still considered more of an art than a science (Sanderse et al., 2025),

typically involving deep intuition, expert experience, numerous iterations, and trial-and-error

experimentation. Thus, our proposed automated process represents a significant compression

in time cost compared to the days or even weeks required for a human expert to design,

implement, and debug a novel, competitive neural operator architecture. Furthermore, it is

worth mentioning that the time it takes for a non-expert in neural operators to develop a

working neural operator solver for PDEs will be much longer.
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CHAPTER VII

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Summary of Contributions

This dissertation presents comprehensive advances in numerical modeling and computa-

tion for solving partial differential equations, with applications spanning from soil moisture

monitoring to general PDE problems on complex geometries. The work bridges traditional

discretization-based numerical methods with modern neural operator learning, establishing

a comprehensive framework for accurate and efficient PDE solution. The research contri-

butions span four major areas: hybrid data-driven numerical methods for nonlinear PDEs,

theory-guided neural operator architectures for problems on manifolds, advanced architec-

tures for irregular geometries and inverse problems, and automated neural operator design

using large language models.

7.1.1 Hybrid Numerical Methods for the Richards Equation

We introduced the Message Passing Finite Volume Method (MP-FVM), a novel solution

algorithm that holistically integrates adaptive fixed-point iteration scheme, encoder-decoder

neural network architecture, Sobolev training, and message passing mechanism in a finite vol-

ume discretization framework. The MP-FVM algorithm addresses the fundamental challenge

of solving the highly nonlinear Richards equation, which governs water flow in unsaturated

soils and is critical for precision agriculture and soil moisture monitoring applications. Un-

like conventional finite volume methods that convert the discretized equation into large, stiff

matrix equations, the MP-FVM algorithm adopts an adaptive fixed-point iteration scheme
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where the linearization parameter adjusts dynamically with respect to space, time, and iter-

ation count. This adaptive approach ensures the numerical scheme remains well-posed and

achieves convergence within specified iteration limits.

A key innovation of the MP-FVM algorithm is its integration of encoder-decoder neural

network architecture with the message passing mechanism. The encoder-decoder architec-

ture learns complex nonlinear relationships between pressure head solutions obtained from

different numerical solvers, capturing both the sensitivity to different parameter choices and

the distinct topological features of solution spaces. Through persistent homology analysis,

we demonstrated that solutions from different sources exhibit fundamentally different topo-

logical structures, motivating the use of encoder networks to map between these topological

spaces. The message passing mechanism, implemented within the latent space through itera-

tively solved latent variables, enhances convergence and numerical stability while preserving

physical consistency and mass conservation.

We incorporated Sobolev training in the loss functions for both encoder and decoder net-

works, adding regularization terms that enforce consistency not only at the function value

level but also across derivatives. This ensures compatibility and stability across the solu-

tion space, preventing small perturbations in solutions at initial conditions or previous time

steps from leading to slow convergence or inaccurate solutions. We rigorously proved conver-

gence of the MP-FVM algorithm by showing that the iterative scheme is contractive, with

error decreasing geometrically at each iteration. Through comprehensive case studies span-

ning one-dimensional to three-dimensional problems, including benchmark problems with

analytical solutions, layered soil scenarios with discontinuous properties, and realistic irriga-

tion applications with actual center-pivot systems, we demonstrated that MP-FVM achieves

superior accuracy compared to state-of-the-art solvers including finite difference methods,

physics-informed neural networks, and commercial HYDRUS software. The algorithm also

better preserves mass conservation and underlying physical relationships, with mass balance

measures consistently exceeding ninety-five percent and often approaching or exceeding one
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hundred percent.

7.1.2 Theory-Guided Neural Operators for PDEs on Manifolds

We introduced AFDONet, the first neural PDE solver whose architectural and component

design is fully guided by adaptive Fourier decomposition theory. This work presents a new

paradigm for designing neural operator frameworks, transforming neural architecture design

from an art requiring rare interdisciplinary expertise into a systematic, science-based process

grounded in rigorous mathematical theory. AFD is a signal decomposition technique that

leverages the Takenaka-Malmquist system and adaptive orthogonal bases to sparsely repre-

sent functions in reproducing kernel Hilbert spaces. Unlike classical Fourier methods that

use fixed global basis functions, AFD adaptively selects poles that parameterize rational or-

thogonal bases according to a maximal selection principle, enabling accurate representation

of functions with localized features, sharp gradients, or non-periodic structures.

The AFDONet architecture consists of three main components designed following AFD

principles. The encoder, based on a variational autoencoder framework, maps PDE inputs

to a latent space, exploiting the observation that many PDE solution fields lie on low-

dimensional manifolds in high-dimensional function space. The latent-to-RKHS network

projects latent representations to their nearest reproducing kernel Hilbert space where AFD

operations are defined, explicitly constraining the functional space through feature maps

that perform orthogonal projection. This ensures the reproducing property is satisfied and

enables rigorous theoretical analysis. The AFD-type dynamic convolutional kernel network

decoder reconstructs solutions through adaptive basis selection, replicating AFD operations

by performing cross-correlation between mapped representations and orthogonal reproducing

kernels, assigning multipliers to each convolutional layer output, and incorporating skip

connections.

We proved three main theoretical results establishing the mathematical groundness of

AFDONet. First, we bounded the generalization error in terms of the number of training
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samples, network depth and width, and the smoothness of the target function, showing that

with appropriate network scaling, the expected error decays polynomially in the number of

samples. Second, we proved the existence of the RKHS constructed by the latent-to-RKHS

network by extending results from approximation theory, showing that for any function in

a Hilbert space and any tolerance, there exists a neural network that maps the function

to an RKHS with controlled approximation error. Third, we proved convergence of the

dynamic convolutional kernel network decoder by leveraging the convergence mechanism

of AFD, establishing conditions on layer width, depth, and kernel complexity that ensure

reconstructed solutions converge to true solutions.

Through extensive experimental validation on benchmark problems including the Helmholtz

equation on planar manifolds with perfectly matched layers, incompressible Navier-Stokes

equations on tori, and Poisson equations on quarter-cylindrical surfaces, we demonstrated

that AFDONet significantly outperforms existing neural operators such as Fourier Neural

Operator, Wavelet Neural Operator, Decomposed Fourier Neural Operator, and DeepONet.

The superior performance stems from AFDONet’s ability to adapt its basis functions to spe-

cific geometry and solution characteristics of each problem. While methods relying on fast

Fourier transforms struggle with non-periodic boundaries and curved geometries, AFDONet

uses adaptive rational bases parameterized by learned poles that locally adapt to sharp gradi-

ents, discontinuities, and complex geometries. Comprehensive ablation studies demonstrated

the necessity of each component, showing that the latent-to-RKHS network consistently out-

performs latent-to-kernel approaches by at least an order of magnitude for most problems,

and that the AFD-type dynamic convolutional kernel network decoder achieves significantly

better performance than multi-layer perceptron, propagation, or static convolutional neural

network decoders.

184



7.1.3 Extension to Inverse Problems in Banach Spaces

We extended AFDONet to inverse problems in Banach spaces, introducing AFDONet-inv to

address the challenge that most existing operator learning frameworks assume parameters

lie in Hilbert spaces, while many real-world inverse problems involve parameters with sparse

or discontinuous structures that are better modeled in Banach spaces, particularly L1 or

bounded variation spaces. Inverse problems for PDEs aim to identify unknown parameters

from observations of system outputs and are typically ill-posed, requiring careful regular-

ization. By developing an operator learning framework that explicitly accounts for Banach

space structures rather than restricting to Hilbert spaces, AFDONet-inv can handle inverse

problems where parameters naturally exhibit sparse or discontinuous characteristics, such as

identifying piecewise constant material properties or localized sources.

AFDONet-inv extends the AFD framework from reproducing kernel Hilbert spaces to re-

producing kernel Banach spaces by constructing appropriate reproducing kernels for Banach

spaces and modifying the orthogonalization procedure to account for the duality structure of

Banach spaces. The architecture explicitly represents the mapping from operator spaces to

parameter spaces, enabling solution of inverse problems where both inputs and outputs are

functional objects. The framework incorporates sparsity-promoting regularization through

appropriate choice of Banach space norms, naturally enforcing sparse or structured solutions

without requiring explicit penalty terms. We derived convergence and stability results for

AFDONet-inv, showing that the learned inverse operators are robust to noise in observations

through careful analysis of the interplay between approximation error, sampling error, and

regularization.

Through benchmark inverse problems including coefficient identification for elliptic PDEs

with sparse coefficient fields, source identification problems, and initial condition reconstruc-

tion, we demonstrated that AFDONet-inv achieves superior accuracy and stability compared

to Hilbert space approaches. The Banach space formulation provides more faithful repre-

sentation of the true parameter structure, leading to reconstructions that better capture
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sharp interfaces and sparse features. Comparisons with traditional variational methods,

Bayesian inversion techniques, and Hilbert space operator learning approaches confirmed

the advantages of the Banach space formulation for problems with inherently sparse struc-

tures, with AFDONet-inv consistently producing more accurate parameter estimates and

exhibiting better noise robustness.

7.1.4 Advanced Neural Operator Architectures

We developed Adaptive Fourier Mamba Operators (AFMO), which integrate reproducing

kernels for state-space models with Takenaka-Malmquist systems, enabling accurate solu-

tions on diverse geometries and meshes. Frequency-based neural operators are attractive

for their ability to capture global dependencies through spectral representations, but they

face significant challenges when dealing with irregular geometries and non-uniform meshes.

Traditional Fourier transforms require regular grids and periodic boundary conditions, lim-

iting their applicability to complex real-world domains. AFMO addresses these limitations

by building upon recent advances in state-space models, particularly the Mamba architec-

ture, which has shown remarkable efficiency in sequence modeling tasks through selective

state-space representations.

The key innovation in AFMO is the integration of reproducing kernel theory with state-

space models to create a neural operator that can handle irregular geometries while maintain-

ing the computational efficiency of frequency-based approaches. We constructed reproducing

kernels that are compatible with the state-space model’s hidden state dynamics, allowing

the network to learn representations that respect the geometry of the problem domain. The

Takenaka-Malmquist system provides the theoretical foundation for adaptively selecting ba-

sis functions that can accurately represent solutions on irregular domains. By parameterizing

the state-space model’s matrices using these adaptive bases, AFMO can selectively focus on

important spatial and temporal features while efficiently propagating information across the

domain. Unlike methods requiring interpolation or padding to handle irregular domains,
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potentially introducing artifacts and reducing accuracy, AFMO operates directly on point

clouds or unstructured meshes, with the state-space formulation enabling linear-time com-

plexity in sequence length.

We also developed pole optimization techniques for AFD-based neural layers, addressing

the challenge of selecting optimal poles that lie on Riemannian manifolds. In the AFD

framework, pole selection is crucial for achieving accurate and efficient decompositions. The

classical maximal selection principle provides a greedy algorithm for pole selection, but this

approach can be computationally expensive and may not yield globally optimal results.

When working with PDEs defined on Riemannian manifolds, poles must lie on the manifold

itself, introducing geometric constraints that complicate the optimization problem. Our

pole optimization approach formulates the selection of poles as a constrained optimization

problem on the manifold, where the objective is to maximize projection magnitudes while

respecting manifold geometry.

We developed gradient-based optimization algorithms that operate in the tangent spaces

of the manifold, using Riemannian optimization techniques to navigate the curved geometry.

The key challenge is computing gradients of projection magnitudes with respect to pole

locations while maintaining numerical stability, especially when orthogonalization produces

nearly singular systems. We addressed this through a combination of techniques including

regularized Gram-Schmidt orthogonalization, manifold-aware learning rate scheduling, and

careful initialization strategies that leverage spectral properties of the reproducing kernels.

By jointly optimizing pole locations and network weights during training, rather than using

fixed or greedily selected poles, we achieve better adaptation to problem-specific features

and more compact representations. Experiments on various PDE benchmarks showed that

optimized pole placement leads to faster convergence during training, better generalization

to unseen parameters, and improved handling of sharp features and discontinuities.
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7.1.5 Automated Neural Operator Design

We proposed a four-agent Large Language Model pipeline consisting of specialized agents

(Theorist, Programmer, Critic, Refiner) that designs mathematically grounded neural op-

erators end-to-end. The design of neural operators for specific PDE problems currently

requires substantial expertise in both the mathematical properties of the equations and the

architectural patterns of neural networks. Domain experts must understand the structure

of the PDE, identify appropriate functional spaces, select suitable basis representations, and

translate these insights into implementable neural architectures through extensive trial and

error. This process is time-consuming, requires rare interdisciplinary expertise, and often

results in suboptimal designs due to the vast space of possible architectural choices.

Our LLM-assisted framework automates this design process while maintaining mathe-

matical rigor and grounding. The Theorist agent takes as input a description of the PDE

problem and relevant mathematical theories, then reasons about the key mathematical struc-

tures that should be reflected in the neural architecture. Drawing on its broad knowledge of

mathematical theories, approximation methods, and operator theory, the Theorist identifies

suitable function spaces, proposes appropriate basis representations, and outlines the mathe-

matical framework that should guide the architecture design. The Programmer agent trans-

lates the Theorist’s mathematical blueprint into executable code, making specific choices

about network layers, activation functions, training procedures, and implementation details

while remaining faithful to the mathematical principles identified by the Theorist.

The Critic agent evaluates the designed architecture both theoretically and empirically. It

checks whether the implementation correctly reflects the intended mathematical structures,

identifies potential issues such as numerical instabilities or violations of physical constraints,

and suggests improvements based on mathematical analysis. The Critic performs both static

analysis of the code and dynamic analysis of training behavior, checking for issues like gradi-

ent pathologies, inappropriate initialization, or insufficient expressiveness. The Refiner agent

iteratively improves the architecture based on feedback from the Critic, making adjustments
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to address identified issues while preserving the core mathematical framework. This refine-

ment process continues until the architecture meets specified quality criteria in terms of both

mathematical soundness and empirical performance.

This LLM-assisted framework consistently outperforms human-designed baselines across

diverse PDE benchmarks spanning different equation types, domain geometries, and physi-

cal phenomena. We evaluated the framework on benchmark problems including advection-

diffusion equations, Burgers’ equation, Navier-Stokes equations, and various elliptic and

parabolic PDEs. The automatically designed architectures achieve comparable or superior

accuracy to carefully hand-crafted baseline methods while requiring significantly less human

effort. The framework demonstrates good generalization, producing effective architectures

for problems that differ from those seen during the development of the pipeline, suggest-

ing that the LLMs have learned general principles of neural operator design rather than

memorizing specific patterns. We demonstrated that the framework is reliable across most

mathematical theories commonly used in PDE analysis, including spectral methods, finite

element methods, kernel methods, and operator splitting techniques, showing that it can

effectively leverage diverse mathematical tools to create specialized neural architectures.

7.2 Limitations and Discussion

While this dissertation presents significant advances in numerical PDE solution methods,

several limitations deserve honest assessment and provide opportunities for future improve-

ment. Understanding these limitations is essential for appropriate application of the devel-

oped methods and for identifying productive directions for future research.

7.2.1 Limitations of Hybrid Numerical Methods

The MP-FVM algorithm, while achieving superior accuracy and mass conservation compared

to conventional methods, has certain practical limitations. First, since the encoder and

decoder networks only approximate the true mappings between solution spaces, small but
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visible discrepancies may be introduced near domain boundaries even when the finite volume

based fixed-point iteration scheme by itself matches ground truth solutions perfectly. This

boundary effect arises from the finite capacity of neural networks to represent arbitrarily

complex mappings and from the training data distribution, which may not adequately sample

the boundary regions. For problems where boundary accuracy is critical, this limitation

requires careful consideration, potentially through hybrid approaches that switch to direct

adaptive fixed-point iteration near boundaries.

Second, the sensitivity of solution quality to the Sobolev regularization parameter in

the loss functions presents a practical challenge. While smaller regularization parameters

generally improve accuracy, the optimal value varies across different problem settings and

initial conditions. When using pre-trained models for transfer learning, this sensitivity is

significantly reduced, but for problems requiring training from scratch, careful tuning of the

regularization parameter is necessary. The computational cost of neural network training,

while amortized across multiple solves, remains non-negligible. Although we demonstrated

substantial reductions in training time through transfer learning and the use of pre-trained

models, the initial training phase for a new class of problems still requires more time than

conventional direct solvers for single-instance problems.

7.2.2 Limitations of Neural Operator Frameworks

AFDONet, despite its superior performance on manifold-based PDE problems, has certain

limitations related to its theoretical assumptions and practical implementation. The frame-

work assumes that PDE solution fields lie on low-dimensional manifolds in high-dimensional

function space, which is true for many physical problems but may not hold universally, par-

ticularly for highly turbulent or chaotic systems where the effective dimensionality of the

solution manifold may be large. For such problems, the encoder may require significantly

higher latent space dimensionality, potentially reducing the computational advantages of the

approach.
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The construction of the latent-to-RKHS network, while theoretically justified, requires

careful selection of the reproducing kernel and the number of retained frequency modes.

Different PDE problems may have optimal solutions in different reproducing kernel Hilbert

spaces, and automatically identifying the most appropriate RKHS for a given problem re-

mains an open question. The current implementation uses Fourier basis kernels, which work

well for many problems but may not be optimal for all situations. The adaptive pole selection

mechanism, while more flexible than fixed basis approaches, introduces additional hyperpa-

rameters related to the maximal selection principle, including the threshold parameters that

determine when a pole is considered sufficiently informative.

For AFDONet-inv addressing inverse problems in Banach spaces, the choice of appropri-

ate Banach space norm and the strength of sparsity-promoting regularization significantly

impact reconstruction quality. While we demonstrated superior performance with L1 and

bounded variation norms for problems with known sparse or piecewise constant structure,

the optimal choice for problems with unknown parameter characteristics is less clear. The

framework currently requires some prior knowledge about the expected structure of param-

eters, whether sparse, smooth, or piecewise constant, to select appropriate functional spaces

and regularization schemes. Developing adaptive methods that can automatically identify

the most suitable Banach space and regularization strategy from observed data remains an

important open problem.

7.2.3 Limitations of Advanced Architectures and Automated Design

AFMO, while effective for irregular geometries and unstructured meshes, requires careful

tuning of the state-space model parameters, including the state dimensionality and the se-

lective attention mechanism weights. The optimal configuration of these parameters depends

on the specific geometry and PDE characteristics, and currently requires some trial and error

or hyperparameter optimization. The computational cost of AFMO, while asymptotically

linear in sequence length, can still be substantial for very large-scale problems with mil-
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lions of discretization points, as the state-space model must maintain and propagate state

information across the entire domain.

The LLM-assisted neural operator design framework, while powerful and demonstrating

good generalization, has limitations related to the current capabilities of large language mod-

els. First, the framework’s reliability depends on the LLM’s training data, which may not

adequately cover highly specialized or recently developed mathematical theories. For cutting-

edge PDE problems involving novel mathematical frameworks, the Theorist agent may pro-

duce incomplete or incorrect mathematical guidance. Second, the Programmer agent, while

generally effective at translating mathematical concepts to code, can occasionally introduce

implementation bugs or make suboptimal architectural choices that are difficult for the Critic

to detect automatically.

The iterative refinement process between Critic and Refiner agents, while improving de-

sign quality, can sometimes fail to converge for particularly challenging problems, resulting in

designs that meet basic functionality requirements but do not achieve optimal performance.

The framework currently lacks sophisticated mechanisms for exploring truly novel architec-

tural patterns that deviate significantly from established neural operator paradigms. While

the agents can combine existing components in creative ways, generating fundamentally new

types of neural network layers or completely novel training procedures remains beyond the

current framework’s capabilities. Finally, the computational cost of running multiple LLM

agents iteratively, while modest compared to manual design effort, is non-negligible and may

limit the framework’s applicability for rapid prototyping scenarios.

7.3 Future Research Directions

The limitations and open questions identified in this work suggest numerous promising di-

rections for future research that could significantly extend the impact and applicability of

the developed methods.
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7.3.1 Extensions of Hybrid Numerical Methods

Several promising directions exist for extending the MP-FVM algorithm. First, developing

hybrid switch-solve approaches that seamlessly transition between MP-FVM in the domain

interior and direct adaptive fixed-point iteration near boundaries could address the boundary

accuracy limitations while retaining the superior performance in interior regions. This would

require developing criteria for determining the boundary region width and smooth transition

mechanisms to avoid introducing artificial discontinuities at the interface between the two

solution approaches.

Second, implementing staged or homotopy training strategies for the Sobolev regulariza-

tion parameter could reduce sensitivity to hyperparameter selection. By starting with pure

function value matching (zero regularization parameter) during pre-training, then gradually

increasing the parameter to introduce derivative matching, we could achieve better con-

vergence and avoid over-smoothing while still capturing the benefits of Sobolev training.

Adaptive regularization schemes that automatically adjust the parameter based on training

dynamics and validation performance could further reduce the need for manual tuning.

Third, extending the MP-FVM framework to coupled systems of PDEs, such as simul-

taneous solution of the Richards equation with solute transport equations for modeling con-

taminant movement in unsaturated soils, presents both challenges and opportunities. The

message passing mechanism would need to operate across multiple latent spaces correspond-

ing to different physical variables, potentially with cross-variable attention mechanisms to

capture coupling between equations. Such extensions would enable more comprehensive

modeling of real-world agricultural and environmental scenarios.

7.3.2 Extensions of Neural Operator Frameworks

For AFDONet, several theoretical and practical extensions could broaden its applicability.

Developing methods for automatically identifying the most appropriate reproducing kernel

Hilbert space for a given problem would enhance the framework’s autonomy. This could
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involve meta-learning approaches that train over a distribution of PDE problems to learn

which RKHS characteristics correlate with good performance for different equation types, or

Bayesian optimization methods that efficiently explore the space of possible kernel functions

and hyperparameters.

Extending AFDONet to time-dependent PDEs on evolving manifolds, where the domain

geometry itself changes over time, presents significant theoretical and computational chal-

lenges. This would require developing dynamic versions of the latent-to-RKHS network that

can adapt to changing manifold structure, possibly through tracking the evolution of repro-

ducing kernels as the manifold deforms. Applications include biological growth processes,

fluid-structure interaction problems, and shape optimization.

For inverse problems, developing uncertainty quantification frameworks for AFDONet-

inv would provide crucial information about the reliability of parameter estimates. Bayesian

neural operator approaches that maintain distributions over possible inverse operators rather

than point estimates could quantify both epistemic uncertainty from limited training data

and aleatoric uncertainty from noisy observations. This would enable principled decision-

making in applications where parameter estimates inform critical interventions.

Extending the Banach space framework to more exotic function spaces such as Besov

spaces or spaces with mixed regularity could address inverse problems with parameters ex-

hibiting directional smoothness or anisotropic features. Developing adaptive methods that

can identify the appropriate Banach space structure from observed data, perhaps through

sparse coding or dictionary learning approaches, would reduce the need for prior knowledge

about parameter characteristics.

7.3.3 Extensions of Advanced Architectures

For AFMO, investigating hybrid approaches that combine state-space models with attention

mechanisms could capture both long-range dependencies efficiently handled by state-space

models and complex local interactions better represented by attention. Developing theoret-
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ical understanding of what types of PDE operators and geometries are most amenable to

state-space representation versus other approaches would guide appropriate application of

AFMO.

Extending AFMO to fully adaptive mesh refinement scenarios, where the mesh structure

changes during solution to resolve regions with high gradients or errors, requires developing

mechanisms for updating the state-space model structure dynamically. This could involve

neural network architectures that can gracefully handle varying input dimensions and con-

nectivity patterns as the mesh is refined or coarsened.

For pole optimization techniques, developing multi-fidelity approaches that use cheap

low-fidelity PDE solves to guide pole placement before expensive high-fidelity training could

reduce optimization costs. Transfer learning strategies that leverage optimal pole config-

urations from related problems could provide good initialization, reducing the number of

optimization iterations required. Theoretical analysis of the optimization landscape for pole

selection on different manifold types would help identify problem characteristics that lead to

easy or difficult optimization, guiding development of problem-specific optimization strate-

gies.

7.3.4 Extensions of Automated Design

The LLM-assisted neural operator design framework could be extended in several valuable

directions. First, developing mechanisms for the framework to propose and evaluate truly

novel neural network components, rather than only combining existing layers in new ways,

would enable discovery of fundamentally new architectural patterns. This might involve

having the LLM agents interact with symbolic mathematics systems to formally derive neural

network structures from first principles, or implementing evolutionary approaches where

variants of proposed architectures are systematically explored.

Second, integrating the design framework with automated experiment management sys-

tems would enable closed-loop optimization where the framework automatically trains and
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evaluates proposed designs, uses performance results to inform refined proposals, and iterates

until satisfactory performance is achieved. This would require developing robust error han-

dling to manage training failures and numerical instabilities, and implementing intelligent

experiment scheduling to efficiently explore the design space.

Third, extending the framework to handle multi-physics problems and coupled systems

would broaden its applicability to real-world engineering applications. The Theorist agent

would need access to domain-specific knowledge about coupling mechanisms and interface

conditions, and the framework would need to reason about how to represent interactions

between different physical phenomena in the neural architecture.

Developing specialized versions of the framework for particular application domains, with

domain-specific knowledge built into the agents, could improve reliability and performance.

For example, a version focused on fluid dynamics could incorporate deep knowledge of con-

servation laws, boundary layer phenomena, and turbulence modeling, enabling it to design

more effective neural operators for these problems than the general-purpose framework.

7.3.5 Broader Research Directions

Beyond extensions of specific methods developed in this dissertation, several broader research

directions could significantly advance the field of neural PDE solution. First, developing rig-

orous theoretical frameworks for understanding when and why neural operators succeed or

fail would enable principled design choices and more reliable application. This includes

characterizing the complexity of PDE solution mappings in terms of neural network expres-

sivity requirements, understanding the sample complexity of learning PDE operators as a

function of equation characteristics, and deriving generalization bounds that account for the

functional nature of inputs and outputs.

Second, integrating neural operators with traditional adaptive numerical methods could

create powerful hybrid approaches that leverage the strengths of both paradigms. For ex-

ample, using neural operators as preconditioners for iterative solvers could accelerate con-

196



vergence, while adaptive refinement based on neural operator uncertainty estimates could

improve efficiency. Developing theoretical frameworks for analyzing these hybrid methods,

including convergence guarantees and error bounds, would establish rigorous foundations for

their use.

Third, exploring the use of neural operators for multi-scale modeling, where problems

span vastly different spatial or temporal scales, represents an important challenge. Hier-

archical neural operator architectures that explicitly represent different scales, or attention

mechanisms that can dynamically focus on relevant scales depending on input characteristics,

could enable efficient solution of multi-scale problems. Applications include modeling molec-

ular dynamics coupled to continuum mechanics, simulating atmospheric processes spanning

molecular diffusion to global circulation, and analyzing biological systems across molecular

to tissue scales.

Fourth, developing physics-informed neural operators that explicitly incorporate con-

servation laws, symmetries, and other physical constraints in their architecture or training

would improve reliability and generalization. While current approaches either embed physics

in loss functions or design architectures guided by mathematical theory, tighter integration of

physical knowledge throughout the learning process could yield more robust and trustworthy

solutions.

Finally, establishing comprehensive benchmarking frameworks and open datasets for neu-

ral PDE solvers would accelerate progress in the field. Standardized benchmark problems

spanning diverse equation types, geometries, and difficulty levels, along with reference solu-

tions and evaluation metrics, would enable fair comparison of different methods and iden-

tification of remaining challenges. Community-driven efforts to curate such benchmarks

and maintain repositories of neural operator implementations would significantly benefit the

research community.
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7.4 Closing Remarks

This dissertation has presented comprehensive advances in numerical methods for partial

differential equations, bridging traditional numerical analysis with modern machine learning

to create hybrid algorithms, theory-guided neural operators, and automated design frame-

works. From addressing the practical challenges of soil moisture monitoring through the

Message Passing Finite Volume Method, to developing mathematically grounded neural op-

erators for problems on arbitrary manifolds and inverse problems in Banach spaces, to cre-

ating automated systems for neural operator design using large language models, this work

demonstrates that the synergistic combination of classical numerical methods and data-

driven approaches can achieve superior performance compared to either paradigm alone.

The key insight underlying this work is that mathematical theory should guide, not

merely justify, the design of neural architectures for PDE solution. By systematically trans-

lating established mathematical frameworks such as adaptive Fourier decomposition into

neural network components, we can create solvers that inherit desirable theoretical prop-

erties including convergence guarantees, approximation error bounds, and stability under

perturbations. At the same time, the flexibility and learning capabilities of neural networks

enable these methods to adapt to problem-specific characteristics and achieve accuracy levels

difficult to attain with purely classical approaches.

The methods developed in this dissertation have immediate practical applications in

precision agriculture, soil moisture monitoring, groundwater modeling, and numerous other

areas where accurate PDE solution is critical but computationally challenging. More broadly,

the methodological contributions, particularly the theory-guided design paradigm and the

automated neural operator design framework, provide tools and principles that extend far

beyond the specific problems studied here. As the scientific and engineering communities

increasingly adopt machine learning for computational modeling, the approaches developed

in this work offer a path toward creating data-driven methods that are not only powerful
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but also mathematically principled, physically consistent, and theoretically grounded.

The future of computational science lies in thoughtful integration of traditional mathe-

matical frameworks with modern data-driven techniques. This dissertation represents steps

along that path, demonstrating that rigorous mathematical foundations and flexible ma-

chine learning capabilities can be synergistically combined to advance the state of the art

in numerical PDE solution. The limitations and open questions identified suggest numer-

ous opportunities for continued progress, and we look forward to future developments that

build upon this foundation to enable accurate, efficient, and reliable solution of increasingly

complex partial differential equations arising in science and engineering.
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