ADVANCES IN NUMERICAL PARTTAL DIFFERENTIAL
EQUATIONS: FROM DISCRETIZATION-BASED SOLVERS TO
NEURAL OPERATORS

By
ZEYUAN SONG

Bachelor of Science in Statistics
Bachelor of Arts in Law
Shandong University of Science and Technology
Qingdao, China
2019

Master of Science in Mathematics
University of Macau
Taipa, Macau
2022

Master of Science in Industrial Engineering and Management
Oklahoma State University
Stillwater, OK
2025

Submitted to the Faculty of the
Graduate College of the
Oklahoma State University
in partial fulfillment of
the requirements for
the Degree of
DOCTOR OF PHILOSOPHY
May, 2026

ADVANCES IN NUMERICAL PARTTAL DIFFERENTIAL
EQUATIONS: FROM DISCRETIZATION-BASED SOLVERS TO
NEURAL OPERATORS

Dissertation Approved:

Dr. Zheyu Jiang

Dissertation Advisor

Dr. Yu Feng

Dr. Hong Je Cho

Dr. Akash Deep

il

ACKNOWLEDGMENTS

I would like to express my deepest gratitude to my advisor, Dr. Zheyu Jiang, for his
invaluable guidance and unwavering support throughout my doctoral studies. He has always
been open to my ideas, even when they were diverse or unconventional, providing me with
the freedom to explore while keeping me grounded. Beyond the technical research, I have
learned a tremendous amount from him regarding academic writing, effective presentation,
and professional integrity. His rigorous attitude toward science and his wisdom regarding
life will continue to inspire me in my future career.

I would also like to extend my sincere thanks to my committee members, Dr. Yu Feng,
Dr. Hong Je Cho, and Dr. Akash Deep. I am grateful for the time they took to review
this dissertation and for their insightful comments and constructive feedback, which have
significantly improved the quality of this work.

Moreover, I acknowledge the financial support provided by the Oklahoma State University
and the National Science Foundation (under Award # 2442806). I am also grateful to the
staff in the School of Chemical Engineering for their administrative assistance and kindness
throughout my time here. I also want to thank Dr. Ieng Tak Leong from University of
Macau, who first introduced me to the topic of adaptive Fourier decomposition.

Lastly, words cannot express my gratitude to my family. Thank you for your patience
during the late nights and busy weekends. Your unwavering belief in me made this jour-
ney possible. Most importantly, I owe a debt of gratitude to my girlfriend. Your love,

understanding, and sacrifice have been my greatest strength. Thank you for believing in me.

Acknowledgments reflect the views of the author and are not endorsed by committee members or Okla-
homa State University.

il

Name: Zeyuan Song
Date of Degree: May, 2026
Title of Study: ADVANCES IN NUMERICAL PARTIAL DIFFERENTIAL EQUATIONS

Major Field: Chemical Engineering
Abstract:

Accurate numerical solutions of partial differential equations (PDEs) are crucial for numerous
science and engineering applications, from precision agriculture and soil moisture monitoring
to fluid dynamics and inverse problems. This dissertation presents comprehensive advances
in numerical PDE solution methods by bridging traditional discretization-based approaches
with modern machine learning techniques. We introduce the Message Passing Finite Volume
Method (MP-FVM), a novel hybrid algorithm that holistically integrates adaptive fixed-point
iteration, encoder-decoder neural networks, Sobolev training, and message passing within a
finite volume framework to solve the highly nonlinear Richards equation governing water
flow in unsaturated soils. We further introduce AFDONet, the first neural PDE solver
whose architecture is fully guided by adaptive Fourier decomposition theory, enabling accu-
rate solution representation on arbitrary Riemannian manifolds through adaptively selected
poles parameterizing rational orthogonal bases in reproducing kernel Hilbert spaces. We
extend AFDONet to inverse problems in Banach spaces through AFDONet-inv for handling
parameters with sparse or discontinuous structures, and develop Adaptive Fourier Mamba
Operators (AFMO) for efficient solution on irregular meshes with linear-time complexity.
Finally, we propose a four-agent Large Language Model pipeline for automated end-to-end
neural operator design, transforming neural architecture design from an art requiring rare
interdisciplinary expertise into a systematic, science-based process.

Through extensive case studies from one-dimensional to three-dimensional problems, we
demonstrate that MP-FVM achieves superior accuracy compared to state-of-the-art solvers
including finite difference methods, physics-informed neural networks, and commercial HY-
DRUS software, with mass balance consistently exceeding ninety-five percent. AFDONet sig-
nificantly outperforms existing neural operators including Fourier Neural Operator, Wavelet
Neural Operator, and DeepONet on benchmark problems involving Helmholtz, Navier-
Stokes, and Poisson equations, thanks to its deep connections with adaptive Fourier de-
composition theory. The LLM-assisted design framework consistently outperforms human-
designed baselines across diverse PDE benchmarks while requiring significantly less human
effort. Overall, this work presents a new paradigm for designing explainable neural opera-
tor frameworks by systematically translating established mathematical theories into neural
network components, providing practical tools for science and engineering.

v

TABLE OF CONTENTS

Chapter

I.

1I1.

1.1
1.2

1.3

2.1

2.2

2.3

INTRODUCTION e
Motivation and Background o000
Research Objectives and Contributions

1.2.1 Hybrid Data-Driven Numerical Methods
1.2.2 Theory-Guided Neural Operators
1.2.3 Advanced Neural Operator Architectures
1.2.4 Automated Neural Operator Design

Organization of Dissertation

MASSAGE-PASSING FINITE VOLUME METHOD

Adaptive fixed-point iteration scheme of Discretized Richards Equation . .
2.1.1 Adaptive fixed-point iteration scheme for the Richards Equation . .
2.1.2 Choice of Adaptive Linearization Parameter
2.1.3 Convergence of Adaptive Fixed-Point Iteration Scheme

Message Passing Finite Volume Method (MP-FVM)
2.2.1 Dataset Preparation and Data Augmentation
2.2.2 Neural Network Training
2.2.3 Message Passing Process oL
2.2.4 Convergence of MP-FVM Algorithmn

Case Studies
2.3.1 A 1-D Benchmark Problem
2.3.2 A 1-D Layered Soil Benchmark Problem

Page

10
11
13

18
20
21

Chapter Page

2.3.3 A 2-D Benchmark Problem 48
2.3.4 A 3-D Benchmark Problem with Analytical Solutions 50
2.4 A Realistic Case Study 55

I11. ADAPTIVE FOURIER DECOMPOSITION-GUIDED NEURAL OP-

ERATORS 59

3.1 Problem Statemento 59
3.2 Related Work o 59
3.3 Preliminaries to Adaptive Fourier Decomposition (AFD) 61
3.4 AFDONet Architecture 62
3.5 Properties of AFDONet 67
3.5.1 Main theorems Lo 67

3.6 Proof of Theorem 3.5.1 68
3.7 Proof of Theorem 3.5.2 73
3.8 Proof of Theorem 3.5.3 75
3.9 Proof that the Helmholtz equation spans an RKHS 78
3.10 Experiments 84
3.10.1 PDE problem settings L. 85
3.10.2 Datasets 86
3.10.3 Implementation details 87
3.10.4 Results and discussions 90

IV. ADAPTIVE MAMBA NEURAL OPERATORS 97
4.1 Problem Statemento L 97
4.2 Related work 97
4.3 Nlustrative Examples o oo 99
4.4 Adaptive Fourier Mamba operator 100

vi

Chapter

4.5
4.6

4.7

4.8

5.1

5.2
5.3

Page

4.4.1 AFMO Architectureo 100
Properties of AFMOo 106
Theoretical Results of AFMO 108
4.6.1 Aggregation identity and frequency-domain coefficient extraction . . 109
4.6.2 Convergence in the model space and projection error 110
4.6.3 Best N-term error and rates without greedy selection 111
4.6.4 Learning and discretization errors 112
4.6.5 Stability to pole perturbations 113
4.6.6 End-to-end convergence without greedy selection 114
4.6.7 Connection of SSM to correlation and AFMO output 115
Numerical Experiments oo 115
4.7.1 Numerical results of benchmark datasets 116
4.7.2 European Options Pricing 119
4.7.3 Ablation studies 119
4.7.4 Experiment using real-world noisy dataset 122
Distribution of selected poles reflects problem characteristics 124
INVERSE PROBLEMS IN BANACH SPACE 127
Preliminaries 127
5.1.1 Inverse problem in Hilbert vs. Banach spaces 127
5.1.2 Adaptive Fourier decomposition (AFD) 128
AFD in reproducing kernel Banach space (RKBS) 129
AFD-guided Neural Operator Design 134
5.3.1 Neural architecture o oo 135
5.3.2 Trainingo 151
5.3.3 Connections to the AFD theory 151

vil

Chapter Page

5.5

VI.

6.1

6.2

6.3
6.4

VII.
7.1

5.3.4 The Optimal Feature Map 153
Experiments 154
5.4.1 Problem settings and datasets 155
5.4.2 Ablation studieso 156
5.4.3 Comparison with benchmark solvers 158
Additional Experiments Lo 160

AUTOMATING THE DESIGN OF NEURAL OPERATORS VIA

LARGE LANGUAGE MODELS 162
Related Work oo 164
The Proposed LLM Agent Framework 165

6.2.1 Neural Operators 165

6.2.2 Framework Overview 166
Numerical Experiments 169
Results and analysis 171

6.4.1 Can LLMs design neural operators? 171

6.4.2 Does theory-aware design provide benefits? 171

6.4.3 Can Critic and Refiner produce better results? 174

6.4.4 Can LLMs design neural operators using obscure math? 175

6.4.5 How much time does it take for LLM to design a neural operator? . 179

CONCLUSIONS AND FUTURE DIRECTIONS 181

Summary of Contributions 0L 181
7.1.1 Hybrid Numerical Methods for the Richards Equation. 181
7.1.2 Theory-Guided Neural Operators for PDEs on Manifolds 183
7.1.3 Extension to Inverse Problems in Banach Spaces 185
7.14 Advanced Neural Operator Architectures 186

viil

Chapter Page

7.1.5 Automated Neural Operator Design 188
7.2 Limitations and Discussion 189
7.2.1 Limitations of Hybrid Numerical Methods 189
7.2.2 Limitations of Neural Operator Frameworks 190
7.2.3 Limitations of Advanced Architectures and Automated Design . . . 191
7.3 Future Research Directions, 192
7.3.1 Extensions of Hybrid Numerical Methods 193
7.3.2 Extensions of Neural Operator Frameworks 193
7.3.3 Extensions of Advanced Architectures. 194
7.3.4 Extensions of Automated Design 195
7.3.5 Broader Research Directions 196
7.4 Closing Remarks 198

X

Table

©

11.

12.
13.

14.

LIST OF TABLES

Some of the widely used HCF and WRC models. In these models, A, v, a, 3,
n, O, and 60, are soil-specific parameters and have been tabulated for major
soil types. . . . L
soil-specific parameters and their values used in the 1-D case study of Celia
et al. (1990) based on the empirical model developed by Haverkamp et al.

Comparison of average condition number under Scenario 1 across all time steps
(as Equation (2.1.8) already considers all discretized cells) for conventional
FVM and our MP-FVM algorithms that implement static or adaptive fixed-
point iteration scheme.
Comparison of average condition number under Scenario 2 across all time
steps for conventional FVM and our MP-FVM algorithms that implement
static or adaptive fixed-point iteration scheme.
MB results of different numerical methods. Note that here, At is the deter-
mined for each method by the CFL condition De Moura & Kubrusly (2013)
and we take the average across all iterations.
MB results of different numerical methods, in which a common At = 10
seconds is used for all numerical methods.
Soil-specific parameters and constants used in the layered soil problem of Hills
et al. (1989).
Soil-specific parameters and constants used in 2-D case study.
MB results of three methods at x =05m.
Soil-specific parameters and constants used in the 3-D case study.

Average MAE, relative L? error, and computational time (in seconds) of AF-
DONet (averaged over five random seeds) for solving Navier-Stokes equation
3.10.2 (autoregressive task) under different latent space dimensions.
Specifications of loss function and training for AFDONet solver.
Average MAE and relative L? errors and their standard deviations for different
PDE benchmark solvers obtained using five random seeds. Dataset size is
5000. The best results are bolded. All values in the table have been multiplied

Ablation studies of our AFDONet architecture show that latent-to-RKHS and
AFD-type dynamic CKN decoder work synergistically to improve the solution
accuracy. Note that the results for the full architecture are presented in Table
13. The dataset size is 5000.

Page

43

Table

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

Ablation study of replacing VAE with multi-layer fully-connected feedforward
(MLP) network as the encoder. Here, v: v-component solution dynamics
visually matches with the ground truth solution; X: wv-component solution
dynamics does not visually match with the ground truth.

Relative L? error comparisons of AFMO with baselines across six benchmark
datasets. Lower relative L? error is better. We quantify the improvement as
the gain of AFMO relative to the L? error of the second best model. Bold
means the best model, underline means the second best model, red means the
third best model, and blue means the fourth best model.
AFMO is computationally scalable with respect to input resolution Nj.
European option pricing: relative L? error and resource profile. Lower is
better for error, GPU memory, and training time. Parameter counts shown
in millions. Bold = best, underline = second best, and red = third best.
Relative L? error comparisons for Static vs. Adaptive kernels across seven
benchmarks. Lower is better.
Relative L? error of AFMO and other baselines using the latex glove DIC
(Digital Image Correlation) original dataset.

Comparison of MAE and relative L? error in permeability field a(z) on Darcy
flow equation. Here and hereinafter, “Full” stands for the full AFDONet-inv
model, “w/o prop.” means “without primal-dual propagation” or Scenario 1
of the ablation studies, “w/o dual” means “without dual branch” or Scenario
2 of the ablation studies, and “w/o p.d.” means “without both primal-dual
propagation and dual branch”. 00 oL
Comparison of MAE and relative L? error in potentials A and ¢ on magnetic
Schrodinger equation. oL
Comparison of MAE, relative L? error, training time (seconds per epoch)
among different models on Darcy flow equation.
Comparison of MAE, relative L? error, and training time (seconds per epoch)
among different models on magnetic Schrodinger equation.
Comparison of MAE and relative L? error among different models on magnetic
Schrodinger equation on [0,1] x [0,1].o Lo
Comparison of MAE, relative L? error and training time (seconds per epoch)
among different models on magnetic Schrédinger equation on [0, 1] x [0, 1]
under 100 random permutations.

Relative £2 error comparisons of LLM-designed neural operators with baselines
across six benchmark datasets. Lower relative ¢2 error is better.
Relative £ error comparisons of neural operators designed by LLM frameworks
with and without Theorist across six benchmark datasets. Lower is better.

Relative 2 error and score comparisons of neural operators designed by LLM
frameworks with and without Critic across six benchmark datasets.

xi

Page

121

Figure

LIST OF FIGURES

Flowchart of our proposed algorithm to solve the FVM-discretized Richards
equation using a message passing mechanism.
Comparison of pressure head solution profiles at t = T' = 360 seconds under
(a) S = 500 iterations and (b) tol = 3.2x 1075 for the 1-D benchmark problem
Celia et al. (1990) using standard and adaptive fixed-point iteration schemes
(Equation (2.1.5)). The solutions obtained from Celia et al. (1990) based on
very fine space and time steps are marked as the ground truth solutions.
The relationships between 1640 pressure head solutions ¥ and p, which are
obtained by two distinct approaches. The resulting nonlinearity present in
these reference solutions highlights need for data-driven approach.
Persistence diagrams Edelsbrunner & Morozov (2013) for pressure head solu-
tions ¢ (left) and p (right). The marked differences in topological features
illustrate the need for an encoder to map ¢ into the topological space of .
Here, oo refers to infinite lifespan and H, are connected components.
Comparison of pressure head solution profiles at ¢ = T" = 360 seconds pro-
duced from adaptive fixed-point iteration scheme only (Equation (2.1.5)) and
from MP-FVM algorithm (Equation (2.2.3)) with and without implementing
Sobolev training.
Comparison of pressure head solution profiles at ¢ = T" = 360 seconds pro-
duced from MP-FVM algorithm (Equation (2.2.3)) with implementing Sobolev
training with different regularization parameters in Equation (2.2.1) and Equa-
tion (2.2.2) at Scenario 2. Here, we use the same A = \; = Ajr and all
neural networks are trained from scratch.00
Pressure head profiles at t = T" = 360 sec obtained by different algorithms
under (left) Scenario 1, and (right) Scenario 2. Both conventional FVM and
our MP-FVM algorithm incorporate adaptive fixed-point iteration scheme.
Note the PINN solver is not an iterative method, thus the solution profile is
the same under both scenarios. 0L
Comparison of soil moisture content profile obtained different methods with
Az =1 cm under (left) MP-FVM, FVM and TMOL at t = T = 3 sec and
t =T = 2.5 min and (right) MP-FVM, FVM and TMOL at ¢t = 7" = 7.5 min.
Note that TMOL by Berardi et al. (2018) is not an iterative method. FVM
and MP-FVM are implemented for 500 iterations at every time step.
Pressure head solution profile obtained from three numerical methods: (left)
FVM solver (fixed-point parameter 7 = 1); (middle) HYDRUS 2D software;
(right) our MP-FVM algorithm.

x1i

Page

36

39

47

Figure

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Soil moisture solution profile obtained from three numerical methods: (left)
FVM solver (fixed-point parameter 7 = 1); (middle) HYDRUS 2D software;
(right) our MP-FVM algorithm.
Cross-sectional view (z = 0.5m) of: (left) the pressure head profile; (right)
soil moisture profile.o
Pressure head solution at z = 0.5 m of different methods: (A) analytical
solution, (B) MP-FVM algorithm, (C) the relative difference between analyti-
cal and MP-FVM solutions, (D) conventional FVM solver (which implements
static fixed-point iteration scheme with an optimal 7 = 2) and (E) the relative
difference between analytical solution and FVM solution.
Pressure head solution at z = 1.0 m of different methods: (A) analytical
solution, (B) MP-FVM algorithm, (C) the relative difference between analyti-
cal and MP-FVM solutions, (D) conventional FVM solver (which implements
static fixed-point iteration scheme with an optimal 7 = 2) and (E) the relative
difference between analytical solution and FVM solution.
Comparison of pressure head profile at z = 25 cm in a selected 0.1-m radius
region (averaged for all 6 x 40 = 240 cells at z = 25 cm) in the field. Note
that the standard FVM solver becomes highly inaccurate when the boundary
condition changes (15th day, 30th day, etc.). The flattening of true peaks of
pressure head solutions represents a nonphysical smoothing of the true solu-
tion Miller et al. (1998), which we suspect to come from the numerical dis-
persion and inherent discrete maximum principle (DMP)-type peak clipping
behavior observed in standard FVM schemes Njifenjou (2025).

Our proposed AFDONet framework, which adopts VAE as the backbone, in-
troduces a latent-to-RKHS network and a dynamic CKN decoder to reproduce
the AFD setting and operation.
Average MAE and total computational time (in seconds) of FNO solver with
respect to number of Fourier modes (averaged over five random seeds) for
solving the Helmholtz equation 3.10.1.
Average MAE, relative L? error, and total computational time comparisons
with respect to dataset size (averaged over five random seeds) for Navier-
Stokes equation (static task) (top row), Helmholtz equation (middle row),
and Poisson equation (bottom row).
Ground truth and predicted solutions (u,v) of the Navier-Stokes equation
(static task) on the torus and heat map.
Ground truth and predicted solutions u(z,y) of the Helmholtz equation on
the planar manifold.
Ground truth and predicted solutions u(¢, z) of the Poisson equation on the
quarter-cylindrical surface.

xiii

Page

Figure

21.

22.
23.
24.
25.

26.
27.

28.

29.

30.

Page

Ground truth and predicted fields (u, v) of the Navier-Stokes equation (for
static task) on both the torus T? and the heatmap for various solvers. Here,
the dataset is generated from Gaussian-based randomized vortex fields (dataset
size is 5000) Pedergnana et al. (2020). Average MAE and relative L? errors
and their standard deviations obtained using five random seeds are also reported. 96

Phase error of solutions predicted by LaMO. 99
The predicted results produced by LaMO compared to the ground truth. . . 101
Comparisons of training time per epoch, number of parameters, and GPU

memory among existing SOTA models on (a) Darcy and (b) airfoil, where

AFMO exhibits the strongest incremental gains. 120
Contribution of three SSMs across seven benchmark datasets. Note that we

do not apply weights shared for all experiments. Lower is better. 122
Learned poles distribution for the 2-D Darcy flow equation. 124
Learned poles distribution for the 3-D Brusselator equation. 125

Our proposed AFDONet-inv framework, whose design is guided by the AFD
theory and operation, for solving inverse PDE problems in Banach space. Note
that the elements in the figure are static representations of the corresponding
theoretical component, whereas the actual computation follows the dynamic,
recursive update defined by Equation (5.3.9).. 134

Comparison of computational efficiency including training time (sec per epoch),
GPU memory (GB), and parameters count (M) on (a) Darcy and (b) Airfoil

datasets. 173
Relative £ error comparisons of neural operators designed by LLM frameworks
with and without Theorist on different resolutions. 175

Xiv

CHAPTER I

INTRODUCTION

1.1 Motivation and Background

A wide range of scientific and engineering phenomena can be characterized and modeled by
partial differential equations (PDEs). These physiomechanical and physicochemical phenom-
ena range from fluid dynamics to heat and mass transfer, to structural mechanics, and to
quantum mechanics. Given the ubiquity of PDEs, most of them do not have analytical solu-
tions and need to be solved numerically. However, traditional discretization-based numerical
solvers, such as finite element methods and finite difference methods, can become quite slow,
inefficient, and unstable, especially for large-scale problems or complex geometries (Hittinger
& Banks, 2013; Sokic et al., 2011; Carey et al., 1993). The computational cost of traditional
solvers grows substantially with finer resolutions, as well as for parametric studies where
solutions must be computed for many different parameter configurations. Therefore, devel-
oping accurate, computationally efficient, and scalable PDE solution techniques is key to
addressing critical challenges in sustainability, digital agriculture, Industry 4.0, and beyond.

For instance, understanding how soil moisture distributes in the root zone of a large
crop field under different weather, topographic, and soil conditions is critical to designing a
water-efficient irrigation scheduling system; and it is typically achieved by solving an agro-
hydrological model that describes the movement of water through unsaturated soils. Most
existing agro-hydrological models are based on the Richards equation (Richards, 1931), a
highly nonlinear PDE. Solving the Richards equation numerically faces several fundamental

challenges. The equation exhibits strong nonlinearity through the soil moisture diffusivity

and hydraulic conductivity functions, which can vary by several orders of magnitude within
a single simulation. Additionally, the resulting discrete systems are often stiff and sparse,
requiring sophisticated linearization and iterative solution techniques. Traditional finite
difference methods (Celia et al., 1990) are straightforward to implement for regular grids.
However, they may not guarantee stability for highly nonlinear problems (Meerschaert &
Tadjeran, 2004) and cannot ensure local mass conservation. Finite element (Bergamaschi
& Putti, 1999) and finite volume methods (Song & Jiang, 2023b) offer better conservation
properties and can handle complex geometries, but require careful treatment of nonlinearities
through linearization schemes. Among the iterative approaches, the fixed-point iteration
scheme has gained attention for its convergence properties. Static fixed-point iterations use a
fixed linearization parameter for all iterations, time steps, and discretized cells (Bergamaschi
& Putti, 1999; Zeidler, 1986), while adaptive fixed-point iterations allow the parameter to
vary, potentially offering better convergence behavior (Song & Jiang, 2023b). However,
selecting the appropriate linearization parameter remains a challenge that often requires
problem-specific tuning and expertise.

Meanwhile, data-driven methods, such as neural PDE solvers, can directly learn the
trajectory of the family of equations from solution data, and thus can be orders of magni-
tude faster than traditional solvers once trained (Li et al., 2020b). Neural PDE solvers can
amortize the computational cost across multiple parameter configurations, enabling rapid
solution prediction for new parameters after the training phase. Recent advances in oper-
ator learning have led to several notable neural PDE solver architectures. DeepONet (Lu
et al., 2019, 2021), inspired by the universal approximation theorem for nonlinear opera-
tors, learns mappings between infinite-dimensional function spaces through a branch-trunk
architecture. The Fourier Neural Operator (FNO) (Li et al., 2020b, 2023b) performs convo-
lution in the frequency domain to capture global spatial dependencies efficiently, achieving
mesh-independent approximation of PDE solutions. Both paradigms have led to numerous

variants, including Factorized FNO (Tran et al., 2021), Decomposed FNO (Li & Ye, 2025),

Wavelet Neural Operator (Tripura & Chakraborty, 2023), and Multiwavelet Neural Opera-
tor (Gupta et al., 2021), each targeting specific challenges such as computational efficiency,
multi-scale phenomena, or adaptation to different geometries.

However, existing neural PDE solvers face several critical challenges. First, most existing
approaches are designed for regular Euclidean domains, while many real-world applications
involve PDEs defined on non-Euclidean manifolds or complex geometries. Most classical nu-
merical approaches to solve PDEs on manifolds rely on parameterization (Lui et al., 2005),
collocation (Chen & Ling, 2020), or spectral methods (Yan et al., 2023). Although re-
searchers have begun to explore manifold-aware neural architectures that can learn directly
from point clouds (He et al., 2024; Liang et al., 2024) or graphs (Bronstein et al., 2017),
they cannot easily be generalized to different manifolds. The challenge lies in developing
neural architectures that can handle the intrinsic geometry of manifolds while maintaining
computational efficiency and solution accuracy.

Second, the design of exact neural architectures in many neural PDE solvers has been
“more of an art than a science” (Sanderse et al., 2025), typically done in a bottom-up ap-
proach that involves significant intuition, expert experience, and trial-and-error experimen-
tation. Neural architecture design often requires extensive hyperparameter tuning, selection
of activation functions, choice of normalization techniques, and determination of network
depth and width. Although neural operators such as FNO and DeepONet are grounded
in theoretical insights, considerable manual effort and domain expertise are still required
to adapt these architectures to specific PDE problems. Rigorous mathematical basis and
explainability have been lacking in guiding the design of these neural architectures, making
it difficult to understand why certain architectural choices lead to better performance or to
predict which architectures will work well for new problems.

Third, extending neural operators to inverse problems, which are generally ill-posed, re-
mains challenging, especially when parameters lie in sparse domains that are better modeled

as Banach spaces rather than Hilbert spaces. Inverse problems for PDEs aim to identify

unknown parameters of a physical system from observations of its output. A large class of
inverse problems are only well-defined as mappings from operators to functions. Traditional
approaches to inverse problems include variational methods in Hilbert spaces (Engl, 2007),
Bayesian inference techniques (Stuart, 2010), and optimization-based methods. However,
it has been shown that a Banach space setting for the parameter space would be closer
to reality for a wide range of problems, particularly when the parameters exhibit sparse
or discontinuous structures (Grasmair et al., 2011; Clason et al., 2021). Existing operator
learning frameworks either do not explicitly account for the underlying operator space or
solve the inverse problems in a Hilbert space, limiting their applicability to problems with

sparse parameter domains.

1.2 Research Objectives and Contributions

This dissertation addresses these challenges through a comprehensive research program that
bridges traditional numerical methods with modern neural operator learning. The overar-
ching goal is to advance the state of the art in numerical solutions of partial differential
equations by developing novel algorithms and frameworks that combine the mathematical
rigor and physical consistency of traditional methods with the computational efficiency and
flexibility of data-driven approaches.

The first research objective is to develop robust, convergent numerical solvers for nonlin-
ear, stiff PDEs by introducing hybrid algorithms that couple classical finite volume discretiza-
tion with machine learning, specifically for solving the Richards equations. This objective
recognizes that while traditional numerical methods provide strong theoretical guarantees
and physical consistency, they can benefit significantly from data-driven components that
adapt to the nonlinear characteristics of specific problems. We propose the Message Passing
Finite Volume Method (MP-FVM) that integrates adaptive fixed-point iteration schemes
with encoder-decoder neural networks and message passing mechanisms to enhance conver-

gence and preserve mass conservation. The hybrid solver is both accurate and efficient for

highly nonlinear agro-hydrological problems.

The second research objective is to develop mathematically grounded neural operator
architectures for solving PDEs on arbitrary manifolds, with rigorous theoretical foundations
and explainable design principles. This objective addresses the fundamental limitation that
most existing neural PDE solvers lack systematic design principles and are restricted to
Euclidean domains. By adopting a top-down approach guided by established mathemati-
cal frameworks, specifically adaptive Fourier decomposition theory, we aim to create neural
architectures whose every component has clear mathematical interpretation and justifica-
tion. This approach not only enables solutions on arbitrary Riemannian manifolds but also
provides convergence guarantees and performance bounds rooted in approximation theory.

The third research objective is to extend neural operator frameworks to inverse problems
in Banach spaces, addressing ill-posed parameter estimation problems with sparse parameter
domains. Inverse problems are ubiquitous in science and engineering, arising whenever we
need to infer system parameters or properties from observed data. However, these problems
are often ill-posed and require careful regularization. By developing operator learning frame-
works that explicitly account for Banach space structures rather than restricting to Hilbert
spaces, we aim to handle inverse problems where parameters naturally exhibit sparse or
discontinuous characteristics, such as identifying piecewise constant material properties or
localized sources.

The fourth research objective is to explore automated neural operator design using large
language models, transforming the design process from an art into a science. The manual
design of neural architectures for specific PDE problems requires substantial expertise in
both the mathematical properties of the PDEs and the capabilities of neural network com-
ponents. By developing systematic pipelines that leverage the reasoning capabilities of large
language models, we aim to automate the process of translating mathematical theories into
implementable neural architectures, making theory-guided neural operator design accessible

to a broader community and accelerating the development of problem-specific solvers.

The key contributions of this dissertation, which span from hybrid numerical methods for
soil moisture modeling to theory-guided neural operators and automated design frameworks,

are summarized as follows:

1.2.1 Hybrid Data-Driven Numerical Methods

We introduce the Message Passing Finite Volume Method (MP-FVM), a novel solution al-
gorithm that holistically integrates adaptive fixed-point iteration scheme, encoder-decoder
neural network architecture, Sobolev training, and message passing mechanism in a finite
volume discretization framework. The MP-FVM algorithm addresses the fundamental chal-
lenge of solving the highly nonlinear Richards equation by combining the strengths of classical
numerical methods with modern machine learning techniques. At its core, the algorithm em-
ploys a finite volume discretization to ensure local mass conservation, which is critical for
accurate long-term predictions of soil moisture dynamics. Unlike conventional finite volume
methods that convert the discretized equation into a large, stiff matrix equation which can
be challenging to solve, the MP-FVM algorithm adopts an adaptive fixed-point iteration
scheme that solves the discretized Richards equations iteratively, providing a robust solution
procedure with controllable convergence properties.

A key innovation of the MP-FVM algorithm is its integration of encoder-decoder neural
network architecture with the message passing mechanism. The encoder-decoder architecture
learns the complex nonlinear relationships between pressure head solutions obtained from
different numerical solvers, capturing both the sensitivity to different parameter choices and
the distinct topological features of solution spaces. The encoder maps pressure head solutions
to a latent space, while the decoder reconstructs solutions from this latent representation,
ensuring that essential topological features are accurately captured. The message passing
mechanism, implemented within the latent space through a processor that operates itera-
tively, enhances the convergence and numerical stability of the algorithm. By defining latent

variables that are solved iteratively using the adaptive fixed-point iteration scheme, the MP-

FVM algorithm enables the message passing mechanism to preserve physical consistency and
mass conservation while achieving superior solution accuracy.

The MP-FVM algorithm incorporates Sobolev training in the loss functions for both en-
coder and decoder neural networks, adding regularization terms that enforce consistency not
only at the function value level but also across derivatives. This ensures compatibility and
stability across the solution space, preventing small perturbations in solutions at initial con-
ditions or previous time steps from leading to slow convergence or inaccurate solutions at the
final time step. The algorithm provides guaranteed convergence under reasonable assump-
tions, which we rigorously prove by showing that the iterative scheme is contractive, with
the error decreasing geometrically at each iteration. This theoretical foundation, combined
with the ability to leverage pre-trained models for transfer learning across different boundary
and initial conditions, makes the MP-FVM algorithm both accurate and computationally
efficient. The algorithm achieves fine-scale accuracy using coarse-grid training data through
a coarse-to-fine approach, bypassing the need for computationally expensive high-resolution

training datasets while maintaining excellent solution quality.

1.2.2 Theory-Guided Neural Operators

We introduce AFDONet (Adaptive Fourier Deep Operator Network), the first neural PDE
solver whose architectural and component design is fully guided by adaptive Fourier de-
composition (AFD) theory (Qian, 2010; Qian et al., 2012). AFD is a signal decomposition
technique that leverages the Takenaka-Malmquist system and adaptive orthogonal bases to
sparsely represent functions in reproducing kernel Hilbert spaces (RKHS). Unlike classical
Fourier methods that use fixed global basis functions, AFD adaptively selects poles that
parameterize rational orthogonal bases according to a maximal selection principle, enabling
accurate representation of functions with localized features, sharp gradients, or non-periodic
structures. By replicating the AFD framework in a neural architecture, we create a solver

that exhibits exceptional mathematical explainability and groundness, where each compo-

nent of the network has clear interpretation in terms of the underlying approximation theory.

The AFDONet architecture consists of three main components designed following AFD
principles: an encoder based on variational autoencoder (VAE) framework that maps PDE
inputs to a latent space, a latent-to-RKHS network that projects latent representations to
their nearest reproducing kernel Hilbert space where AFD operations are defined, and an
AFD-type dynamic convolutional kernel network (CKN) decoder that reconstructs solutions
through adaptive basis selection. The use of VAE as the backbone is motivated by the obser-
vation that many PDE solution fields lie on low-dimensional manifolds in high-dimensional
function space, and the variational inference in VAE aligns well with the maximal selec-
tion principle in AFD (Chen et al., 2020a). The latent-to-RKHS network extends previous
latent-to-kernel approaches (Lu et al., 2020a) by explicitly constraining the functional space
to be an RKHS through feature maps that perform orthogonal projection, ensuring that the
reproducing property is satisfied and enabling rigorous theoretical analysis.

AFDONet achieves outstanding solution accuracy on arbitrary Riemannian manifolds,
significantly outperforming existing neural operators such as FNO, DeepONet, and Wavelet
Neural Operator across diverse benchmark problems including the Helmholtz equation on
planar manifolds, Navier-Stokes equation on tori, and Poisson equation on quarter-cylindrical
surfaces. The superior performance stems from AFDONet’s ability to adapt its basis func-
tions to the specific geometry and solution characteristics of each problem. While FNO
and its variants rely on fast Fourier transforms that are inherently defined on Euclidean
domains and struggle with non-periodic boundaries, AFDONet uses adaptive rational bases
parameterized by poles that are learned from input data, allowing the bases to locally adapt
to sharp gradients, discontinuities, and complex geometries. Furthermore, AFDONet shows
superior performance on datasets with sharp gradients due to its connection with holomor-
phic function theory. We extend Sobolev training (Czarnecki et al., 2017a) to the complex
domain through a holomorphic training loss that enforces consistency between predicted and

true solutions at both the function value level and across all orders of derivatives, capturing

the inherent smoothness and analytic structure of the target function.

The mathematical groundness of AFDONet enables us to provide rigorous convergence
guarantees and theoretical foundations. We prove three main theoretical results: First, we
bound the generalization error of AFDONet in terms of the number of training samples,
network depth and width, and the smoothness of the target function, showing that with ap-
propriate network scaling, the expected error decays polynomially in the number of samples.
Second, we prove the existence of the RKHS constructed by our latent-to-RKHS network by
extending results from approximation theory (Caragea et al., 2022), showing that for any
function in a Hilbert space and any tolerance, there exists a neural network that maps the
function to an RKHS with controlled approximation error. Third, we prove convergence of
the dynamic CKN decoder by leveraging the convergence mechanism of AFD, establishing
conditions on layer width, depth, and kernel complexity that ensure the reconstructed so-
lutions converge to the true solutions. These theoretical results distinguish AFDONet from
existing neural operators that lack such rigorous foundations.

We extend AFDONet to inverse problems (AFDONet-inv), operating in reproducing ker-
nel Banach spaces (RKBS) rather than Hilbert spaces, addressing the challenge of sparse
parameter domains in inverse problems. Inverse problems for PDEs aim to identify unknown
parameters from observations of system outputs and are typically ill-posed, requiring care-
ful regularization. While most existing operator learning frameworks assume parameters lie
in Hilbert spaces, many real-world inverse problems involve parameters with sparse or dis-
continuous structures that are better modeled in Banach spaces, particularly L' or bounded
variation spaces (Grasmair et al., 2011; Clason et al., 2021). AFDONet-inv extends the AFD
framework from RKHS to RKBS by constructing appropriate reproducing kernels for Banach
spaces and modifying the orthogonalization procedure to account for the duality structure
of Banach spaces. The architecture explicitly represents the mapping from operator spaces
to parameter spaces, enabling solution of inverse problems where both inputs and outputs

are functional objects. We demonstrate that AFDONet-inv achieves superior accuracy and

stability compared to Hilbert space approaches on benchmark inverse problems involving

parameter identification for elliptic PDEs with sparse coefficient fields.

1.2.3 Advanced Neural Operator Architectures

We develop Adaptive Fourier Mamba Operators (AFMO), which integrate reproducing ker-
nels for state-space models with Takenaka-Malmquist systems, enabling accurate solutions
on diverse geometries and meshes. Frequency-based neural operators such as FNO are at-
tractive for their ability to capture global dependencies through spectral representations,
but they face significant challenges when dealing with irregular geometries and non-uniform
meshes. Traditional Fourier transforms require regular grids and periodic boundary condi-
tions, limiting their applicability to complex real-world domains. To address these limita-
tions, AFMO builds upon recent advances in state-space models, particularly the Mamba
architecture, which has shown remarkable efficiency in sequence modeling tasks through
selective state-space representations.

The key innovation in AFMO is the integration of reproducing kernel theory with state-
space models to create a neural operator that can handle irregular geometries while maintain-
ing the computational efficiency of frequency-based approaches. We construct reproducing
kernels that are compatible with the state-space model’s hidden state dynamics, allowing
the network to learn representations that respect the geometry of the problem domain. The
Takenaka-Malmquist system provides the theoretical foundation for adaptively selecting ba-
sis functions that can accurately represent solutions on irregular domains. By parameterizing
the state-space model’s matrices using these adaptive bases, AFMO can selectively focus on
important spatial and temporal features while efficiently propagating information across the
domain.

AFMO demonstrates superior performance on problems involving irregular geometries,
non-uniform meshes, and complex boundary conditions. Unlike FNO which requires interpo-

lation or padding to handle irregular domains, potentially introducing artifacts and reducing

10

accuracy, AFMO operates directly on point clouds or unstructured meshes. The state-space
formulation enables linear-time complexity in sequence length, making AFMO particularly
efficient for high-resolution simulations and long-time integration. We validate AFMO on
benchmark problems including flow past obstacles with complex geometries, heat diffusion on
irregular domains, and wave propagation in heterogeneous media, demonstrating improved

accuracy and reduced computational cost compared to existing neural operators.

1.2.4 Automated Neural Operator Design

We propose a four-agent Large Language Model (LLM) pipeline consisting of specialized
agents (Theorist, Programmer, Critic, Refiner) that designs mathematically grounded neural
operators end-to-end. The design of neural operators for specific PDE problems currently
requires substantial expertise in both the mathematical properties of the equations and the
architectural patterns of neural networks. Domain experts must understand the structure
of the PDE, identify appropriate functional spaces, select suitable basis representations, and
translate these insights into implementable neural architectures through extensive trial and
error. This process is time-consuming, requires rare interdisciplinary expertise, and often
results in suboptimal designs due to the vast space of possible architectural choices.

Our LLM-assisted framework automates this design process while maintaining mathemat-
ical rigor and grounding. The framework consists of four specialized agents, each responsible
for a distinct phase of the design process. The Theorist agent takes as input a descrip-
tion of the PDE problem and relevant mathematical theories, then reasons about the key
mathematical structures that should be reflected in the neural architecture. Drawing on its
broad knowledge of mathematical theories, approximation methods, and operator theory,
the Theorist identifies suitable function spaces, proposes appropriate basis representations,
and outlines the mathematical framework that should guide the architecture design. The
Programmer agent translates the Theorist’s mathematical blueprint into executable code,

making specific choices about network layers, activation functions, training procedures, and

11

implementation details while remaining faithful to the mathematical principles identified by
the Theorist.

The Critic agent evaluates the designed architecture both theoretically and empirically. It
checks whether the implementation correctly reflects the intended mathematical structures,
identifies potential issues such as numerical instabilities or violations of physical constraints,
and suggests improvements based on mathematical analysis. The Critic performs both static
analysis of the code and dynamic analysis of training behavior, checking for issues like
gradient pathologies, inappropriate initialization, or insufficient expressiveness. Finally, the
Refiner agent iteratively improves the architecture based on feedback from the Critic, making
adjustments to address identified issues while preserving the core mathematical framework.
This refinement process continues until the architecture meets specified quality criteria in
terms of both mathematical soundness and empirical performance.

This LLM-assisted framework consistently outperforms human-designed baselines across
diverse PDE benchmarks spanning different equation types, domain geometries, and phys-
ical phenomena. We evaluate the framework on benchmark problems including advection-
diffusion equations, Burgers’ equation, Navier-Stokes equations, and various elliptic and
parabolic PDEs. The automatically designed architectures achieve comparable or superior
accuracy to carefully hand-crafted baseline methods while requiring significantly less human
effort. Moreover, the framework demonstrates good generalization, producing effective ar-
chitectures for problems that differ from those seen during the development of the pipeline,
suggesting that the LLMs have learned general principles of neural operator design rather
than memorizing specific patterns.

The framework transforms neural operator design from an art requiring rare expertise
into a more systematic, science-based process. By explicitly grounding the design in math-
ematical theory and automating the translation from theory to implementation, we make
theory-guided neural operator design accessible to researchers who may have deep under-

standing of their specific PDE problems but limited expertise in neural architecture design.

12

The framework also enables rapid prototyping and exploration of different theoretical frame-
works, accelerating the development of problem-specific solvers. We demonstrate that the
framework is reliable across most mathematical theories commonly used in PDE analysis,
including spectral methods, finite element methods, kernel methods, and operator splitting
techniques, showing that it can effectively leverage diverse mathematical tools to create spe-
cialized neural architectures. This work opens new directions for theory-aware automated
scientific machine learning, where mathematical insights systematically guide the construc-

tion of data-driven models.

1.3 Organization of Dissertation

This dissertation is organized into eight chapters that progressively build from traditional
numerical methods to advanced neural operator frameworks and automated design tech-
niques.

Chapter 2 presents the Message Passing Finite Volume Method (MP-FVM) for solving
the Richards equation. We begin by formulating the Richards equation in a finite volume
discretization framework and derive the adaptive fixed-point iteration scheme that provides
a robust iterative solution procedure. We introduce a novel adaptive rule for updating the
linearization parameter, where the parameter adjusts dynamically with respect to space,
time, and iteration count based on monitoring the condition number of the resulting sys-
tem matrix and controlling the relative error between successive iterations. This ensures
the numerical scheme is well-posed and reaches convergence within the specified number
of iterations. The chapter then presents the integration of encoder-decoder neural network
architecture with the message passing mechanism. We discuss dataset preparation and data
augmentation strategies, including the use of Gaussian noise to enhance generalization per-
formance, and introduce Sobolev training to ensure compatibility and stability across the
solution space. The message passing process operates in the latent space defined by the

encoder-decoder networks, solving for latent variables iteratively using the adaptive fixed-

13

point iteration scheme. We rigorously prove convergence guarantees for the MP-FVM algo-
rithm under reasonable assumptions, showing that the iterative scheme is contractive. The
effectiveness of the algorithm is demonstrated through comprehensive case studies in one,
two, and three dimensions, including benchmark problems with known analytical solutions,
layered soil problems with discontinuous properties, and realistic irrigation scenarios. Com-
parisons with state-of-the-art solvers including finite difference methods, physics-informed
neural networks, and commercial HYDRUS software demonstrate that MP-FVM achieves
superior accuracy, better preserves mass conservation and underlying physical relationships,
and maintains excellent computational efficiency.

Chapter 3 introduces AFDONet, a theory-guided neural operator for solving PDEs on
smooth manifolds. We begin with preliminaries on adaptive Fourier decomposition theory,
explaining the Takenaka-Malmquist system, reproducing kernel Hilbert spaces, and the max-
imal selection principle for adaptive pole selection. The chapter then presents the AFDONet
architecture, systematically deriving each component from AFD theory. We explain the
design of the VAE-based encoder, the latent-to-RKHS network that projects latent repre-
sentations to their nearest reproducing kernel Hilbert space, and the AFD-type dynamic
convolutional kernel network decoder that reconstructs solutions through adaptive basis
selection. Each architectural choice is justified by its connection to AFD theory, demon-
strating the top-down, theory-guided design approach. We present three main theoretical
results: bounds on the generalization error of AFDONet, proof of existence of the RKHS con-
structed by the latent-to-RKHS network, and convergence guarantees for the dynamic CKN
decoder. Extensive experimental validation is provided on benchmark problems including
the Helmholtz equation on planar manifolds with perfectly matched layers, incompressible
Navier-Stokes equations on tori, and Poisson equations on quarter-cylindrical surfaces. Com-
prehensive ablation studies demonstrate the necessity of each component, and comparisons
with FNO, DeepONet, and Wavelet Neural Operator show AFDONet’s superior performance

on manifolds and datasets with sharp gradients.

14

Chapter 4 presents Adaptive Fourier Mamba Operators (AFMO) for handling irregu-
lar geometries and non-uniform meshes. We explain the integration of reproducing kernel
theory with state-space models, showing how the Mamba architecture’s selective state-space
representation can be adapted to learn PDE solution operators on irregular domains. The
theoretical foundations connecting Takenaka-Malmquist systems with state-space models are
presented, along with algorithmic details for implementing AFMO efficiently. Experiments
on problems with complex geometries, including flow past obstacles and diffusion on irreg-
ular domains, demonstrate AFMOQO’s superior performance compared to methods requiring
regular grids or interpolation.

Chapter 5 extends AFDONet to inverse problems in Banach spaces, introducing AFDONet-
inv. We begin by discussing the limitations of Hilbert space formulations for inverse problems
with sparse parameters and motivate the need for Banach space frameworks. The chapter
develops the theoretical foundation for adaptive Fourier decomposition in reproducing kernel
Banach spaces, extending key concepts from RKHS theory including reproducing properties,
orthogonalization procedures, and approximation theorems. We present the AFDONet-inv
architecture, which explicitly represents mappings from operator spaces to parameter spaces
in Banach spaces, handling the duality structure appropriately. The architecture incorpo-
rates sparsity-promoting regularization through appropriate choice of Banach space norms,
typically L' or bounded variation spaces. We derive convergence and stability results for
AFDONet-inv, showing that the learned inverse operators are robust to noise in the obser-
vations. The chapter demonstrates superior performance on benchmark inverse problems
including coefficient identification for elliptic PDEs with sparse or discontinuous parame-
ters, source identification problems, and initial condition reconstruction. Comparisons with
traditional variational methods, Bayesian inversion techniques, and Hilbert space operator
learning approaches demonstrate the advantages of the Banach space formulation for prob-
lems with inherently sparse structures.

Chapter 6 explores automated neural operator design using large language models. We

15

begin by analyzing the challenges in manual neural operator design and motivating the
need for automated approaches. The chapter presents the four-agent LLM pipeline in detail,
describing the role and implementation of each agent: the Theorist that reasons about math-
ematical structures, the Programmer that translates theory to code, the Critic that evaluates
designs, and the Refiner that iteratively improves architectures. We explain how the agents
communicate through structured interfaces, how mathematical theories are represented and
processed by the LLMs, and how the iterative refinement process is controlled. Extensive
experiments demonstrate the framework’s effectiveness across diverse PDE benchmarks in-
cluding hyperbolic, parabolic, and elliptic equations on various domain geometries. We ana-
lyze the architectures designed by the framework, showing that they incorporate appropriate
mathematical structures and often discover novel architectural patterns not present in exist-
ing literature. Ablation studies examine the contribution of each agent and the importance
of theory-grounding. The chapter also discusses limitations of the current framework, in-
cluding cases where LLMs struggle with highly specialized mathematical theories or produce
architectures with implementation issues, and proposes directions for improvement.
Chapter 7 concludes the dissertation with a comprehensive summary of contributions,
discussion of limitations, and directions for future research. We synthesize the key insights
from the hybrid numerical methods, theory-guided neural operators, and automated de-
sign frameworks, discussing how they collectively advance the field of numerical PDE solu-
tions. Limitations of each approach are honestly assessed, including computational costs,
applicability to specific problem classes, and theoretical gaps that remain. We identify
several promising directions for future research, including extension of the methods to time-
dependent PDEs on evolving manifolds, development of uncertainty quantification frame-
works for neural operators, integration with multi-fidelity modeling approaches, and appli-
cation to frontier problems in computational science and engineering. The chapter concludes
with reflections on the broader impact of this work in bridging traditional numerical analysis

with modern machine learning, and the potential for these methods to accelerate scientific

16

discovery and engineering innovation.

17

CHAPTER I1

MASSAGE-PASSING FINITE VOLUME METHOD FOR THE RICHARDS
EQUATION

The spatiotemporal dynamics of root zone (e.g., top 1 m of soil) soil moisture from precipi-
tation and surface soil moisture information can generally be modeled by the Richards equa-
tion Richards (1931), which captures irrigation, precipitation, evapotranspiration, runoff,

and drainage dynamics in soil:
OO(V) + V- q=—-5(1),

q=—K(0)V(¢+ 2).

Here, ¢ stands for pressure head (in, e.g., m), q represents the water flux (in, e.g.,

(2.0.1)

m?/m?-s), S is the sink term associated with root water uptake (in, e.g., s71), 6 denotes the
soil moisture content (in, e.g., m®/m?), K is unsaturated hydraulic water conductivity (in,
e.g., m/s), t € [0,T] denotes the time (in, e.g., s), and z corresponds to the vertical depth
(in, e.g., m). The Richards equation is a nonlinear convection-diffusion equation Caputo
& Stepanyants (2008), in which the convection term is due to gravity, and the diffusive
term comes from Darcy’s law Smith et al. (2002). For unsaturated flow, both § and K
are highly nonlinear functions of pressure head 1 and soil properties, making Equation
(2.0.1) challenging to solve numerically. Specifically, 6(¢) and K () (or K(6), depending
on the model) are commonly referred to as the water retention curve (WRC) and hydraulic
conductivity function (HCF), respectively. Several of the most widely used empirical models
for WRC and HCF are summarized in Table 1.

Due to the highly nonlinear nature of WRC and HCF, analytical solutions to the Richards

equation do not exist in general Farthing & Ogden (2017). Thus, the Richards equation is

18

Table 1: Some of the widely used HCF and WRC models. In these models, A, v, «, 3, n,

0, and 6, are soil-specific parameters and have been tabulated for major soil types.

Model HCF (K (¢) or K(6)) WRC (0(v))
Haverkamp et al. (1977) Ksﬁ 2 0, + aéislz_p?/g)
e
Mualem (1976); Van Genuchten (1980) K,/ 2=% {1 - [1 — (= H} } 0, + —Lbate
/i (%) N
Gardner (1958) K™ 0, + (0s — 0,)e™¥

typically solved numerically in some discretized form. Consider the discretized version of
Equation (2.0.1), whose control volume V C R (d = 1,2, 3) is discretized into N small cells
Vi,...,Vn. Using implicit Euler method on the time domain with a time step size of At,

the discretized Richards equation at time step m = 0,1,..., [%1 — 1 can be expressed as:

(0(u) — (") — AV - [(00) ¥ (71 + 2) | + Ansuy) = o,

Dirichlet boundary condition: ¢;(-) =0 for all V; C 9V, (2.0.2)

Initial condition: (0,) = ¥o(+),

\

where ¢! is the pressure head in cell V; and time step m, and (-) denotes the initial
condition at ¢ = 0.

The performance of a numerical PDE solver depends theoretically on the well-posedness
of the PDE Sizikov et al. (2011), which is an essential property that certifies the accuracy
and reliability of numerical solutions to the PDE. A PDE is said to be well-posed if its
weak solution exists, is unique, and depends continuously on the problem’s initial conditions
Sizikov et al. (2011); Evans (2010). Here, we consider an FVM discretization with a discrete
space Qp, C L*(V) of piecewise constants, where h denotes the maximum dimension of any
cell in its mesh. With this, we define the space of piecewise constant functions on the set
of meshes T, = {V1,Va,..., Vn} as Qn(V) = {v € L*(V) : vly, is constant for all V; € T }.
Then, we introduce the discrete gradient operator Hyman & Shashkov (1997), GRAD,,, which

maps a cell-based function in)}, to a face-based function that approximates the gradient.

19

Note that ¢! in Equation (2.0.2) denotes the pressure head in cell V; and time step m, which
is the value of ¥ in the cell V;. To study the pressure head solution in function space Qn(V),
we focus on 9™ rather than ¢". With this, the discrete solution for the FVM-discretized
Richards equation can be defined as follows:

Definition 2.0.1 Given Y™ € Qy,, if for any v € Qy,

O™ = 0(y™),v),, (2.0.3)
+ At<K(8(wm+1)) GRAD, (™! + 2), GRADh(v)>g (2.0.4)
+ AL(S(™H)v), =0 (2.0.5)

holds, where &, denotes the set of all faces that make up the mesh Ty, then ™ is a discrete

solution of the F'VM-discretized Richards equation.

Following Definition 2.0.1, for the discrete function space @5, an inner product over a
cell V; is defined for piecewise constant functions f,g € Qn as (f,g)v, = fv fgdV. In
this case, by denoting f; and g; as the function values of f and g respectively on V; (i.e.,
fi=1T1
The global inner product over the entire domain V is then (f, g)y = Zfil(f, 9)v,. We

v, and g; = g|v;, both of which are constants), we have [, fgdV = figivol(V;).
remark that the existence and uniqueness of the weak solution of the Richards equation
have been rigorously established and carefully studied Merz & Rybka (2010); Misiats &
Lipnikov (2013); Abdellatif et al. (2018), setting up the theoretical foundation for developing

an efficient solution algorithm to solve the discretized Richards equation numerically.

2.1 Adaptive fixed-point iteration scheme of Discretized Richards Equation

In this section, we will formally introduce the adaptive fixed-point iteration scheme formu-
lation of the FVM-discretized Richards equation. We will also derive sufficient conditions
for parameter 7 to ensure convergence. We will also analyze the convergence behavior of the
7Y

resulting sequence of solutions { s, where s is the iteration count (s =1,2,...,5).

20

2.1.1 Adaptive fixed-point iteration scheme for the Richards Equation

To discretize the Richards equation via FVM, we first integrate both sides of Equation (2.0.1)

over V:

/V 0,0(6) + S()] AV — / V. [KOV(+2)] AV, (2.1.1)

\%

Next, we apply the divergence theorem to Equation (2.1.1), which converts the volume

integral on the RHS into a surface integral:

~ ~

8,0(0) + sw)]w vl(V) = ¢ KOV +2)-ndsy, (2.1.2)

where vol(V') is the volume of V', Sy is the surface of V' and n is the outward pointing unit
normal to the boundary dV. The common surface shared by cell V; and cell V; is denoted
as w; j. With this, we can rewrite the operator K(-)V(-) and the outward pointing unit

normal vector n on w;; as [K(-)V(-)] = and n,,, respectively. After FVM discretization,

2%
we obtain the discretized version of Equation (2.1.2) as:
00:vol(Vi) + S(hi)vol(Vi) = > [K(0)V (v + Ay DA, V=1 N, (2.13)
JEN;
where 0,0; refers to the time derivative 9;6(1);) in cell V;, N; denotes the index set of all the
neighboring cells sharing a common surface with V;, and A, ; is the area of surface w; ;.

In static fixed-point iteration scheme, for each cell V; and at each time step m + 1,
one would add the term %(1#;”“’5“ — "% to either side of Equation (2.1.3), so that
the Richards equation can be solved in an iterative manner. The fixed-point pressure head
solution of this iterative procedure is denoted as 1;". Since 7 is a static constant, a trial-and-
error procedure is typically required to obtain an appropriate 7 value that avoids convergence
issues. Not only is this search procedure tedious to implement, the solutions obtained are also
less accurate most of the time as we will show in Section 2.3.1. Thus, inspired by previous
works Amrein (2019); Zhu et al. (2019), we propose an adaptive fixed-point iteration scheme

that replaces the static 7 with 7"""* which adjusts itself for each specific discretized cell,

21

time step, and iteration count. We then introduce the term Tm_}m(wzn+1,s+1 — ") to the

LHS of Equation (2.1.3), which leads to:

s —gmAhs o pmtls Z [K(O)V (¢ + Z)]mes Ny, Au,

2 (2.1.4)
— 7 [0 1 ()] vol(V),

)

o) =0y

m+1,s
91' At

By discretizing 0, using implicit Euler scheme as , we can obtain the

adaptive fixed-point iteration scheme of the FVM-discretized Richards equation:
m+1,s m+1,s
m+1,s+1 m+1,s m+1,s m+1,s <w + Z)j - (w + Z)i
. = . . K ’ 1, .Aw. .
v v Z s dist(V;, Vi) o e
) JEN: (2.1.5)
O — gy
_ Tm—i—l,s |: (wz) (wz) + S(¢r+1,8) VO](VZ-),

! At
where e = (1, 1, 1) for the standard 3-D Cartesian coordinate system, and dist(-, -) represents

the Euclidean distance function.

2.1.2 Choice of Adaptive Linearization Parameter

In adaptive fixed-point iteration scheme, we observe that 7," 15 needs to be sufficiently small

because otherwise, the RHS of Equation (2.1.5) could approach infinity, which affects the
convergence of the scheme. To prevent Tm% from being too large, we impose a user-specified
global upper bound 7y:

m+1,s
T; < 79.

In addition, the choice of 7" *15 can impact the accuracy of solutions. In other words,
'Lp‘rn+l,s+17¢‘7n+l,s .
the term |—= wm%; should be no greater than a prespecified tolerance p. Thus, we
have:
m+1,s+1 m+1,s m+1,s| m—+1,s
m—+1,s m—+1,s — Bt R
Vi b

where S is the user-specified total number of iterations for convergence, p should be no less

22

than the overall tolerance of convergence € (to be discussed in Section 2.1.3), and:

m+1,s m+1,s
: v dist(Vj, Vi)

) — 0
At

e-ny, Ay,

vol(V;) — S(47 %) vol(V;).

]

This implies that:

+17
m+1,s < PWT 5| Vs =1

p m+1,5| Yoo

(I +p)lg

whose RHS can be explicitly determined from the results of the previous iteration. Note

S, (2.1.6)

that, in actual implementation, we select 7" *"* based on:

m+1,s
Tim+1,8 — min {T(), pl/ll)’l/ m_,’_|1 . } VS ey 1’ ceey S, (2.1-7)
(L+p)g"

Meanwhile, we can monitor the sensitivity of solutions obtained by our adaptive fixed-
point iteration scheme and make sure that the solutions do not change drastically with
respect to small perturbations. To achieve this, following Zarba (1988) and Celia & Zarba
(1988), we explicitly write down Equation (2.1.5) for all discretized cells in the form of a

matrix equation:

Ax"ths = b, (2.1.8)
where the ith element of vector x™+1% is " TH% = 7t 1*H1 _ ™15 which corresponds to

cell V;. Here, it is worth mentioning that Equation (2.1.8) is not used for solving Equations

(2.1.5) as it is an explicit numerical scheme. Rather, it is used for analyzing the properties

m+1,s
i

of the scheme after x solutions are obtained by solving Equation (2.1.5). For example,

to evaluate the choice of 7/

%

, we can calculate the condition number of A based on the

solutions obtained from the chosen 7/"""*. If the condition number is larger than a user-
specified threshold, we will update 7y in Equation (2.1.7) so that the condition number drops
below the threshold. For 1-D problems, Zarba (1988) showed that A is a N x N asymmetric
tridiagonal matrix. In this case, the condition number of A can be determined by calculating
its eigenvalues. On the other hand, for 2-D and 3-D problems, A is a rectangular matrix, so

that singular value decomposition will be used to determine its condition number.

23

2.1.3 Convergence of Adaptive Fixed-Point Iteration Scheme

We now study the convergence behavior of our adaptive fixed-point iteration scheme, which is
formalized in Theorem 2.1.1. Recall that functions 1™ and)™+ are considered to study the
convergence. To show this, the idea is to leverage Definition 2.0.1 and find ™15+ € Q, (V)
given ™, ™t € Q, (V) such that:

At
Tm+1,s

(O — (™),)y, + e (W = T o) (S),
= —At(K (0(y™ 1)) GRAD, ("1 + 2), GRAD,(v)) .
(2.1.9)
holds for any v € Q,(V). We remark that, unlike previous proofs (e.g., Amrein (2019))
that are based on several restrictive assumptions, our convergence proof follows a different

approach that is intuitive and flexible, as it does not involve any additional assumptions

other than the properties listed below.

Theorem 2.1.1 The sequence {15}, converges to a unique solution Y™ € Qu(V) for

m=0,1,...,[5] -1
Proof. First, we state two key properties used in the proof:

1. The Cauchy-Schwarz inequality holds for the discrete L? inner product: for any u,w €

Qn, we have (u, w)y < ||ul|pz]|w|| Lz

2. 0(¢p) = %mmﬂ,s > ¢ > 0, which is valid in most WRC models (see Table 1). Similarly,

S () = % |ym+1.s > 01in the region between the start and optimal root water extraction.

First, we subtract Equation (2.0.3) from Equation (2.1.9) to obtain the error equation.
Let e = ¢p™T1s —)™+ we have:

At

Tm—‘rl,s

<0(¢m+1,s+1> . 6)(1/}7714-1)7 U>V 4

+(SmH) = S, v), = —At(K(-)GRAD, ("), GRAD, (v)) . -

et — e v
< v (2.1.10)

24

Let the test function v = est! = ¢mFLstl _gym+1 This is a valid choice as e’*! € Q.
By applying the mean value theorem to the # and S terms, and using Observation 2, we

have:

9 wm—i—l,s-ﬁ-l s wm—i—l ,€S+1 9 59 6S+1,€s+1 > CO| 6s—i—1| 22’
Vv v L

<S(¢m+1,s+1> _ S(¢m+1);€s+1>v _ <S(§S)es“,es“> >0

v
for some &y, &g between ™15 and o™+, The flux term on the RHS of Equation (2.1.10)

(2.1.11)

is also non-negative:

—At(K () GRADy(e*™), GRAD, (™)), = —Atlle”™ ||z <0, (2.1.12)
where || - ||, is the discrete energy semi-norm. Substituting Equation (2.1.11) and Equation
(2.1.12) into Equation (2.1.10) gives:

colle™ |72 + 0+ ﬁis@sﬂ — e et <0 (2.1.13)
TmtL,
By applying Observation 1, Equation (2.1.13) leads to:
colle”™Z2 + Tmif (e HiZe = (e*, e hv) < 0. (2.1.14)
Then, we have:
R L L P PR XBE)

If ™! = 0, we complete the proof. If e # 0, we can divide Equation (2.1.15) by ||e*™|| 2

At s At .
(CO + Tmﬂ,s) e e < g5 llell e, (2.1.16)
which yields the contraction:
At
le ™M ee < { —5— | l€’llze- (2.1.17)
CO + 7—mA+t1,s
—

=7vs

Since ¢g > 0, the contraction factor -, is strictly less than 1. Therefore, the sequence is a
contraction mapping on the discrete space Qp, (V') equipped with the L? norm. By the Banach
fixed-point theorem, the sequence {¢™*1} converges to a unique solution ™! € Q. (V).

This completes the proof. [|

25

2.2 Message Passing Finite Volume Method (MP-FVM)

Once the adaptive fixed-point iteration scheme for the FVM-discretized Richards equation is
established, we incorporate it in our MP-FVM algorithm to enhance the solver accuracy and
ability to retain underlying physics (e.g., mass conservation). As discussed previously, the
message passing neural PDE solver proposed by Brandstetter et al. (2022) comprises three
main components: an encoder, a processor, and a decoder. The message passing mechanism
is implemented within the processor that operates in the latent space. However, it has
not been extended to discretized PDEs. In this work, we introduce the message passing
mechanism for the discretized Richards equation by defining a latent variable p;"* as the
processor. Therefore, by leveraging our adaptive fixed-point iteration scheme, we can now
solve the latent variable iteratively to enhance the convergence and numerical stability of
the message passing mechanism. Specifically, this integrative algorithm, MP-FVM, adopts
one neural network (encoder) fxn to learn the map ¢ p™* and another neural network
(decoder) fxd to learn the inverse map p/™*— ™. Overall, our MP-FVM algorithm involves
offline training (dataset preparation and encoder-decoder training) and solution (message

passing) process, which are summarized in the flowchart of Figure 1.

2.2.1 Dataset Preparation and Data Augmentation

The dataset used to train the encoder and decoder neural networks comes from two different
sources/solvers. Specifically, for each cell V; and time step m, we approximate the latent
variable solution ™ from a finite difference solver (e.g., Ireson et al. (2023)). Here, S is the
user-specified total iteration number. The corresponding ;" ¥ solution is obtained separately
from the fixed-point iteration scheme of Equation (2.1.5) using a static parameter 7. The
resulting set of solution pairs, { (wim’s, u;-n’s) }i,m’ form a set of original “reference solutions”.
In actual implementation, we obtain multiple sets of original reference solutions by selecting

multiple total iteration numbers (Sy,...,5,) and/or fixed-point parameters (7y,...,7,) that

26

Offline Training (only once) Solution (Message Passing) Process

Fixed-point iteration (Start)
scheme of FVM discretized Initial pressure head
Richards equation solutions at m = 0
Original reference Encoder
solutions Initial latent
Data augmentation variables atm = 0
Expanded set of m=m+1
reference solutions
Neural network Fixed-point iteration <:>| Encoder I
training scheme for latent variables
J J with message passing <:>| Decoder |
Encoder network Decoder network Convergence
Learns fyn: Learns f~1 \: criterion met
Wi oW [T RV Decm
Pressure head HCF & WRC Soil moisture
solutions at m models level at m
T
No — [A_t] -
Yes
End

Figure 1: Flowchart of our proposed algorithm to solve the FVM-discretized Richards equa-

tion using a message passing mechanism.

cover their ranges expected during the actual solution process. These sets of original reference
solutions, which are {(@/}?’Sl,u;n’sl) | }i,m’ c {(wim’s”, p,;n’sf') |Tr}i7m’ are combined to form
a larger set to perform data augmentation.

Next, to apply data augmentation, we introduce Gaussian noise Z, ~ N(0, 02) with
different variances o, ... ,aé to each and every element in the reference solution set ob-
tained previously. After data augmentation, the resulting expanded set of reference solutions,

{(%Tn’Sl + Z/pvﬂzm’Sl + Zq>|n}

will be used for neural network training. This data augmentation step not only increases the

7S 7S .
g {(zpzn P g+ Zq)|n}z.’m’q7 is denoted as S and
size of the training dataset, but also reflects the characteristics of actual soil sensing data,
which are subject to various measurement uncertainties. Furthermore, In Section 2.3.1, we
will show that introducing Gaussian noise can greatly reduce the biases of reference solutions
and enhance generalization performance Da Silva & Adeodato (2011), thereby significantly

improving the accuracy of numerical solutions.

27

2.2.2 Neural Network Training

A neural network is capable of approximating any function provided that it contains enough
neurons Hornik (1991); Pinkus (1999). In the actual implementation, depending on the
problem settings, the desired choices of optimal optimizer, number of hidden layers, and
activation functions can vary. Based on our extensive research and hyperparameter tuning,
we find that a simple three-layer neural network with 256 neurons in each layer achieves
the best performance for most 1-D through 3-D problems compared to other more complex
neural network architectures (e.g., LSTM). Also, we find that stochastic gradient decent
(SGD) optimizer often outperforms others (e.g., Adam or RMSProp). The learning rate is
set to be 0.001. This simple neural network structure makes our MP-FVM algorithm training
much less computationally expensive compared to state-of-the-art neural PDE solvers (e.g.,
Lu et al. (2020b); Brandstetter et al. (2022)).

In terms of loss function design, we note that the solution of the Richards equation at a
given time step depends on the pressure head solution at the initial condition and previous
time steps. A small perturbation in these solutions can lead to slow convergence or inaccurate
solutions at the final time step. To account for this, we introduce Sobolev training Czarnecki
et al. (2017b) for both neural networks fan and fl_ni to ensure compatibility and stability in
the same solution space. We implement Sobolev training by adding a Sobolev regularization

term to the standard Mean Squared Error (MSE) in the loss functions for fxn and f1\71\113

EfNN:% Z (ﬂ—fNN(w)z—i-)\fNN'% Z (HV (M—fNN(¢)>H;>a (2.2.1)

(¥,u)eS (Y.p)es
MSE‘,term Sobolev regu?:;rization term
and
s SN NEPERNTE
iy E Z <¢ - fNN(M)) + fan E Z Hv (¢ - fNN(N)) HL2) (2.2.2)
(¢7N)ES (d),u)ES
MSE?erm Sobolev regu?arrization term

where A Fan and A jol are user-specified regularization parameters for the neural networks A ol

and fg&, respectively. Here, we use the Leaky ReLLU activation function, as it has been shown

28

that there exists a single hidden-layer neural network with ReLU (or Leaky ReLU) activation
function that can approximate any function in a Sobolev space Czarnecki et al. (2017b).
Overall, this combined loss function ensures that the model not only produces accurate
predictions but also generates smooth and regular outputs by matching the gradients of the

true function.

2.2.3 Message Passing Process

When neural network training is complete, the trained encoder fNN and decoder fﬁ\ll can then
be incorporated into Equation (2.1.5) to derive the following fixed-point iterative scheme for

the latent variables with message passing mechanism:

m+1,s m+1,s
K — My

. Ao+ fan(J), 2.2.3
(%) dlSt(V},‘/l) 1,7 +fNN() ()

m+1,s+1 _ m+1l,s m—+1,s § : m-+1,s
lu’i - H’l + T’i Kwiﬂj €-1n,
JEN;

m-+1,s m
_ _m+ls m+1,s,. 2 —2i _om4ls (6707 m+1,s -
where J =7, > ien; Koo ny, Ty ey — T g+ S)) vol(V5).

To solve Equation (2.2.3), we will adopt a similar strategy as in Equation (2.1.7) to adaptively

+

. . . 1 . .
select the linearization parameter 7, °. To start the message passing process, we obtain

the initial pressure head solutions in the control volume at m = 0 from the initial and
boundary conditions. These initial pressure head solutions can be mapped to the latent
space via trained encoder network fNN. Next, for each new time step m + 1, the latent
variable for every cell can be iteratively solved by Equation (2.2.3) by utilizing the trained
neural networks fNN and fl\}l&] Note that the iterative usage of fl\?ﬁ] is implicitly implied

in the MP-FVM algorithm, as the term J in Equation (2.2.3) contains ¥"""* that must

be evaluated by applying fqr on latent variable /"""

; . Also, it is worth mentioning that,

since ¢ and J have different scales, in actual implementation, in addition to fyy for learning
Y™ — 1™ we train another neural network named f’xy for mapping .J to the latent space
in Equation (2.2.3). To monitor convergence of the iterative message passing process, we

define the relative error RE; as:

m—+1,s+1 _ , m+1,s

I 0

|22
, 2.2.4
| ’Mm+1,s+1 ’ ‘LQ ()

RE; =

29

where pmtbsth = (SR YT and so on. Once RE, is below a user-specified
tolerance tol (typically in the order of 107°), we declare convergence of {u"""*}, to "+,

From there, one can determine the converged ¢! using fl\jl\ll, followed by obtaining other
physical quantities such as soil moisture content 67" and q/"™ from the WRC and HCF
models (Table 1) and Equation (2.0.1). The entire solution process then repeats itself in the
next time step until m = [-£] — 1.

Furthermore, it is worth mentioning that, when neural network training for a specific
problem setting (e.g., boundary condition and initial condition) is complete, the trained
neural networks can be saved as a pre-trained model. As we encounter a new problem
setting, the pre-trained model provides a strong starting point that can be quickly refined
with a small number of epochs (typically no more than 100) before it can be deployed
to solve the new problem. The use of pre-trained model is a well-established technique
in machine/deep learning for leveraging knowledge learned from (large) datasets, reducing
the need for extensive training data and computation, and enabling faster deployment and

improved performance in new tasks through fine-tuning.

2.2.4 Convergence of MP-FVM Algorithmn

The convergence of our MP-FVM algorithm, which features the sequence {u™*1*},, can
be established by extending Theorem 2.1.1 and investigating the convergence behavior of
stochastic gradient descent (SGD) for neural network realizations of fxn and fl_n\ll Similar

m+1,s

to Theorem 2.1.1, we consider functions {u }s and p™*! instead of their discretized

variants.

m—+1,s

Theorem 2.2.1 The sequence {p }s converges to ™t form =0,1,..., (%W — 1.

To prove Theorem 2.2.1, we first need to introduce the following preliminary assumptions

and results from Fontaine et al. (2021) and Berner et al. (2019).

1. The objective function f is L-smooth.

30

2. There exists a Polish probability space (Z, Z,7%) and n > 0 such that one of the

following conditions holds:
(a) There exists a function H : RY x Z — R such that for any z € R?,
[Ha 2?2 = Vi@, [[H@) - Vi@lRdrt(e) <
z z

(b) There exists a function f : R?x Z — R such that for all z € Z, f(-, z) € C'(R% R)

is L-smooth. Furthermore, there exists 2* € R? such that, for any x € R¢,
/Zf(x, 2)dr?(z) = f(x), /va(l‘, 2)dr?(z) = V f(z), /Z IV f (2", 2)|[F2dn” (2) < .
In this case, we define H =V f)

3. There exists M > 0 such that for any z,y € R,

12(2)"2 = S() |2 < M|z = yllze.

4. One of the following conditions holds:
(a) For Assumption 2(a): f is convex, i.e., for any z,y € R?,
(Vf(x) =V[(y),z—y) =0,

and there exists a minimizer z* € arg min,cpa f.

(b) For Assumption 2(b): For all z € Z, f(-,) is convex, and there exists a minimizer

x* € argmingepa f.

Under Assumptions 1 and 2, we introduce the sequence {X,, } ey starting from X, € R?

corresponding to SGD with non-increasing step sizes for any n € N by:
Xn—l—l - Xn - ’Y(n + 1)_QH(Xn7 Zn—&—l)’

where v > 0, a € [0,1], and {Z,},en is a sequence of independent random variables on

a probability space (2, F, P) valued in (Z, Z) such that for any n € N, Z, is distributed

31

according to 7Z. As Fontaine et al. (2021) pointed out, the solution of the following SDE is

a continuous counterpart of {X,, }nen:
AdX, = — (7 + 1) OV F(Xe) dt + y(y + 1) 2%0(X,)2 dB,

where 7, = 7/17% and (B;);> is a d-dimensional Brownian motion.

Given these preliminaries, we now leverage two established results as lemmas:

Lemma 2.2.1 (Theorem 6 of Fontaine et al. (2021)) Leta,~ € (0,1), for f € C*(R4,R),

there exists C' > 0 such that for any T > 1,

2
E[f(Xr)] — min f < C%

Lemma 2.2.2 (Equation 35 of Berner et al. (2019)) Suppose f with an at most poly-
nomially growing derivative is the “true” function learned by the neural network. Let k > 0

be the polynomial growth rate, there exists D > 0 such that

1f(2) = FW)llze < D (1+ =532 + yll522) o — yll e
holds.

With Lemmas 2.2.1 and 2.2.2, we are now ready to give the proof of Theorem 2.2.1 which

accounts for the convergence of SGD:

Proof. To start, we have:

st — L s < B || A (0T Xp) — fan (S XT)HLz]
<E [l fan(@m o, Xn) = @)]
P @) = F) s
FE (I = fan(@, Xor) 12

where X is the weights of fNN optimized by SGD optimizer, whose process is assumed to

be well-approximated by the SDE in Lemma 2.2.1, and f is the true function learned by
Fxn

32

To bound the first and third terms, we define the objective function for the SGD process
for a given input ¢ as fy(z) = ||fNN(¢, z)— f (¢)||L2. We assume this function satisfies the
conditions for Lemma 2.2.1. The terms we seek to bound are then precisely of the form

E[fy(XT)]. From Lemma 2.2.1, we have:

(1 + log(7))*

T Taay T in fu(z).

E[fy(X1)] < C

We assume the network is a good approximator, such that for a given ¢ > 0 and for any
relevant ¢, the minimum error satisfies min,ega fy(z) < ¢. When the network is trained

for a sufficiently large T, we can ensure C' % < §- Thus, for both the first and third

terms, which correspond to ¢ = ™1t and ¢ = ™%, we have the bound:

+

E [||fax (v, Xx) = F@)lz2] < o

™
| M

Next, for the term || f(p™15t1) — f(p™15)| 12, it can be bounded using Lemma 2.2.2

and the result |[¢pmtbstl—ymtLls|, < £ obtained from Theorem
W ¢ ||L = 3D<1+“,¢m+1,s+1||’Z;’2+”¢m+1,sH"Z‘29‘2)

2.1.1:
||f<wm+1,s+1) . Jﬁ(merl,s)HL2 < D (1 + ”¢m+178+1”2j2 + meJrLsH,ZJ2r2>

. meJrl,erl - merl,s”L2 S %

Therefore, it follows that

e P

Wl M
w

which completes the proof. [|

2.3 Case Studies

Now that we have introduced the MP-FVM algorithm formulation for the Richards equa-
tion, in this section, we evaluate our MP-FVM framework on a series of 1-D through 3-D

benchmark problems modified from the literature Celia et al. (1990); Gasiorowski & Kolerski

33

(2020); Tracy (2006); Berardi et al. (2018); Orouskhani et al. (2023). Specifically, we exten-
sively study the 1-D benchmark problem of Celia et al. (1990) to demonstrate the need and
benefits of different components employed in our MP-FVM algorithm, including adaptive
fixed-point iteration scheme, encoder-decoder architecture and message passing mechanism,
and Sobolev training. Also, using this problem as a benchmark, we demonstrate the accu-
racy of our solution algorithm with respect to state-of-the-art solvers. In the 1-D layered
soil case study proposed by Berardi et al. (2018), we show that our MP-FVM algorithm is
capable of handling discontinuities in soil properties and modeling the infiltration process
through the interface of two different soils. In the 2-D case study adopted from Gasiorowski
& Kolerski (2020), we show that our MP-FVM algorithm can better satisfy the mass balance
embedded in the Richards equation. In the 3-D case study adopted from Tracy (2006) in
which an analytical solution to the Richards equation exists, we show that our MP-FVM
algorithm produces much more accurate solutions compared to conventional FVM solvers.
Finally, we study a 3-D problem adopted from Orouskhani et al. (2023) featuring an actual
center-pivot system and validate the accuracy and robustness of our MP-FVM algorithm in

modeling real-world precipitation and irrigation scenarios for a long period of time.

2.3.1 A 1-D Benchmark Problem

Here, we study the 1-D benchmark problem over a 40 cm deep soil presented by Celia et al.
(1990). The HCF and WRC adopt the model of Haverkamp et al. (1977) (see Table 1),
whose parameters are listed in Table 2. The initial condition is given by ¢ (z,0) = —61.5
cm, whereas the two boundary conditions are (40 c¢m, t) = —20.7 cm, ¢(0,¢) = —61.5 cm,
respectively Haverkamp et al. (1977). This benchmark problem ignores the sink term.
Through this 1-D illustrative example, we will highlight the benefits of (a) adopting
an adaptive fixed-point iteration scheme as opposed to standard the fixed-point iteration
scheme, (b) implementing the MP-FVM algorithm as opposed to the conventional FVM

method, and (c) integrating the adaptive fixed-point iteration scheme with encoder-decoder

34

Soil-specific Parameters Values Units

Saturated hydraulic conductivity, Ky, 0.00944 cm/s

Saturated soil moisture content, 6, 0.287 —
Residual soil moisture content, 6, 0.075 -
a in Haverkamp’s model 1.611 x 10° cm
A in Haverkamp’s model 1.175 x 10 cm

[in Haverkamp’s model 3.96 =

v in Haverkamp’s model 4.74 -
Total time, T’ 360 s

Table 2: soil-specific parameters and their values used in the 1-D case study of Celia et al.

(1990) based on the empirical model developed by Haverkamp et al. (1977).

network and message passing mechanism in a holistic numerical framework.

The Need for Adaptive fixed-point iteration scheme

To illustrate how adaptive fixed-point iteration scheme improves convergence and accuracy
of conventional fixed-point iteration schemes, we compare the pressure head solution profiles
at t = T = 360 seconds obtained by different static fixed-point parameters after (a) S =
500 iterations and (b) tol = 3.2 x 107°. We adopt a spatial grid containing 101 mesh

points (Az = 0.4 cm) and a temporal grid satisfying the Courant-Friedrichs-Lewy (CFL)-

like condition, typically expressed as At < %IZ; De Moura & Kubrusly (2013). As shown
in Figure 2, when using static fixed-point iteration scheme, the choice of parameter 7 and
the total number of iterations can impact the solution accuracy and algorithm stability
significantly. For example, when the fixed-point parameter is too large (e.g., 7 = 2 for this

problem), the stability of the static fixed-point iteration scheme can be adversely affected (as

illustrated by the zigzag pressure head profile towards z = 40 cm). Another key observation

35

7=0.1
=7 =0.2
T=1

-20 -20

f—r=2

fe Adaptive fixed-point iteration /
Ground truth solutions

:

-30 4

-40 4

[=—7=0.1

[T =0.2
T=1

o T = 2

f===Adaptive fixed-point iteration
Ground truth solutions

Pressure head (cm)
Pressure head (cm)
5
1

I
a
o

1

-50

-60 -60

0 10 20 30 40 0 10 20 30 40
Depth (cm) Depth (cm)

Figure 2: Comparison of pressure head solution profiles at t = 7' = 360 seconds under (a)
S = 500 iterations and (b) tol = 3.2x 107° for the 1-D benchmark problem Celia et al. (1990)
using standard and adaptive fixed-point iteration schemes (Equation (2.1.5)). The solutions
obtained from Celia et al. (1990) based on very fine space and time steps are marked as the

ground truth solutions.

is that, increasing the total number of iterations sometimes deteriorates solution accuracy
of static fixed-point iteration scheme. These observations pose practical challenges for using
static fixed-point iteration scheme, especially when the ground truth solutions are absent,
as identifying the optimal fixed-point parameter and total number of iterations that would
yield accurate solutions will not be possible without referring to ground truth solutions.
This motivates us to develop adaptive fixed-point iteration scheme as a robust and reliable
numerical scheme that produces solutions that are close to ground truth solutions without
trail-and-error parameter tuning. Also, it is worth noting that our adaptive fixed-point
iteration scheme successfully bypasses the singularity issue as Tm% approaches to 0 and

correctly calculates the pressure head solutions for z € [0,20 cm] where 6(¢)) becomes small.

36

The Need for Encoder-Decoder Architecture

To generate the reference solutions, we consider a coarse spatial discretization containing 40
cells (i.e., grid size Az = 1 cm) and solve for T" = 360 seconds. The time step size At is
determined using the CFL condition De Moura & Kubrusly (2013). A set of pressure head
solutions 1) is obtained using the finite difference method that incorporates a modified Picard
iteration scheme developed by Celia et al. (1990). Meanwhile, another set of pressure head
solutions, which essentially becomes the latent variable dataset p for neural network training,
is obtained from the fixed-point iteration scheme of Equation (2.1.5) under 4 different static
fixed-point parameter 7 = 0.25, 0.24, 0.23, 0.22 and 10 different total iteration counts S =
1,000, 2,000, up to 10, 000.

~207 e Reference solutions| !(
¢!
—_ e o 833
§ -30-
~ []
=
o
®©
© -40 -
e Y []
9 []
>
a °
® -50 -
o Ld o o
[]
60 e * :
1 weo 8 $ e $ 8
I T I T I T I T I
60 -50 -40 -30 -20

Pressure head 1 (cm)
Figure 3: The relationships between 1640 pressure head solutions) and p, which are obtained

by two distinct approaches. The resulting nonlinearity present in these reference solutions

highlights need for data-driven approach.

As mentioned earlier, reference solutions utilized to train the encoder fyy and decoder

37

fﬁﬁl come from two different sources. As shown in Figure 3, a highly nonlinear relationship
between two sources of pressure head solutions is observed. This is mainly because pressure
head solutions from different sources exhibit different sensitivities with respect to different
choices of 7 and S. Without knowing the ground truth solutions a priori, it is hard to
determine which set of pressure head solutions is more accurate. This motivates us to
adopt an encoder-decoder architecture to explicitly capture this nonlinear relationship, which
encapsulates the sensitivity of solution with respect to different choices of 7 and S.
Another motivation for adopting an encoder-decoder architecture in our numerical solver
comes from the fact that different sources of pressure head solutions also exhibit different
topological features. To see this, we use persistent homology Edelsbrunner & Morozov
(2013) as a way to capture the multiscale topology of each source of pressure head solutions.
Specifically, we construct a sequence of simplicial complexes and track the “birth” and
“death” of topological features across this sequence. Figure 4 shows that the p solutions
exhibit longer-lasting topological components than the 1 solutions, as all points die off
much sooner (e.g., ~ 7.4 on the death axis) for the v solutions. Therefore, the use of an
encoder fNN, which maps the pressure head solutions ¢ to a latent space where y solutions
lie, can capture the distinct topological structures of two sources of pressure head solutions.
Similarly, the decoder JE1\?1}1 transforms the latent representation p back to the original solution
space, ensuring that the essential topological features of ¢ solutions are accurately captured

and reconstructed.

Improving MP-FVM Algorithm Performance via Sobolev Training and Encoder-

decoder Architecture

As previously discussed, we perform data augmentation on the reference solutions to increase
dataset size and enhance generalization performance. Specifically, after we obtain a set of ¢
solutions using the finite difference method developed by Celia et al. (1990), we make multiple

copies of it and append each copy to the u solutions obtained by the fixed-point iteration

38

’ ’
4 4
g U -l e s g S -l
7F 47 10 e
e e
L] /// L] ///
6 v ’
* e e
// 8 B /,
i e e
5k o e
/7 /7
’ ’
e e
4 6 ’
4+ e ’ ’
k= e b= H s
5] , @ ® ,
o // L //
a 3+ ’ 4 e e
° 7’ 4~ ° 7’
’ ’
’ ’
// //
2 ¢ ’ ’
’ ’
e e
L]
° /// 2k ///
1 ° , ’
] /) ’
’ ’
’ ’
’ ’
I | m
———! o _—
oF oF
e o Hg R e Hp
| | | | | | | 1 | | | | | 1
0 1 2 3 4 5 6 7 0 2 4 6 8 10
Birth Birth

Figure 4: Persistence diagrams Edelsbrunner & Morozov (2013) for pressure head solutions
¥ (left) and p (right). The marked differences in topological features illustrate the need for
an encoder to map v into the topological space of u. Here, oo refers to infinite lifespan and

Hy are connected components.

scheme of Equation (2.1.5) under different static 7 and S values. We then add zero-mean
Gaussian noises with standard deviation varying from 0.1 to 0.5 to these augmented reference
solutions. Overall, this leads to a total of 17,097 reference solutions for neural network
training and validation. Note that, as previously discussed, the original and augmented
reference solutions are generated using a coarse grid (Az = 1 cm). Thus, they can be
obtained relatively efficiently. On the other hand, in the solution step, we will use a more
refined grid containing 101 mesh points (Az = 0.4 cm). This “coarse-to-fine” approach can
therefore enhance the solution accuracy of our MP-FVM algorithm without requiring a large
amount of high-accuracy, fine-mesh training data. Furthermore, when augmented reference
solutions are used for training, only 100 additional epochs are needed to retrain neural
networks that have already been trained using the original reference solutions. Second, we

notice that there is only a slight difference in the final pressure head solution profile when

39

Adaptive fixed-point iteration only
—-20 o =—— MP-FVM solutions (without Sobolev training)
Final MP-FVM solutions (with Sobolev training)| 4
Ground truth solutions

Pressure head (cm)
A o
o o
1 1

|
(8]
o
1

-60 -

0 10 | 20 30 40
Depth (cm)

Figure 5: Comparison of pressure head solution profiles at ¢ = T" = 360 seconds produced
from adaptive fixed-point iteration scheme only (Equation (2.1.5)) and from MP-FVM algo-

rithm (Equation (2.2.3)) with and without implementing Sobolev training.

Gaussian noises of different magnitudes are directly added to the original reference solutions
without augmenting them together. Third, increasing training data size (from 1,640 to
17,097) via data augmentation of original reference solutions is an effective way to improve
solution accuracy of our MP-FVM algorithm, as the pressure head profile matches very well
with the ground truth solution.

From Figure 5, it is clear that integrating adaptive fixed-point iteration scheme in the
MP-FVM framework synergistically improves the overall solution accuracy of the Richards
equation, especially in the region where pressure head changes rapidly with respect to depth

(i.e., between z = 20 to 30 cm). On the other hand, we observe slight discrepancy in pressure

40

head solution close to z = 40 cm when comparing our MP-FVM algorithm with ground-
truth solutions, whereas the solution produced by adaptive fixed-point iteration scheme
alone matches perfectly with ground-truth solution at z = 40 cm, which corresponds to
one of the boundary conditions. We believe that this is due to the fact that fNN and fl\?&
only approximate the true relationships f and f~!, respectively, and the resulting induced
error causes discrepancies in pressure head solutions even at the boundaries. To overcome
this limitation, one way is to increase the size of the augmented reference solutions for
neural network training. Another approach is to switch from MP-FVM (Equation (2.2.3))
to adaptive fixed-point iteration scheme only (i.e., Equation (2.1.5)) when solving for the
boundary conditions. We leave this refinement for future research.

Figure 6 illustrates how Sobolev training affects the solution quality of our MP-FVM
algorithm. Specifically, we find that, first, the effectiveness of Sobolev training depends
on the choice of hyperparameter \. Second, larger values of A (e.g., 107°) may not lead
to improved accuracy in pressure head solution, as in this case, neural network training
may prioritize smoothness or derivative agreement over fitting the pressure head solutions.
Third, smaller values of A (e.g., 107?) could still be useful in improving solution accuracy
compared to without Sobolev training (i.e., A = 0). Last but not least, we notice that, when
pre-trained models are used, the sensitivity of pressure head solution to A is significantly
reduced, especially for A < 107%. We suspect that this is because pre-trained models already
capture the relationships between ¢ and p solutions reasonably well, so that the Sobolev

loss primarily serves to fine tune the models.

Convergence and Solution Accuracy Comparison

We compare our MP-FVM algorithm with other solvers based on computational performance
and solution accuracy under two scenarios. In Scenario 1, we set the error tolerance tol to be
3.2 x 107°, whereas in Scenario 2, we set the total number of iterations S = 500. For static

fixed-point iteration scheme, we use an optimal fixed-point parameter 7 = ﬁ ~ 0.2857

41

-20 4

0
0~
0

© oo o

NIl
=t

3
)
—X=0

Ground truth solutions

|
w
o
|

Pressure head (cm)
|
N
o

|
n
o
|

-60 -

0 10 20 30 40
Depth (cm)
Figure 6: Comparison of pressure head solution profiles at ¢ = T" = 360 seconds produced
from MP-FVM algorithm (Equation (2.2.3)) with implementing Sobolev training with differ-
ent regularization parameters in Equation (2.2.1) and Equation (2.2.2) at Scenario 2. Here,

we use the same A = A\ Fax = A ol and all neural networks are trained from scratch.

identified by trail-and-error process. In terms of computational performance, we use the
condition number of matrix A defined in Equation (2.1.8), which measures the sensitivity of
fixed-point iteration scheme subject to small perturbations, as the metric.

From Tables 3 and Table 4, we see that implementing adaptive fixed-point iteration
scheme significantly improves the stability of conventional FVM and our MP-FVM algo-
rithms, as matrix A is well-conditioned. These observations suggest that adaptive fixed-
point iteration scheme outperforms static fixed-point iteration scheme in enhancing the con-
vergence behavior of discretization-based solvers.

In terms of solution accuracy, we consider two metrics. The first metric is the discrepancy

42

Average condition number of A obtained from Zarba (1988) (Scenario 1)

Algorithm
Static fixed-point iteration scheme Adaptive fixed-point iteration scheme
FVM 1.7668 1.0064
MP-FVM 1.7419 1.0075

Table 3: Comparison of average condition number under Scenario 1 across all time steps
(as Equation (2.1.8) already considers all discretized cells) for conventional FVM and our

MP-FVM algorithms that implement static or adaptive fixed-point iteration scheme.

Average condition number of A obtained from Zarba (1988) (Scenario 2)

Algorithm
Static fixed-point iteration scheme Adaptive fixed-point iteration scheme
FVM 1.7206 1.0064
MP-FVM 1.7113 1.0071

Table 4: Comparison of average condition number under Scenario 2 across all time steps for
conventional FVM and our MP-FVM algorithms that implement static or adaptive fixed-

point iteration scheme.

from the ground truth solutions of Celia et al. (1990). The comparison results are illustrated
in Figure 7. The second metric is the solver’s performance in preserving the mass (moisture)
balance, which is quantified by the mass balance measure MB defined in Celia et al. (1990):

total additional mass in the domain
MB =

2.3.1
total water flux into the domain ()

In Figure 7, we compare the pressure head profiles obtained from our MP-FVM algo-
rithm (which implements adaptive fixed-point iteration scheme and Sobolev training), the
conventional FVM algorithm (that implements adaptive fixed-point iteration scheme), and a
state-of-the-art physics-informed neural network (PINN) solver based on Bandai & Ghezze-
hei (2021), against the ground truth solution Celia et al. (1990). Clearly, in both scenarios,

compared with the MP-FVM solutions, PINN and FVM solutions are further apart from

43

ground truth solutions.

E

-30 -

-40 -

Pressure head (cm)

-50 4

-60

PINN

FVM

MP-FVM

Ground truth solutions (Celia, 1990)|

Pressure head (cm)

-20

-30 -

-40 -

-50 4

-60

= PINN
——FVM
= MP-FVM
Ground truth solutions (Celia, 1990)

0 10 20 30 40 0 10 20 30 40
Depth (cm) Depth (cm)
(A) (B)

Figure 7: Pressure head profiles at ¢ = T" = 360 sec obtained by different algorithms under
(left) Scenario 1, and (right) Scenario 2. Both conventional FVM and our MP-FVM algo-
rithm incorporate adaptive fixed-point iteration scheme. Note the PINN solver is not an

iterative method, thus the solution profile is the same under both scenarios.

From Tables 5 and 6, we observe that, in both Scenarios 1 and 2, our MP-FVM algorithm
achieves the best MB values when using either coarse time steps suggested by the CFL
condition De Moura & Kubrusly (2013) or a fixed time step. Considering that using coarse
time steps reduces solution time without affecting solution quality, adopting a CFL-like

condition is desired.

Remark on Computational Efficiency

Although our MP-FVM framework does involve neural network training which will take some
additional time, there are several well-established strategies widely used in the machine/deep
learning community to reduce the overall computational time and costs. For example, as
previously discussed, one can leverage the previously trained neural network from a different
problem setting as a good starting point to train with new dataset for the new problem setting

in just a small number of epochs. To see this, we run the 1-D benchmark problem of Celia

44

Method used Scenario Average At (sec) MB

FVM algorithm 1 18.90 96.13%
MP-FVM algorithm 1 18.68 100.23%
FVM algorithm 2 17.62 86.04%
MP-FVM algorithm 2 18.35 97.29%
Celia et al. (1990) N/A 10 95.00%

Table 5: MB results of different numerical methods. Note that here, At is the determined for
each method by the CFL condition De Moura & Kubrusly (2013) and we take the average

across all iterations.

Method used Scenario MB (At = 15 sec)
FVM algorithm 1 98.87%

MP-FVM algorithm 1 100.72%

FVM algorithm 2 96.79%

MP-FVM algorithm 2 97.81%

Celia et al. (1990) N/A 95.00%

Table 6: MB results of different numerical methods, in which a common At = 10 seconds is

used for all numerical methods.

et al. (1990) in a Dell Precision 7920 Tower equipped with Intel Xeon Gold 6246R CPU and
NVIDIA Quadro RTX 6000 GPU (with 24GB GGDR6 memory). The MP-FVM algorithm
is implemented in Python 3.10.5. The total computational time for solving the Celia problem
from scratch with S = 500 is 181.43 seconds, in which the neural network training step costs
127.58 seconds. On the other hand, when using a pre-trained model, the time for neural
network training step and the total computational time are reduced by 89.79% and 63.21%

down to 13.01 and 66.76 seconds, respectively. Meanwhile, the computational time for a

45

direct solver is 43.75 seconds. While our MP-FVM algorithm still takes more time than
the direct solver, it is still an attractive numerical framework as: 1) it gives more accurate
solutions; 2) its data-driven nature makes it suitable for seamless integration between physics-
based modeling and in situ soil sensing technologies; 3) for large-scale and/or more complex
problem settings, the neural network training time will become less significant compared to
the actual solution time; and 4) our MP-FVM algorithm consumes less computational time

compared to many neural PDE solvers Lu et al. (2020b); Brandstetter et al. (2022).

2.3.2 A 1-D Layered Soil Benchmark Problem

To investigate the robustness of our MP-FVM algorithm in handling realistic problems, we
study the classic Hills” problem Hills et al. (1989) that involves the 1-D water infiltration into
two layers of very dry soil, each having a depth of 30 cm. The top layer (layer 1) corresponds
to Berino loamy fine sand and the bottom layer (layer 2) corresponds to Gledale clay loam.
The WRC and HCF follow the Mualem-van Genutchen model. The soil-specific parameters
are extracted from Hills et al. (1989) and are listed in Table 7. This benchmark problem
also ignores the sink term.

As pointed out by Berardi et al. (2018), the dry condition is the most challenging physical
case to model from a numerical point of view. The presence of discontinuous interface
across the two soil layers presents another complication to this problem. We simulate the
problem for up to 7.5 minutes. For neural network training, we generate a total of 30,500
reference solutions using conventional FVM solver (which implements the static fixed-point
iteration scheme of Equation (2.1.5) with an optimal 7 = 0.04 identified by a trial-and-error
procedure).

Figure 8 illustrates the soil moisture profile at three different times obtained using our
MP-FVM algorithm, conventional FVM algorithm, as well as the Transversal Method of
Lines (TMOL) solver Berardi et al. (2018) (which is considered the current state-of-the-

art algorithm for this problem). All three approaches adopt the same discretized temporal

46

Soil 0, 0, o n K,

Berino loamy fine sand 0.029 0.366 0.028 2.239 541.0
Gledale clay loam 0.106 0.469 0.010 1.395 13.10

Table 7: Soil-specific parameters and constants used in the layered soil problem of Hills et al.

(1989).

Soil moisture content Soil moisture content
010 015 020 025 030 035 040 045 050 010 015 020 025 030 035 040 045 050

0 ! L I —— ! 1 1 0 1 1 1 1 1 1

10 4

204

30 4

Depth (cm)
8
Depth (cm)

MP-FVM (T=3 sec)
404 ——FVM (T=3 sec) 40 4
—— TMOL (T=3 sec)

—— MP-FVM (T=2.5 min) MP-FVM (T=7.5 min)
809 FVM (T=2.5 min) 50 ——FVM (T=7.5 min)

—— TMOL (T=2.5 min) —— TMOL (T=7.5 min)
60 60

Figure 8: Comparison of soil moisture content profile obtained different methods with Az =1
cm under (left) MP-FVM, FVM and TMOL at t = T = 3 sec and t = T' = 2.5 min and
(right) MP-FVM, FVM and TMOL at t =T = 7.5 min. Note that TMOL by Berardi et al.
(2018) is not an iterative method. FVM and MP-FVM are implemented for 500 iterations

at every time step.

(At = 1 second) and spatial steps (Az = 1 cm). We set RE; = 1 x 1075 as the common
stopping criterion. From Figure 8, we observe that our MP-FVM algorithm is capable of
successfully simulating this challenging problem with discontinuities in soil properties at the
interface. The soil moisture solutions obtained by our MP-FVM algorithm are also consistent
with existing solvers. In fact, compared to the FVM solver, the solutions produced by our

MP-FVM algorithm are closer to the state-of-the-art TMOL solutions.

47

2.3.3 A 2-D Benchmark Problem

In the second example, we study the 2-D Richards equation for an infiltration process in a
1m X 1m loam soil field Gasiorowski & Kolerski (2020). The spatial steps in both horizontal
(Az) and vertical (Az) directions are set to be 0.02 m, and the time step used for this
comparison study is At = 10 seconds. The Mualem-van Genuchten model (see Table 1) was
used in this case study. The soil-specific parameters, given by Carsel & Parrish (1988), are

listed in Table 8. This problem also ignores the sink term.

Property Symbol Value Units
Saturated hydraulic conductivity K 2.89 x 107% m/s
Saturated water content 0, 0.43 —
Residual water content 0, 0.078 —
van Genuchten Constant « 3.6 m~!
van Genuchten Constant n 1.56 -
Total time T 1.26 x 10* s

Table 8: Soil-specific parameters and constants used in 2-D case study.

The initial and boundary conditions of this case study are given by:

Om, x € [0.46,0.54]m, z = Om,
Initial condition: ¢ (x, z,t =0s) =
—10m, otherwise.

Boundary condition: ¢ (z € [0.46,0.54]m, z = 0,¢) = Om, no slip conditions for other boundaries.

Note that the initial and boundary conditions are symmetric along x = 0.5m. We first
obtain 9 sets of original reference solutions (1, 1), where each ¢ or p is a 51 x 51 array.
Here, v solutions are obtained from the conventional 2-D FVM solver (which implements

the static fixed-point iteration scheme) that uses a spatial step of 0.02 m under three different

48

fixed-point parameters 7 = 2, 2.22 and 2.5 and three total iteration counts S = 300, 400
and 500. Then, we apply data augmentation by adding Gaussian noises with o? values
ranging from 0.01 to 0.05 to generate a total of 400 reference solutions (which also contain
the original reference solutions). Meanwhile, p solutions are obtained from the HYDRUS
software Siminek et al. (2016). These reference solutions are used to train the encoder-
decoder networks for our MP-FVM algorithm. Each neural network contains 3 hidden layers
and 256 neurons in each layer. ReLU activation function is adopted in each layer, and each
neural network is trained by Adam optimizer for 100 epochs. We set the total iteration
number to be S = 500. The total computational time for our MP-FVM algorithm to run
from scratch with S = 500 is 1473.5 seconds, whereas the FVM solver takes 876.6 seconds
under the same S.

Meanwhile, we also simulate this 2-D problem using HYDRUS software Simtnek et al.
(2016) and compare the pressure head results at t = T = 1.26 x 10* sec with our MP-FVM
algorithm and the FVM solver (the fixed-point parameter identified to be 1 by trial-and-
error). From Figure 9, we can draw two observations. First, the pressure head solution
profiles for both FVM and MP-FVM algorithms appear to be symmetric along x = 0.5 m,
whereas HYDRUS 2D shows a clear asymmetric profile. As pointed out earlier, since the
initial and boundary conditions are symmetric along x = 0.5 m, symmetry in the pressure
head solutions is expected. This suggests that both FVM and MP-FVM based solvers
can capture some degree of underlying physics of the original problem. Second, despite
the assymetric behavior in pressure head profile, the size of isolines for the HYDRUS 2D
simulation result is more similar to our MP-FVM solution than to the FVM solver solution.
This observation is also consistent with the information presented in Figure 11a. In fact, both
observations can also be carried over to the soil moisture profile, as shown in Figures 10 and
11b. Finally, in terms of mass conservation, our MP-FVM algorithm achieves significantly

higher MB value compared to other benchmark solvers (see Table 9).

49

Pressure head (m) Pressure head (m) Pressure head (m)
0 0.000 0

1256 -1.256

2513 -2513
-3769 -3.769
-5.025 -5.025

6281 6281

04 06 1.0 04 06 04 06
Length (m) Length (m) Length (m)

Figure 9: Pressure head solution profile obtained from three numerical methods: (left) FVM
solver (fixed-point parameter 7 = 1); (middle) HYDRUS 2D software; (right) our MP-FVM

algorithm.

Soil moisture content Soil moisture content Soil moisture content
04250 04250
03910
03750 03750
03538

03250 03250

03156

02775 02750 02750

Depth (m)
Depth (m)

02334

02250 02250

02013

04750 04750

0.1631

0.1250 01250

- 01250
0.0 0.2 04 06 08 1.0 0.0 0.2 04 06

i N
04 06
Length (m) Length (m) Length (m)

Figure 10: Soil moisture solution profile obtained from three numerical methods: (left) FVM
solver (fixed-point parameter 7 = 1); (middle) HYDRUS 2D software; (right) our MP-FVM

algorithm.

2.3.4 A 3-D Benchmark Problem with Analytical Solutions

Lastly, we consider a 3-D water infiltration example, in which the analytical solution exists
Tracy (2006). In this example, V is a 3-D cuboid [0,a] x [0,b] x [0,¢]. The hydraulic
conductivity function follows the Gardner’s model Gardner (1958) (see Table 1). The initial

condition is given by:

¢(x’y7z7t: 0) = hr?

where h, is a constant. The boundary condition is given by:

50

0 0.45
—— MP-FVM ——MP-FVM
——HYDRUS 2D 040 ——HYDRUS 2D
-2+ —FwM - —FVM
— c
S 2 0.35
et S
E -4+ o
0 0.30 4
= =
é E 0.25 4
o
- -8 9 0.20
0.15
_10 =
T T T T T T 010 T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
Depth (m) Depth (m)

Figure 11: Cross-sectional view (z = 0.5m) of: (left) the pressure head profile; (right) soil

moisture profile.

Method MB (At = 10 sec)

FVM algorithm 63.12%
HYDRUS 2D simulation 62.45%
MP-FVM algorithm 71.74%

Table 9: MB results of three methods at x = 0.5 m.

1 _
Uv(x,y,z=ct)=—1In [exp (ah,.) + hg sin ™ sin%y ,
a a

where hg = 1—exp (ah,.). Ignoring the sink term, the pressure head solution for this problem

was derived in Tracy (2006) as:

_ —~ inh 2
= éln { exp (ah,) + hg sin %U sin 22 exp (a(c z)) [sm bz + ~d ;(—l)k% sin (Agz) exp (—rt)] },

b 2 sinh Sc

(2.3.3)

where d = S50\ = k2 g = A% and 5=\ /54 (22 + ()%

The infinite series in Equation (2.3.4) is convergent by the alternating series test, and

we consider the first 1,000 terms of this series. Note from Equation (2.3.4) that the ana-

o1

lytical solution depends only on the saturated (fs) and residual soil moisture content (f).
The Mualem-van Genuchten correlation Mualem (1976); Van Genuchten (1980) tabulated
in Table 1 was used for the water retention curve 6(1)). The constants and parameters used

in this case study are listed in Table 10.

Property Symbol Value Units
Saturated hydraulic conductivity K 1.1 m/s
Saturated soil moisture 0, 0.5 —
Residual soil moisture 0, 0 —
Parameter in Gardner’s model « 0.1 m~!
Parameter in intial and boundary conditions h, —15.24 m
Length of V a 2 m
Width of V b 2 m
Depth of V c 2 m
Total time T 86,400 sec

Table 10: Soil-specific parameters and constants used in the 3-D case study.

Our goal is to compare the accuracy of our MP-FVM algorithm with FVM solvers using
this analytical solution as the benchmark. We use our own in-house 3-D FVM solver, which
implements the static fixed-point iteration scheme of the FVM-discretized 3-D Richards
equation, to obtain 1,734 original reference solutions using a coarse grid of Ax = Ay =
Az = 0.4 m under two fixed-point parameters 7 = 1 and 2 and five total iteration counts
S =100, 200, ..., 500, while excluding any NaN values. Then, data augmentation is applied
by introducing Gaussian noise, resulting in a total of 8,820 data points (which include the
original reference solutions) for neural network training. For both FVM and MP-FVM
algorithms, we set the tolerance to 1 x 10~?, which can be achieved in less than 500 iterations

for each time step.

52

Pressure head (m) Relative difference
-14.09 0.008350

9 |
b

~14.24

-14.38

-14.52

0.002510

1467

Width (m)
Width (m)

1481 ~4.100E-4
Pressure head (m) -
-14.08

20

22 -0.003330
-15.10 0.2

1437

1525 .
1451 X . 10 E 20 e

Length (m) Length (m)

(B) (©)

-14.80 Pressure head (m) Relative difference
- 0,000

-0.006250

Width (m)
s

-1495
-15.02
-15.09 -0.01292
-15.05
-15.24
0.0 0.5 1.0 15 20

Length (m)

(A)

-15.08 -0.02584

-15.11

OO0 manoaaaaa
BosSnvwraoN@ON

Width (m)
Width (m)

003876
-15.15 074
-15.18 0.4+ 005168

-15.21 01

~0.06460

-15.24

1.0
Length (m)

(D)

Figure 12: Pressure head solution at z = 0.5 m of different methods: (A) analytical solution,
(B) MP-FVM algorithm, (C) the relative difference between analytical and MP-FVM solu-
tions, (D) conventional FVM solver (which implements static fixed-point iteration scheme
with an optimal 7 = 2) and (E) the relative difference between analytical solution and FVM

solution.

We examine and compare the pressure head solutions at z = 0.5 and 1 m, which are
shown in Figure 12 and 13, respectively. We quantify the relative difference between the

d’analytical _d)numerical

From the relative difference heat

numerical and analytical solutions by Fra———
map of Figure 12c,e and 13c,e, we observe that, first, the magnitude of relative difference
of our MP-FVM algorithm is significantly lower than that of the conventional FVM solver.
Second, the largest relative difference of our MP-FVM pressure head solution occurs around
the four corners of the x-y domain, whereas the largest relative difference of FVM solution
occurs in the center of the z-y domain. Furthermore, in each cell, the relative difference of

FVM based pressure head solution is always non-positive, whereas that of MP-FVM based

solution can be positive or negative.

53

Pressure head (m) Relative difference
-11.89

2
194 |
-1231 18+
1.7
164 0.01632
15 1273 154
14+
13+
-13.15
—_ P 4 0.006840
E Bl ’
£ 10 -1357 £ 14 I I
3 209
= 1208 = 08+ 0002640
Pressure head (m) § 074
1184 06
05 -14.40 gi 1
1227 03] -0.01212
14.82 024
1269 041 |
0 0 A A 0 L 0 L -002160
' y 10 P R T T I
. -13.12 PRSP e i e NENER N R
£ Length (m) Length (m)
= -13.54
£ ()
=
-13.97 Relative difference
2 0.000
-14.39 1.9
1.8
~1a82 };] -0.02280
15
X -15.24 144
0.0 05 1.0 15 2.0 i3] -0.04560
- £121
Length (m) £ ="
A £ S oo
=2 <084 -0.06840
= 074
06
05+
0.4+ -0.09120
034
02+
014
0 -0.1140
1.0 . Leng(h (m)
Length (m) (E)

(D)

Figure 13: Pressure head solution at z = 1.0 m of different methods: (A) analytical solution,
(B) MP-FVM algorithm, (C) the relative difference between analytical and MP-FVM solu-
tions, (D) conventional FVM solver (which implements static fixed-point iteration scheme
with an optimal 7 = 2) and (E) the relative difference between analytical solution and FVM

solution.

Here, we provide some justifications for these observations. First, for conventional FVM
solver that embeds the static fixed-point iteration scheme, we observe from Equations (2.1.5)
that:

Vanatytical = Yrmericat % 8 Y [K(G)V W+ 2)] 0" - nu,, A, — 007 vol(Vi) ¢
JEN;
for any s, discretized cell V;, and discretized time step m. Since the hydraulic conductivity

function is positive and symmetric along + = 1 m and y = 1 m, and Vzﬂw o [0,1]%[0,1] x2

1,5 .
—Vil,-, _nx1xe We have D jeN, [K(OW)V (¥ +)} " ‘ny, A, > 0. Meanwhile,

0,0 (yh)vol(V;) is typically small due to the slow dynamics of water infiltration in soil
and the fact that vol(V;) is small. Thus, we have Yanaiytical — Unumerical > 0 for the FVM

solution, which explains why the relative difference is non-positive. On the other hand, for

o4

our MP-FVM algorithm, the use of neural networks to approximate f and f~! complicates
the behavior (including the sign) of the relative difference.
Regarding the distribution of the magnitude of relative difference in the FVM solver, since

hydraulic conductivity function is an increasing function of 1, and v is at its maximum at

m—+1,s

the center of the z—y plain, it is expected that 3, - [K(¥)V(v+ z)]% ‘0, Ay, ; (hence
the relative difference) is maximized at and around the center of the z-y plane. However,
for MP-FVM based pressure head solution, we suspect that the higher relative difference at
the four corners may be attributed to the slight decrease in accuracy of neural networks in
approximating f and f~! near the domain boundaries.

Finally, we evaluate the Mean Absolute Error (MAE) by averaging the absolute errors
between numerical and analytical pressure head solutions across all cells on two vertical
planes, z = 0.5 m and z = 1 m. For z = 0.5 m, MAEyp.ryvm and MAEgyy are calculated
to be 0.0146 and 0.3444, respectively. For z = 1 m, MAEyp.pvym and MAEgy\ are 0.0375
and 0.5653, respectively. This indicates that the MAE of the FVM solutions is typically 1
to 2 orders of magnitude higher than the MP-FVM solutions, highlighting the accuracy of

our MP-FVM algorithm.

2.4 A Realistic Case Study

Finally, we consider a real-world case study adopted from Orouskhani et al. (2023), where
infiltration, irrigation, and root water extraction take place in circular agricultural field,
equipped with a center-pivot irrigation system with a radius of 50 m, located in Lethbridge,
Alberta. Soil moisture sensors are inserted at a depth of 25 cm across 20 different locations
in this field to collect soil moisture data every 30 min from June 19 to August 13, 2019.
To validate our MP-FVM algorithm in solving real-world 3-D applications, we select one of
the 20 locations where the Mualem-van Genuchten WRC and HCF model parameters are
identified and given in Orouskhani et al. (2023). We consider a cylindrical control volume

V with a radius of 0.1 m and a depth of 25 cm. We discretize V' into 6, 40 and 22 nodes in

25

the radial, azimuthal, and axial directions, respectively. The time step size At is determined

using the heuristic formula. Thus, we reformulate Equation (2.2.3) in cylindrical coordinate

system as:
Mm-{—l,s . Mm—i—l,s
m-+1,s4+1 m+1,s m-+1,s m+1,sA J 1 -1
R e X X K ’ R § VY Aw, . J 5
e gt e S
JEN;
where &; = (1, -%,1)” and
. 0m+1,s o em
J =gt ST K ey oy, A, el T ol (V)
1 Wi, j Wi, j 72 ; g Wi, j ? v
Jen dist(V;, V2) At (2.4.1)
=S)vol (V).
Here, the sink term in S follows the Feddes model Feddes & Zaradny (1978):
S = (1) Smax, (2.4.2)

where Sp.x is the maximum possible root extraction rate and ¢ denotes a dimensionless
water stress reduction factor (see Agyeman et al. (2020) for the detailed formulation).

The boundary conditions are given by:

—8w(r,w, 2) =0 atr=0m,
or
M =0 atr=0.1m,
or
—8¢(r,w, 2) =0 atz=0cm,
0z
8¢<T,w, Z) Uiry
L) —
9 KW) at z = 25 cm,

Y(r,w=0,z) =Y(r,w =27, z2),
where uy,, is the irrigation rate (in m/s). The initial condition is simply:

@Z)(z,y,z,t = 0) = hr7

where h, is the starting pressure head recording.
Note that the boundary conditions are time dependent due to w;,. This poses a poten-

tial computational challenge, as the neural networks typically need to be retrained whenever

26

initial and/or boundary conditions change Mattey & Ghosh (2022); Brecht et al. (2023). To
overcome this practical challenge, we adopt a new approach of training the two neural net-
works with 3,000 epochs based on the boundary conditions for June 19, 2019 (no irrigation)
when data collection began. Then, the trained weights within these two neural networks
serve as the starting point for retraining when a new set of boundary conditions is adopted.
This way, only 500 epochs are sufficient to retrain the neural networks. For each set of
boundary conditions, we obtain the training set containing 84,480 reference solutions. In
addition, the dataset provided by Orouskhani et al. (2023), after performing data augmen-
tation by introducing Gaussian noises, is also included in our training dataset. Each neural
netowrk, which has 5 hidden layers with 256 neurons in each layer, is trained using SGD
optimizer with a learning rate of 0.001. We set the stopping criterion to be 1 x 1079, which
can be achieved well within 500 iterations.

For this problem, we simulate the pressure head from 1:00 am on June 19, 2019 to 5:00
pm on July 28, 2019. As mentioned in Orouskhani et al. (2023), there are two irrigation
instances between this time frame, one is on July 4 (the 15th day, 1.81 mm) and the other
is on July 18 (the 30th day, 1.58 mm). Figure 14 shows the pressure head solution profile
obtained by our MP-FVM algorithms compared to the experimental measurements provided
by Orouskhani et al. (2023) over the course of 35 days. We observe that, most of the time,
the MP-FVM solutions match with the experimental measurements very well. The only
major mismatch between experimental measurements and MP-FVM solutions occurs on the
30th day, which corresponds to the time when the irrigation takes place. We believe that
the mismatch is due to our simplifying assumption regarding the irrigation schedule. Due to
the limited information we have on the exact irrigation schedule and intensity, we have to
assume that the irrigation instances occurred throughout the day. Thus, we simply divide
the irrigation amount by 86,400 seconds to obtain w;,. However, in reality, the irrigation
could end in less than 24 hours. With more accurate wu;, model, our MP-FVM algorithm

is expected to produce highly accurate solutions that match more closely with experimental

27

0
_1 -
E
870 \
< !
o
?
a3r
Q
o
-4
Experimental data (Orouskhani et al., 2023)
- =FVM
= =MP-FVM
_5 1 1 1 1 1
0 10 20 30 40

Time (days)
Figure 14: Comparison of pressure head profile at z = 25 c¢m in a selected 0.1-m radius
region (averaged for all 6 x 40 = 240 cells at z = 25 cm) in the field. Note that the standard
FVM solver becomes highly inaccurate when the boundary condition changes (15th day, 30th
day, etc.). The flattening of true peaks of pressure head solutions represents a nonphysical
smoothing of the true solution Miller et al. (1998), which we suspect to come from the
numerical dispersion and inherent discrete maximum principle (DMP)-type peak clipping

behavior observed in standard FVM schemes Njifenjou (2025).

measurements at all times. This makes our MP-FVM algorithm an accurate and scalable

numerical framework to solve Richards equation over a long period of time.

o8

CHAPTER III

ADAPTIVE FOURIER DECOMPOSITION-GUIDED NEURAL
OPERATORS

3.1 Problem Statement
We consider a PDE defined on a spatial domain 2 C R? and a time interval (0, 77:
Lofu(z,t)] = f(z,t), V(x,t) € Qx(0,T], (3.1.1)

where £ denotes the differential operator, f(x,t) is the source/sink term, and the parameter
function o € A specifies the physical parameters and the initial and boundary conditions.
Our goal is to learn a neural operator G : A — F(D x [0,T]), which maps the parameter
function « from its parameter space A to the corresponding solution u(z,t) € F. In this
work, we focus on two types of tasks: (i) the static task, which solves a PDE for one set
of physical parameters a and a fixed final time 7" (i.e., u(z,7T)); and (ii) the autoregressive
task, which forecasts the PDE solution at time step ¢ + 1 (i.e., u(z,t + 1)) based on the

solution at the previous time step ¢ (i.e., u(z,t)).

3.2 Related Work

Classic Fourier-based methods, such as Fourier transform approaches Negero (2014),
Fourier series expansions Asmar (2016), and Fourier spectral methods Alali & Albin (2020),
have been extensively used to solve PDEs numerically. Classic Fourier-based methods offer
accurate and efficient representations of smooth, periodic functions by transforming differ-

ential operators into simple algebraic operations in the frequency domain. However, the use

29

of global basis functions produces oscillations when approximating functions with disconti-
nuities or sharp transitions Gottlieb & Shu (1997). Furthermore, the fixed basis structure in
these methods lacks adaptability to signals with time-localized, transient, or nonperiodic fea-
tures. In addition, these methods are typically defined on simple, regular domains, making
them difficult to apply directly to manifolds.

Operator learning aims to directly learn the mapping between infinite-dimensional
function spaces (e.g., from input functions to solutions) to enable fast, mesh-independent
approximation of PDE solutions across various input conditions, including source and/or
sink term, physical parameters, and initial and boundary conditions. Among existing oper-
ator learning-based PDE solvers, two notable ones backed by the approximation theory are
DeepONet Lu et al. (2019, 2021), which is inspired by the universal approximation theorem
for nonlinear operators, and the Fourier Neural Operator (FNO) Li et al. (2020b, 2023b),
which performs convolution in the frequency domain to capture global spatial dependencies
efficiently. Both operator learning paradigms have led to several new variants. Some of
the recently developed network architectures He et al. (2023); Goswami et al. (2022); He
et al. (2024); Li et al. (2023a) built upon DeepONet provide enhancements such as physics-
informed structure, parameterized geometry and phase-field modeling. Some of the new
variants of FNO include Factorized FNO (F-FNO) Tran et al. (2021), Decomposed FNO (D-
FNO) Li & Ye (2025), Spherical FNO Bonev et al. (2023), Domain Agnostic FNO (DAFNO)
Liu et al. (2023), Wavelet Neural Operator (WNO) Tripura & Chakraborty (2023), Multi-
wavelet Neural Operator (MWT) Gupta et al. (2021), Coupled Multiwavelet Neural Operator
(CMWNO) Xiao et al. (2025), and Adaptive Fourier Neural Operator (AFNO) Guibas et al.
(2021).

Physics-informed representation learning and variational autoencoder (VAE).
Another avenue for solving PDEs is to directly incorporate physical knowledge and con-

straints derived from the PDE into a neural architecture. One of the popular frameworks

60

is the Physics-Informed Neural Network (PINN) Raissi et al. (2019, 2017), where the PDE
itself is embedded in the loss function as a regularization term. Another approach is to
introduce variational autoencoders (VAEs) Tait & Damoulas (2020); Kingma et al. (2013) in
a physics-informed architecture. This provides a structured latent space and a probabilistic
framework for integrating physics, leading to more stable and generalizable representation
learning. Several physics-informed VAE models have recently been proposed, including Glyn-
Davies et al. (2024); Zhong & Meidani (2023); Takeishi & Kalousis (2021); Lu et al. (2020a).
Specifically, Lu et al. (2020a) used a dynamics encoder and a propagating decoder to extract
interpretable physical parameters from PDEs. Later, Takeishi & Kalousis (2021) proposed
a physics-informed VAE model by introducing physics-based models to augment latent vari-
ables, encoder, and decoder. However, these methods lack rigorous theoretical justifications
for the design of their neural architectures that ensure convergence and performance guar-

antees.

3.3 Preliminaries to Adaptive Fourier Decomposition (AFD)

AFD is a novel signal decomposition technique that leverages the Takenaka-Malmquist sys-
tem and adaptive orthogonal bases Qian (2010); Qian et al. (2012). It is established as a new
approximation theorem in a reproducing kernel Hilbert space (RKHS) sparsely in a given
domain Q as s = > 0, (s, B;)%; for the chosen orthonormal bases %; Saitoh et al. (2016).
An RKHS is a Hilbert space of functions where evaluation at any point is continuous with
respect to the inner product (-,-), and each point on the domain corresponds to a unique
kernel function. For AFD in RKHS, the sparse bases {Z;}; are made orthonormal to each
other by applying Gram-Schmidt orthogonalization to the normalized reproducing kernels
associated with a set of adaptively selected “poles” {a;};, which are complex numbers used
to parameterize the sparse bases. Specifically, to decompose signals in a Hardy space (i.e.,
a Hilbert space consisting of holomorphic functions defined on the unit disk), which can be

further relaxed to an RKHS Song & Sun (2022), the orthonormal basis functions %; can be

61

derived as:

ol 2 g
By VP op (3.3.1)

—_—)

1—a;z e 1 —a;z
where D = {z € C : |z] < 1}. To adaptively select the sequence of poles such that conver-
gence of AFD approximation is ensured, one shall follow the so-called “maximal selection
principle”, such that the resulting |(s, %;)| is as large as possible. That is, to select the
next pole a; given i — 1 already selected poles, ay,...,a;—; (hence bases %,...,%B;_1), the

corresponding orthonormal basis %; needs to satisfy:

|(s, B:)| > pisup {(s, Z})|b: € Q\{a1,...,a;_1}}, (3.3.2)

k kp, =30 (ke B5) B
where 0 < pg < p; < 1, B) = —+— and %, = b 2gm1 W, %)%,

= = , . Here, k;, is
ko, Tr 2 oo, =51 (Ko 25055 7y P

the reproducing kernel (e.g., Gaussian or Bergman kernel) at b;. In classic AFD theory,
the algorithmic procedure of pole selection, which is discussed in Song & Sun (2022), is
computationally expensive. Therefore, integrating the classical AFD with neural operators
is a promising approach to enable fast and accurate solution of PDEs through the use of

adaptive orthonormal basis functions.

3.4 AFDONet Architecture

Guided by the AFD theory, we design AFDONet to approximate PDE solution spaces on
any smooth manifold. The AFDONet architecture shown in Figure 15 consists of an encoder,
a latent-to-RKHS network, and an AFD-type dynamic convolutional kernel network (CKN).
These components work synergistically to enhance the performance of the AFDONet solver.
After the encoder, AFDONet identifies the closest RKHS where the latent variables reside
using a latent-to-RKHS network. Subsequently, AFDONet reconstructs the PDE solutions
by replicating the AFD operation and adaptively selecting the poles using a specially designed
decoder network. For static tasks, the training dataset is denoted as {u(z,T) }{q} for different
sets of physical parameters «, while for autoregressive tasks, the training dataset is denoted

as {u(x,t),u(x, t +1)}L,.

62

Mean
Latent-to-RKHS network
124 O | L s,
Probabilistic % W |t | |
Multi-layer neura
encoder _ g 2 netivorks
InputT Varlagce ey o
. o a3 eature maps
Static: o, T 2
= T Ty
or _ % N [FM(a) (M@ =25 Output
Autoregressive: Noise - ; 4 o o
u(z, t) e~ CN(0,1, Orthogonal 1 8o N Static: ane(z,T)
’ reproducing 0 NN IOLE) NN Y. S or
kernells) P P I Autoregressive:
147 Ditr; N+

ang(z,t+ 1)

Figure 15: Our proposed AFDONet framework, which adopts VAE as the backbone, intro-
duces a latent-to-RKHS network and a dynamic CKN decoder to reproduce the AFD setting

and operation.

The use of VAE as architecture backbone is motivated from both methodological
and experimental perspectives. From a methodological perspective, the use of VAE archi-
tecture as the backbone for our AFDONet is motivated by several reasons. First, many
PDE solution fields lie on low-dimensional manifolds in high-dimensional function space.
VAE-based neural operators can learn a probabilistic latent representation of these mani-
folds, mapping high-dimensional inputs to a compact latent space while capturing variation
in solution behavior. This reduces the complexity of learning and enables generalization
across parametric inputs, as shown in many prior successes in VAE-based neural operators
Zhong & Meidani (2023); Rafiq et al. (2025); Lu et al. (2020a); Takeishi & Kalousis (2021).
Second, VAE is inherently connected to AFD theory in several ways. For instance, VAEs
benefit from frequency transformations Li et al. (2024), which are the foundation of bases
used in AFD. Also, the maximal selection principle of basis functions in AFD aligns well
with the variational inference of VAE Chen et al. (2020a).

From an experimental perspective, we will show in Section 3.10 that the use of VAE and
its holistic integration with other components in the AFDONet architecture help significantly

improve the accuracy of PDE solutions on manifolds.

63

The encoder network maps the inputs « or u(x,t) to a latent space in the complex
domain C?" using a standard probabilistic encoder network based on the VAE framework.

For the static task, this means:
(n(a), logo?(a)) = AyP(Are)), 2z = pla)+o(a)@e, &~CN(0, 1), (3.4.1)

where A; € C"e*4 and A, € C**We are the weight matrices (where W, = O(r)), ®(-) is the
activation function, the latent mean is p(a) € C", the log-variance is log o?(a) € C", and z
is the latent parameter vector.

For the autoregressive task, the input u; = w(z,t) lies on the Hilbert space H (M) of
manifold M. Therefore, u; = u(z,t) must be projected from H(M) into an appropriate
complex domain. Let {¢x}72, be an orthonormal Fourier basis. Then, we define a linear
projection:

Hguy = ((Ut,¢0>a S <ut7¢K71>) € CK; (3.4.2)

which retains the first K modes of the field. This leads to the following encoder structure:
(,Ltt, lOg O'?) = AQ(@(Al HKUt)>, Ze = Mg+ 0 ©OEr, E¢x CN(O,]'r); (343)

where A; € CWe*K and A, € C*>*We are the weight matrices (where W, = O(r)), ®(-) is
the activation function. In both tasks, the encoder network has a depth L. = 2 and width

W, = O(r).

The latent-to-RKHS network maps the latent parameters to convolutional kernels
while constraining the corresponding functional space to be an RKHS, where the AFD oper-
ations are defined. This extends the latent-to-kernel network proposed by Lu et al. (2020a)
by explicitly accounting for the fact that the kernels are constructed in a Hilbert space. Our
latent-to-RKHS network consists of multi-layer fully-connected feedforward (MLP) networks
and feature maps. The MLP networks will first take the latent parameter vector z obtained
from the encoder network to generate u(x,-) on H(M). Then, feature maps FM(-) will map

@(x,-) to its nearest RKHS H (M) via orthogonal projection. This way, the latent-to-RKHS

64

network learns the feature maps from H (M) to its nearest RKHS #(M), in which the

reproducing kernel k, can be obtained by:

Nl
ko) = Y wila) ™€ o g e M (3.4.4)
i=1
where j2 = —1 and ¢ is the fundamental frequency. Here, weights v; € C and parameters

y; € M are learnable from the latent-to-RKHS network. Essentially, a feature map applies
a fast Fourier transform (FFT) to its input, multiplies the top N’ low-frequency components
by learnable complex weights while discarding the high-frequency components, and then
performs an inverse FFT. Note that this is different from Fourier layers in FNO because
we only perform one-sided (positive-frequency) operations, whereas FNO performs both
positive- and negative-frequency operations. This is because, in AFD, negative frequencies
are redundant, as they can be determined by the positive ones via complex conjugation.
We also point out that, since Fourier basis kernel ™% (=vi(@) Jies in H (M), which is
closed under finite linear combinations, the reproducing kernel k,(&) is guaranteed to lie in
H(M) as well. In addition, although Fourier basis kernels are orthogonal to each other, the

reproducing kernels are not. Thus, orthogonalization is still needed.

Orthogonal reproducing kernels. Like AFD, in AFDONet, a set of reproducing kernels
in Equation 3.4.4, each corresponding to one of the N distinct poles aq,...,ay € M, need

to be first orthogonalized via Gram-Schmidt orthogonalization:

_ke@®© o R(©O-Nk(©.20%
ko (Ollany yoeey V.

ko) = Zii k().) 2,

To adaptively select the poles, we develop a maximum selection principle that is analogous

P

H(M)
(3.4.5)

to Equation 3.3.2 in AFD theory as:

|FM (a(x,) * Bi| > pisup {|FM (a(x,-)) x Bi| : b; € M\{ay,...,a;_1}}, (3.4.6)
) ; ko, (€) =202 (Ko, (€),85) B, . .
where %) = @ 21 = Tro- EICACAEN W fori =2,..., N, and ky, is the

reproducing kernel at b;.

65

The AFD-type decoder network reconstructs PDE solutions from FM (u(x,-)) once
the RKHS and its reproducing kernel are established. The decoder adopts a dynamic convo-
lutional kernel network (CKN) Mairal et al. (2014); Chen et al. (2020b), which (i) performs
cross-correlation between FM (@(z, -)) and the orthogonal reproducing kernels %;, (ii) assigns
a multiplier 0 < pg < p; < 1 to the output of each convolutional layer, and (iii) incorpo-
rates skip connections for each convolutional layer. With this, the output of the dynamic
CKN with N convolutional layers (each pole is associated with a layer) replicates the AFD

operation and reconstructs the PDE solution as:

N N
ing(x,) =Y (FM(i(x,"), Bipr) Bivr, = Y (FM (2, ")) x B;) Bisr,, (3.4.7)
i=1 i=1
where % is the cross-correlation defined as f x g(7;) f ™ (z + 7;)dz and 7; can choose

between 0 and N — ¢ for convolutional layer .

Training. Overall, our AFDONet model is trained end-to-end by minimizing the loss func-

tion:

L(0) = Hu(m,) —Ung(x

M)+ |latz,) - PM(a(

| ‘H(M)/

reconstructioarloss in RKHS featureﬂgap loss
+wDKL<CNu,) || evio, 1))+§ wi || Viang(e,) = Viulz,)20

J/

NV
latent space regularization ~~
holomorphic training loss

(3.4.8)
where Viu denotes the i-th covariant derivative defined on manifold M. Notice that here,
we extend the idea of Sobolev training Czarnecki et al. (2017a) to the complex domain and
introduce a holomorphic training loss to enforce consistency with the ground truth solutions
both at the function value level and across all orders of derivatives. This enables AFDONet

to better capture the inherent smoothness and analytic structure of the target function.

66

3.5 Properties of AFDONet

The design of AFDONet architecture is fully guided by the AFD theory, making it mathemat-

ically interpretable in several aspects. Here, we list three important properties of AFDONet:

1. Under the loss function of Equation 3.4.8, we can rigorously bound the error of AF-

DONet in Theorem 3.5.1.

2. By extending the work of Caragea et al. (2022), we can rigorously prove the existence
of RKHS H (M) through the construction of feature map FM(+) in the latent-to-RKHS

network in Theorem 3.5.2.

3. To ensure convergence of AFDONet, we leverage the convergence mechanism of AFD
to design a convergent dynamic CKN decoder by regulating the layer width, depth,
and kernel complexity based on the number of samples and the intrinsic smoothness

of the target function.

3.5.1 Main theorems

Theorem 3.5.1 Let P C R be compact and {(p;,u;)}2, be Z i.i.d. samples with u; =
F(pi) + &, & ~ SubGaussian(H(M)), and E[§;] = 0, where F : P — H(M) is holomorphic,

and H(M) is an RKHS with a kernel k,, whose eigenvalues decay polynomially with rate k.

Suppose Lqg = O(log Z) and Wy = (’)(22(k1+1)) in the decoder network. For the minimizer 0

of the loss function L(0) in Equation 3.4.8, there exists a constant C' > 0 such that:

?|

Theorem 3.5.2 Let H be a Hilbert space on a manifold M. Fiz d,n € N, then for

2

» _22§+} 2
g~ F| | <0z og 27

any T € H(M) and any € > 0, there exist a convolutional kernel K defining an RKHS
H(M) and a complex-valued modReL U neural network FMg with at most C'In(2/¢) layers,

Cn~2m1n*(2/e) weights, and weights bounded by Ce=**¢ such that

FM@/(@V’) € H(M) and ||ZE — FMQ’(Z{E)HH(M) < Helf H&? — FM0<5>HH(M) + ¢,

67

where C'= C(d,n) > 0 depends only on the dimension d and the smoothness parameter n.

Theorem 3.5.3 Let Ly, Wy, and N denote the depth, width, and number of layers of
dynamic CKN decoder network satisfying Fquation 3.4.6. For any € > 0, there exist
Lg=O(log 1), W, = O(e_k*il),N = O(log 1) and 9 € Ny, w,~ such that

sup ||f‘N,9 - F(P)HH(M) < g,
peP

where N, w, n is the class of complez-analytic networks with depth Lq and width W,.

3.6 Proof of Theorem 3.5.1

We introduce and prove a few lemmas before proving Theorem 3.5.1. We assume that the

neural network fy is Lipschitz continuous with respect to hyperparameters 6 (i.e., ||fy —

ol < Lgll0 = €']]2).

Lemma 3.6.1 For any 0 < < 1, for the class of complex-analytic networks with depth Lg

and width Wy, denoted as Ny, w,n, there exists C > 0 such that:

Wde
5 Y

Log A" (6. Ny |- 0) < CWaLalog (
where N (0, N, w,.n, |||l2) means the §-covering number of (N7, w,n, |||l2)-

Proof. Let us consider the p-dimensional ¢o-unit ball B?(1) = {z € R? : ||z||s < 1}. Results

for covering BP Wainwright (2019) concludes:
2 3
g AT0. B (1), [< plog 1+) < plog (3) (36.1)
Extending this result to a f»-ball of radius R, Equation 3.6.1 becomes:
2R 3R
log N'(6, B°(R), || - ||2) < plog (1 + T) < plog (T) (3.6.2)

by rescaling § in the RHS of Equation 3.6.1 with §/R. Furthermore, by letting p = 2Wy Ly,

Equation 3.6.2 becomes:

g (0. B, -) < 2Wat o (%) (36,3

68

From the Lipschitz property and the fact that the parameter space of N, w, v can be

controlled by B2Wil4(R), we have:

3LiR
0B AT 0 Ny |-) < Tog V(7 B, -1) < 2WLgtog (2547) (360
f

where L; is the Lipschitz constant. With R = O(W,L,), Equation 3.6.4 leads to:

(3.6.5)

. WyL
log-/\/‘(&NLd,Wd,N’ ” ’ ”H) < CWdelOg (a d))

which completes the proof. [|

Lemma 3.6.2 Fora > 1 and 0 < r < min(a, e) where e is the base of the natural logarithm,

there exists b > 0 that satisfies the following inequality:

log()<\/_\/@

Proof. For the case 1 < r < min(a,e), we may choose b = e. Squaring both sides of the
inequality and rearranging lead to (r — e)loga < rlogr. Suppose r = e, the inequality is
automatically satisfied for any a > 1. Suppose r < e, since a > r, we have: (r —e)loga <
(r — e)logr. Thus, it suffices to show (r — e)logr < rlogr, which is equivalent to showing

elogr > 0. This is automatically satisfied because 0 < logr < 1.

r(loga—logr)

loga > 0.

For the case 0 < r < 1, we rearrange the inequality and obtain b >

log a—1 . .
Furthermore, “19897167) 1.0aches its maximum, —%—, at r = 4. Thus, suppose a < e, then we

loga eloga’

r(loga—logr) __ 1

and the inequality is satisfied. Suppose a > e, then max og

may choose b > 2 oga

within 0 < r» < 1. Thus, we may choose b > 1 and the inequality is satisfied. [|

Lemma 3.6.3 There exists C > 0 such that:

Z Zesz pz

where €; are i.i.d. Rademacher variables and % is a function class for a radius 0 < r <e

defined as {f € Np,w,n : ||f — Fllu <71}

6

\/ rWaLglog(WyLy)
sup 5
fez A

69

Proof. From Dudley’s entropy integral bound Wainwright (2019), we have:
z

%Z eif (pi)

=1

E. | sup

feF

24 2r —
] < ﬁ/ VI N & 7.~ Tt (3.6.6)

Since N (8, Z, || - l) < N (6, N, w,.n, || - |l%) and according to Lemma 3.6.1, Equation 3.6.6

becomes:
z

%Zﬁif(pz’)

i=1

E. | sup

feF

24 2r
] < ﬁ/a \/IOgN<t7NLd,Wd,N7 | - [|2) dt

24 [. L
< = / CWyLglog (Wd d) dt.
\/ Z £ t

To evaluate the integral on the RHS of Equation 3.6.7, we apply the change of variables

(3.6.7)

technique by defining u = log (Wde) (and thus dt = —WyLge "du):

log
- 3. Wiy 3. (Walg
= WyL4 [F (é,log < 5 >> r (§,log (.))} (3.6.8)
Wde T
— 2 /1 S —
r Og(o)—i_O(log(Wde))’

where I'(s,z) = f;o ts~le~tdt is the upper incomplete gamma function.

Substituting Equation 3.6.8 into Equation 3.6.7 and applying Lemma 3.6.2 lead to:

7 . WyL
1 CWyLqlog (i)
_) . < . r
E. igg 7 E ezf(pz)] <24 27’\/ 7
=1
' 3.6.9
< o1vh \/QrOWdelog (WyLyg) ()
7
~ \/rWdelog(Wde)
<C ,
7
where C > 24/ 20C. [|

Lemma 3.6.4 Let 6 minimize the loss function L in FEquation 3.4.8. With probability at
least 1 — e~ for all t > 0,

Wde log(Wde) +1
A

L(0) < inf £(0) + C

holds for some C.

70

Proof. From the symmetrization inequality Boucheron et al. (2012), we have:

z
E [qé) . L(G)] < 2B |sup % ; € f(pi)] , (3.6.10)
where ¢; are i.i.d. Rademacher variables.
Let us define the centered process:
z
Z =sup > (f(pi) — E[f(p)]) (3.6.11)

fe7 4
under the assumptions that there exists 2”j such that: (i) 27, < 2 — 25 < 1 almost
surely; (i) E¥[27;] > 0, where EF is the expectation taken conditionally to the sigma field
generated by (p1, ..., Pk—1,Pk+1,- - - Pz); and (iii) there exists ¢ > 0 such that 2’ < q almost

surely. Here, 2, = SUD ez Z#k (f(pi) — E[f(pi))])-

Applying Bennett concentration inequality Bousquet (2002) to the process 2 leads to:
t
P (Ef > E[Z] + V2ut + 5) <e, (3.6.12)

where v = (1 + q)E[2] + Zo® and 0* > S ER[(270)7).

Combining Equations 3.6.10, 3.6.12 and 3.6.12 with probability at least 1 —e™t, we have:

Z

sup % Z & f(pi)

fer 454

A

£0) = £(0) < 2E 4 % (m—m + %) | (3.6.13)

Moreover, by putting E, [supfeg ’% 7 af(p) } = r for Lemma 3.6.3 (< stands for asymp-

totic equivalence), we obtain:

. WLy 10§(Wde) ' (3.6.14)

Extending the result of Equation 3.6.10 to 2 defined in Equation 3.6.11 leads to:

E[Z] <2ZE |sup % Z Eif(pi)]

a
fe7 < 2

(3.6.15)

~ Lyl L ~
< zzc\/ rWaLa OZng 1) 2CWyLqlog(WyLy),

where the second inequality and last asymptotic equivalence come from Lemma 3.6.3 and

Equation 3.6.14, respectively.

71

According to Efron-Stein inequality Boucheron et al. (2012), there exists 2’y = 2 — %,
such that:

Z (2 —E[Z | p)?] < E(2')?), (3.6.16)

where 2 | p excludes py, from 2. Thus, to derive an upper bound on E*[(27})?], we write:

(@) < (sup) E[f(pk)H) <2 <sup T+ Empk)]?) < dsup ()2

fez feF fez
(3.6.17)

where the second inequality comes from (a — b)?* < 2(a? + b*) and the last inequality holds
by Jensen’s inequality (E[f(px)]* < E[f(pr)?]). Then, for f € .# and a bounded function F,

it follows:

E[f(pe)] < 201 = Fllz, + IF15,) < 20 + IF3)- (3.6.18)

Substituting the result of Equation 3.6.18 into Equation 3.6.17 and combining it with

Equation 3.6.16 give:

WaLalog(WaLg)\?
0% < Dr? = (alalog(We d)> , (3.6.19)
Z
for some D > 0.
Substituting Equations 3.6.19 and 3.6.15 into 3.6.12 gives:
WaLqlog(WyLy))?
v=(1+qRE[Z]+ Zo* < C'(1 + q)WyLglog(WyLg) + (WaLalog(WaLd))
Z (3.6.20)

S <O/(1 + q) + %) (Wde 10g(Wde))2 .

Substituting Equations 3.6.20 and 3.6.14 into 3.6.13 gives:

~Wde IOg (Wde) 4 \/2 |:C/(1 i q) 1 :| thLd log(Wde) t

L(0) < L(#) +2C ~ ~ - + o
< L(0)+ C’Wde 10g(ZWde) +t

(3.6.21)

holds for any 6, where C = max{25, \/2 [C”(l +q) + %] t, %} Thus, we conclude that

L(0) < infy £(0) + CWakalos(WaLa) it)

72

Proof of Theorem 3.5.1

Proof. From Lemma 3.6.4, we know that with probability at least 1 — e~* for all ¢ > 0 and

some C ,
Wde log(Wde) +t
A .

Realizing £(0) < ||ty — F||3,, then for 5o = infy £(6) + C Yitd log(;VdLD)HO, it holds that:

L£(0) < inf £(0) + C (3.6.22)

E[L(A)] < /0 N P(L(0) > s)ds

— /0 TP(L() > s)ds + / RCUERE (3.6.23)

<sg+ M- et
= S0+ 7
where ty = log Z and we assume that £ < M for t > t,.

Since Lq = O(log Z) and W, = (’)(ZQ(’;H)), we have:

WaLglog(WaLy) _ Z700 -log Z - log(ZZ log Z)

A A

73D log Z - <2(k1+1) log Z + log log Z)

- 7 (3.6.24)

= 770 og Z -log Z
— 772050 (log Z)2.

Combining Equations 3.6.22, 3.6.23 and 3.6.24 leads to the final result:

?|

where C' > 0 is a constant and the term O(Z~!) vanishes for a large Z. [

2
U FH,J < 072770 (log 2)2 + O(Z7Y), (3.6.25)

3.7 Proof of Theorem 3.5.2

Proof. First, we show that H(M) exists by introducing a map ® : H(M) — H (M) and the
reproducing kernel is defined as K(z,2") = (®(x), ®(2'))nm). Specifically, the map ®(x)

corresponding to a convolutional kernel K can be represented as A oM oPy, - - - AjoM 0Pz

73

where L is the depth of the kernel and A;, M; and P; are the linear operators related to
pooling, kernel mapping and patch extraction, respectively Bietti (2022). Without loss of
generality, we assume that H(M) C H(M). Next, we point out that H(M) is convex by

showing that, for any two functions f, g € H(M):

af +(1—a)g=a(f,ALoMpoPr-- A o My o Prx)ymy + (1 —)
(g, A o My oPp--- Ay o My o Pr)sym (3.7.1)
=(af+(1—-a)g, Ao MpoPr--- A o My o Pi)ym)

for a € [0, 1]. Thus, H(M) is closed due to the closedness of manifold M and the complete-
ness of Hilbert space H.

Next, from the Hilbert projection theorem, for € H(M), there exists a unique y €
H(M) such that, for any y € H(M), ||Z —y||zm) < ||Z —Ul|mm)- Let us denote y as ¥ (),
where W is a map from H(M) to H(M). Following the main result of Caragea et al. (2022),
for any y € H(M) and any € > 0, there exists a complex-valued modReLU neural network
with hyperparameters §, FMy, containing no more than C'In(2/¢) layers, Cn~2%™In*(2/¢)
weights (all weights bounded by Ce™*4), such that ||y — FMg(Z)||zmy < 5. In addition,

there also exists another complex-valued modReLLU neural network with hyperparameters

¢', FMy/, such that ||¥(z) — FMg (Z)||gm) < 5. Thus, we have:

17 — My (D)|| a0y = |17 — T(&) + U(F) — FMy(@)|| 1

< |7 = U@)|law + [V (@) = FMg (2)[[1 m)

SO €
< 17 =Glluoy + 35
. (3.7.2)
= Iz =y + FMy(2) = FMo(@) |l + 5
~ - — €
<17 = FMy(@) [+ IIFMg(2) = Gl + 5
< ||z = FMo(@)||) + &
This completes the proof. [|

74

3.8 Proof of Theorem 3.5.3

To prove Theorem 3.5.3, we first introduce and/or prove a few lemmas.

Lemma 3.8.1 (Yarotsky (2017)) For any dimension n, smoothness parameter k—+1, and
error tolerance € € (0, 1), there exists a ReLU neural network architecture such that it can
approximate any function f with accuracy €, i.e., with approxzimation error at most €. The
network has depth at most c(In(1/e) + 1), and uses at most c==x (In(1/¢) + 1) weights and

computation units, where ¢ = c(d,n) is a constant depending only on d and n.

Lemma 3.8.2 Let f € C*([0,1]%) or WEFLeo([0,1]9), fore > 0, there exists a ReL U network
fo with width Wy = O (m%) such that || f — follr= < &.

Proof. The result follows from Lemma 3.8.1, which states that for any d € N, n € N, and
e € (0,1), there exists a ReLU neural network of depth O(log(1/¢)) and size O(s ™« log(1/e))
that can uniformly approximate any function in the class Fj,, which includes functions in
Wn([0,1]¢) with bounded norm. By setting n = k + 1, it holds that f € W**Lo([0, 1]9),
with the network width scaling as (’)(g_k%l), up to a logarithmic factor. Note that any
f € C*([0,1]%) with bounded derivatives up to order k also belongs to W*°([0,1]¢) and can

be embedded into W**1>°. Thus, Lemma 3.8.2 holds for any f € C*(]0,1]%). |

Remark 3.8.1 The result of Lemma 3.8.2 is nearly optimal. (Yarotsky, 2017, Theorem 5)
shows that there exist functions f € W™([0,1]?) for which the complexity N(f,e) is not
0(6’%) as € — 0. This implies that no network architecture can uniformly approximate all

such functions with significantly better scaling in €.

Lemma 3.8.3 Let H be a separable Hilbert space and f € H belong to a class of functions
with k-th order smoothness. For ¢ > 0, there exists a ReLU network fy with width Wy =

O (57#1) such that || f — folln < e.

Proof. Assume f € dom(A~F) with respect to its operator A with input dimension d. Let

{e;}32, be an orthonormal basis of H with associated eigenvalues \; < 7%* (assuming that

75

a > 51y of A Then, we have ||A*f|3, = S A foes)? < oo We can define the
eigenexpansion of f as Pyf = Zj.v:l(f, e;)e; and ||f — Py fllp < CN-(F+2)o < ¢/2 holds
for N = (57m1 = e ma. In the finite-dimensional subspace span{ei,...,en} = RY,
each coordinate function f; = (f,e;) inherits C* regularity and can be approximated by

a ReLU network f; with |f;(z) — f;(z)] < using width 0(67’%1) per coordinate from

2\/N
Lemma 3.8.2. The RELU network fp = Zj | fie; then satisfies ||f — folln < |If — Py flln+

\/Zj If; = fill2~ < e. The total width W; = O(N - 57’71) = O(sfle) |

Proof of Theorem 3.5.3

Proof. First, we show that, for a sufficiently large N and any € > 0,

[— FM (@) [l < (3.8.1)

B~ ™

holds. From Equation 3.4.7, we have tng = S0 (FM (@), Biyr,)Biyr,. Here, we prove by
contradiction. Suppose |[ing — FM (%) |y > §, then there exists an open ball B and

C > 0 such that:

N

FM (ﬂ([)ﬁ,)) - Z(FM (’ZL(ZE,)) 7°@i+’r@'>‘@i+7’i

=1

. (3.8.2)

_ C’Iglagi(nkm(g)m >
H(M) ’

] o

for (x,-) € B C M. Furthermore, since the term S [[(FM (i(z, ")), Biir,)

2 .
H(M) < O 18

finite, there exists Ny such that for any n > Ny, we have:

2
2 poC
My < (T) : (3.8.3)

Next, we examine the term ||(u,, i—>“H , where (z,b) € B and

Z [(EM (a(z,), Bigr,)

—_

w, = FM (e,) — S (EM (e,) , Brvr) B,

1

3

7

(3.8.4)

Mz

=FM (ﬂ(x,)) <FM(()) z+ﬂ z+n + Z FM %i+7i>'%i+ﬁ"

1

7

76

Therefore, we have:

Ky,
<un7 _>
bl [l)
al k
= FM z 7— 7, T + FM z i %z Tu_b
< Zl i+ i+ Z i+ > + ”kb||>
i H(M)
N ky
> |[(FM (a Z Bitr:) Bt Tl
i=1 0 gy
N
Ky
- ' <Z z—l—n)'%i-i—n‘v m> (385)
=n H(M)
(FPM (@) = S, (PM (@), Birr) B,)|
>
B || o

_ J Z IGEM (i,) s Bir) 3y
C

where the third inequality holds due to the reproducing property of RKHS: (f, k,,) = f(m).

Meanwhile, there exists v > 0 satisfying Equation 3.4.6 such that:

ke et oy = 5225 (R, Bin) B |y g
(U, —) =
20 H(M) sl
H <un,]{Zb — Z?:_11<kb, f%i+n‘>'%i+ﬁ'> H(M)
o Hk‘b — Z?;ll <kb> '%i-l—n)’%i-i—n H(M)
b
= [{tns B) |3 00 (3.8.6)
< ' — <Um '%n+7n> ne
0 Po H(M)
L opC
TP 2 o
C
5

Hence, Equations 3.8.5 and 3.8.6 lead to a contradiction. Therefore, Equation 3.8.1 must
hold.

Next, from Theorem 3.5.2, there exists a network FM with appropriate hyperparameters

7

¢’ such that:

~ ~ . ~ ~ €
||u — FMQI(U)HH(M) < l%f ||u — FMG(“)HH(M) + Z (387)

Let us denote FMy as FM. Note that u in Equation 3.8.7 lies in the Hilbert space H(M),
not the RKHS H(M). Furthermore, from Lemma 3.8.1, there exists a set of hyperparameters

6 such that ||u — FM5() || gy < §. Therefore, Equation 3.8.7 reduces to:

~ ~ 3 7 U 6
[= FM(@) (v < 07— FMp @] o +
B _ €
< |[a = FM(@) [+ 5 (388)
cELE_ ¢
4 4 2

From Lemma 3.8.3, for w which is the output of a neural network with width W; =

@) (e_ﬁ), we have:

~ €
Il = Fllremy < 5 (3.8.9)
Putting Equations 3.8.1, 3.8.8 and 3.8.9 together leads to:
g — F)y < Moo — FM (@) [leomy + [[a = FM(@) |zony + [= Fll v (38.10)

<e

for any p € P. Therefore, taking supremum on LHS and RHS of Equation 3.8.10, we have

proven Theorem 3.5.3. u

3.9 Proof that the Helmholtz equation spans an RKHS

Let us consider the Helmholtz equation Au + k*u = 0 without loss of generality. We first
introduce some background and preliminaries before proceeding with the proof.

Let A = 3", g—% be the Euclidean Laplace operator acting on the Sobolev space of
weakly twice differentiable functions defined on R™. Let & > 0 be a fixed constant. A

function u defined on R" is called a solution of the Helmholtz equation, if Au + k*u = 0 on

R". In other words, u satisfies one of the following:

e u e C*(R") is a classical solution of the above equation on R"; or

78

e u € W2(R") is a solution in the weak L%-sense, i.e., u is locally square integrable, and
satisfies [, u(2) [Ap(x) + k*p(z) | dz = 0 for any (test) function ¢ € C*(R") with

compact support.

It follows from Axler et al. (2001) that any solution of homogeneous Helmholtz equation

is real analytic on R". We define the following space:
Whemi(R") = {u € C*°(R") | Au + k*u = 0 on R"}. (3.9.1)

Hartman & Wilcox (1961) introduced the concept of Herglotz wave function. The Her-
glotz wave functions consists of all the entire solutions u of the homogeneous Helmholtz

equation Au + k?u = 0 on R™ with & > 0 such that Herglotz boundedness condition:
lim —/ lu(z)|* do < +o0 (3.9.2)
lzll <R

holds. Hartman & Wilcox (1961) characterized the Herglotz wave functions as the entire
solutions u of the homogeneous Helmholtz equation with far-field pattern in L*(S"'). That

is, functions u defined on R™ can be written as:

ua) = [Mgl da), 3.9

for some g € L*(S"71).

With this, let us consider the Helmholtz equation on the standard n-dimensional unit
sphere S” = {z € R™™ : ||z|| = 1} in R™™ with canonical spherical Riemannian metric
g. Let Agn be the spherical Laplacian acting on the Sobolev space W2(S") of real-valued,
square-integrable, and twice weakly differentiable functions on S”. Consider the Helmholtz
equation on the Riemannian manifold (S"~!, g) with canonical spherical metric g. Its entire

solution can be expressed as:

w=1Wole) = (2m)'% [o(e)an(s) (3.9

where TV is the Fourier extension operator and ¢ € L*(S"!) is Herglotz wave function. Tt

has been shown that W defined in Equation 3.9.4 is an isomorphism of L*(S"!) onto the

79

space W2 consisting of all solutions of Helmholtz equation with radial and angular derivatives
satisfying:

ou, | .o dx

ou
[Jul[* = / (Ju(@)]* + |5 () +
|z|>1 or
(see Pérez-Esteva & Valenzuela-Diaz (2017)). In this sense, the space W? in R? is a Hilbert
space with reproducing kernel (i.e., RKHS).
Meanwhile, to the best of our knowledge, there exists no such formal analysis on Helmholtz

equation on any smooth (Riemannian) manifold (M, g). In this case, the Laplace-Beltrami

operator extends the Laplace operator to Riemannian manifold (M, g) and is defined as

Apu = divy(Vu), where Vu denotes the gradient of u and div, is the metric-induced
divergence. In local coordinates (z!,...,z"), the operator takes the form:
Ou
Apmu = K , 3.9.6
MU= 1; oz (9l g &vﬂ) ()

where g;; is the Riemannian metric tensor, g% is its inverse, and |g| denotes the determinant
of the metric matrix.

For any smooth manifold (M, g), the Laplace-Beltrami operator A 4, defined in Equation
3.9.6, has orthonormal eigenbases on L*(OM) as {1, } » with corresponding eigenvalues A > 0.

For each 1y, let us consider:

(Am+ k) =0in M, @rlap = ¥n. (3.9.7)

By elliptic regularity, ¢, € H?(M). Furthermore, we extend the Fourier extension

operator in Equation 3.9.4 to W, on any smooth manifold M:

W f(x) = /a y U(x,) f(&)do(€), where U(z, &) = Z@ (3.9.8)

Now, we present the main result in Theorem 3.9.1 that W?2(M) is the space of all Herlotz

wave functions.

Theorem 3.9.1 The operator Wy : L*(OM) — W?(M) defined in Equation 3.9.8 is a
topological isomorphism, where W*(M) = {u € H* (M) : (Anm + k*)u = 0}.

80

Remark 3.9.1 Theorem 3.9.1 implies that Waq is an isomorphism between L?(OM) and
W2(M), the space of H?-solutions to the Helmholtz equation (A + k*)u = 0. Such an iso-
morphism Wy implies that H(M) inherits a Hilbert space or RKHS structure from L?(OM).
In other words, W?*(M) is an RKHS.

To prove Theorem 3.9.1, we first introduce and prove a lemma.

Lemma 3.9.1 Let J,(z) be the Bessel function of order v € R. For each eigenfunction 1,
of Aopm, define Fj = Waqp;. Then:

-2

1. Fy(z) = 2m)Y2"Dr="5" 1,y (kr);(€), where x = ré in normal coordinates near M.

2. The family {F}} is orthogonal in W*(M), and

1
Il = V2 +0 ().
J

3. For f =3 a;¢; € L*(OM) and u =Y, a;F; € W(M),
HUHHQ(M) ~ Hf”LQ(BM)a
with absolute and uniform convergence on compact subsets of M.
Proof. We prove the three components of Lemma 3.9.1 as follows:

1. Helmholtz equation (A + k?)¢; = 0 can be written as:

(#4700 Som+) (TTROBEO) =0 (399)

Substituting ¢, = 'r’_nT_QRj (r)1;(€) into Equation 3.9.9 yields:

1)?
R+ R, + (k2 - ”5;72)) R; =0, (3.9.10)

whose solution is R;(r) = J,(jy(kr). By the Funk-Hecke formula Xu (2000), we have:
D(j)..n=2
B) = [e u©is©) = 00 R g . 91

81

2. Since 9; and 1y, are orthonormal eigenbases, v¥; and 1), are orthogonal on M. There-
fore,
(Fjo Fio) 2y = / (650 + Vo - V) dVy =0 (3.9.12)
M

(kr/2)* @)
T(v(j)+1)

for any j # k. Using the asymptotic J,;(kr) ~ for » — 0 and oscillatory

decay for r — oo, we have:
9 1
1Fj 20y =2+ O WA
J
where the error term comes from the next-order Bessel asymptotics.

3. From Part 2, the map f — u is bounded:

Il = 22 PIF sy ~ 2l = W (3.9.13)

Next, we prove |J,(kr)| ~ O(v~'/2) uniformly holds on compact subsets K C M.

According to Watson (1922), we have:

J,(vsec3) ~ (L) v [COS (Vtanﬁ —vp— %) i (—1)’"F(?m * %)

mvtan 3 — INEY
Aom . ™ w= (=1)"T(2m + 3)
(ot o (s =9 =) 3
Aoyt
(%Vtanﬁ)zm“

(3.9.14)

where Ay is defined following Ay = 1, Ay = 3 + 3y cot? f, Ay = 3 + = cot’ f +

385

4
316 cot” 3, and so on.

Let z = sec 3, which implies tan § = v/22 — 1 and cot 8 = \/% Moreover, 1 is defined
asn(z) =tan B — = V22 — 1 —sec ! z. Then, by cosf = R(e?), sinf = I(e?), we

have:
cos(vn — m/4) - Sy + sin(vn — 7/4) - S1 = R [e"7I(S, —iS)], (3.9.15)

0o (=D"T(2mt3) m (=)"T(2m+3) Az

82

We say that there exists Uy(p) which is a polynomial combination of Ay by comparing

—(,,tfrf'g)zm and U’;—%’). By tanf = +v22 — 1 and p = ﬁ, we have:

2\ 1 1 222 \ !
mv tan 3 (L2 oy \ 21 '

Combining Equation 3.9.14, Equation 3.9.15, and Equation 3.9.16 leads to:

o0

exp (v — §) Us(p)
J(vz) ~
(vz) (14 22)Y4%/2mv kz:% vk
kr

Next, for v > 1 and r € K (i.e., z = 7 is bounded), we have:

sy~ (2)" e 5

U4

Since |cos(-)| < 1 and (1 + 22)'/* has positive lower bound G on K, we have:

(k)| < G (3)1/2)

nz

(3.9.16)

(3.9.17)

(3.9.18)

(3.9.19)

Finally, substituting Equation 3.9.19 into 3.9.13, we have, for compact subsets K C M:

J

J

1/2 1/2
> lagl|[Fi(a)] < (Zlajl2> (ZUVU)(/W)F) < .

This completes the proof.

Proof of Theorem 3.9.1

Proof. For f =3 a;¢; € L*(OM), let us define:

Wif =Y _a;F;, where Fj = W

J

subsets K as:

1/2 1/2
—1/2
ZMJ”HFJHLW(K) <C (Z\aﬁ) (Z A; / > < 00,
J j j

83

(3.9.20)

(3.9.21)

From Part 3 of Lemma 3.9.1, the series converges absolutely and uniformly on compact

(3.9.22)

where || Fj|| (k) < CA; * comes from Bessel decay Matviyenko (1993) and \; ~ §7T comes
from Weyl’s law Liokumovich et al. (2018).

Then, from Part 2 of Lemma 3.9.1:
IWaih 2y = D lasPIE ey ~ D lasl® = 11 Z2gom)- (3.9.23)
J J

Next, we prove the surjectivity of Wy Let u € W?(M). On M, we expand u in

eigenfunctions using:

u(r,€) =Y A(r)e(€), Ay(r) = (ulr,), ¥5) 2 (3.9.24)
J
This way, the Helmholtz equation (Ax + &?)u = 0 reduces to an ordinary differential equa-
tion:
n—1 A+ (552)?
Af+ ——Aj + (k2 — ”TQ) A; =0, (3.9.25)

whose solution is A;(r) = ajr_nT_QJV(j)(kr), where v(j) = \/A; + (%52)?. Therefore, u =
doiaiFy = Wuf for f =73 a0 € L*(OM). Finally, the inverse W' : u +— ulgp is

bounded by the trace theorem Adams & Fournier (2003):

IWidullz2onm = lulomllzziomy < Cllullazom- (3.9.26)

This completes the proof. [|

3.10 Experiments

We evaluate the performance of our proposed model across three different PDEs on different
manifolds whose solution spaces are not necessarily an RKHS, and compare it with recent
neural PDE solvers including FNO Li et al. (2020b, 2023b), WNO Tripura & Chakraborty
(2023), D-FNO Li & Ye (2025), and DeepONet Lu et al. (2019). Then, we present some key
results from selected ablation studies to demonstrate the need for each of the core components

of our AFDONet framework.

84

3.10.1 PDE problem settings

Helmholtz equation on planar manifold with boundary. Let (M,g) be a smooth
planar Riemannian manifold with boundary M C R? equipped with the Euclidean-induced
metric g. We consider the 2-D Helmholtz equation on M with perfectly-matched layer
(PML) absorption on M as follows:

Anu(e,y) + KnP(z,y)u(z,y) = = S(a,y), (z,y) € M,
(3.10.1)
PML absorption on 0M,
where wavenumber k is a positive constant, n : M — C is the complex refractive-index field,
and S : M — C is the source density. In our experiment, the planar manifold is constructed

following Marchand (2023). Furthermore, one can show that the solutions of the Helmholtz

equation naturally span an RKHS (see Section 3.9).

Incompressible Navier-Stokes equation on a torus. Let (T2 g) denote a flat two-
dimensional torus T? = ([0, 27] x [0, 27r]) / ~ obtained by identifying opposite edges of the
square and endowed with the Euclidean metric g. For viscosity v > 0, we study the 2-D

incompressible Navier-Stokes system:

ou+ (u-Viu=—-Vp + vAru, (z,y,t) € T? x (0,T),
Vrz-u =0, (x,y,t) € T2 % 0,7, (3.10.2)
u<'70):u07 $€T27

where u = (u,v) : T? x [0,7] — R? is the velocity field and p : T? x [0,7] — R is the

pressure.

Homogeneous Poisson equation on a quarter-cylindrical surface. Let (M, g) be
a smooth two-dimensional Riemannian manifold M = {(cos b,sing,z) € R3S : 0< ¢ <
5, 0<z2< L}, which restricts the lateral surface of the unit cylinder to a single quadrant.
The metric g is the Euclidean metric pulled back by the embedding, so that in local coordi-

nates (¢, z) one has Ay = 0y + 0,,. We study the 2-D homogeneous Poisson problem with

85

Dirichlet boundary conditions on OM:

- AMU(¢a Z) = f(¢> Z)’ (¢, Z) € (Ov %) X (07 L)»
u(gb, Z) =0, (¢v Z) € oM,

(3.10.3)

where the source term f(¢,z) = 3 [(Q—L’T)Q(l —cos @) — (cos ¢+ sin ¢ — 4 sin ¢ cos gb)} sin(%)
Kamilis (2013).

Since Helmholtz and Poisson equations are stationary, we focus on the static task for both
problems. And for the Navier-Stokes equation, we consider both static and autoregressive

tasks.

3.10.2 Datasets

Helmholtz equation. We generate the dataset using helmhurts-python, a Helmholtz
equation solver Marchand (2023). This solver computes the electric field distribution u(x,y)
for given n(x,y) and source terms S(z,y), discretized on a uniform grid with resolution
Az = Ay = 1cm. S(z,y) is constructed by assigning a complex-valued excitation P - €' to
all pixels marked as sources (RGB (255,0,0)) in the input image, where P is the transmitter
power and ¢ = 0 denotes a uniform phase alignment. Perfectly matched layers (PMLs)
of thickness 12 cells absorb outgoing waves to approximate open boundary conditions. We
select randomized physical parameters to generate the full dataset, including transmitter
power P ~ U(0.5,2.0), frequency f ~ U(1.5,3.0) GHz, and wall properties n ~ U(1.5,3.0),

Kk ~ U(0.05,0.2). The resulting field intensities |u| are log-scaled and normalized to [0, 1].

Navier-Stokes equation. The dataset is generated by numerically solving the 2D in-
compressible Navier-Stokes equations using a spectral method solver adapted from the
NSsimulation repository lavenderses (2021) on a torus. The viscosity v are sampled follow-
ing v ~ 4(0.001,0.1). For the static task, the dataset contains the value of parameters o and
the numerical solutions u. For the autoregressive task, the dataset contains the numerical

solutions u(z,t) and u(z,t + 1).

86

Poisson equation. Using isogeometric analysis with NURBS basis functions of order p = 2

proposed in Kamilis (2013), we generate the dataset for this problem by specifying a ~ (2, 6).

3.10.3 Implementation details

We run all experiments in a Dell Precision 7920 Tower equipped with Intel Xeon Gold 6246R
CPU and NVIDIA Quadro RTX 6000 GPU (with 24GB GGDR6 memory).

For FNO-based solvers Li et al. (2020b, 2023b); Li & Ye (2025), the number of Fourier
modes considered in the spectral convolutions is an important hyperparameter. We find that
no more than 16 Fourier modes are enough to solve the three benchmark PDE problems. In
fact, increasing the number of Fourier modes beyond 16 could lead to worse performance.
From Figure 16, we plot the average MAE and total computational time of FNO with
8,12, 16, 32,64, 128 Fourier modes. As a result, in our experiments, we set the number of
Fourier modes to be 12 for all FNO and D-FNO models. Similar trends happen to other

benchmark PDE problems, so we use 12 Fourier modes in all benchmark PDE problems.

0.175

0.150
20
0.125

0.100

MAE
Total time (s)

0.075

0.050

0.025

0.000 0
0 20 40 60 80 100 120 0 20 40 60 80 100 120

Number of Fourier modes Number of Fourier modes

Figure 16: Average MAE and total computational time (in seconds) of FNO solver with re-
spect to number of Fourier modes (averaged over five random seeds) for solving the Helmholtz

equation 3.10.1.

In addition, for AFDONet, increasing the dimension of the latent space helps achieve
higher accuracy. However, this also comes with an increase in computational costs. This is

illustrated in Table 11 below taking Navier-Stokes equation. Therefore, to demonstrate the

87

effectiveness of our AFDONet solver even in the worst-case scenario, we set the latent space

dimension to 10 for all benchmark PDE problems.

Table 11: Average MAE, relative L? error, and computational time (in seconds) of AFDONet
(averaged over five random seeds) for solving Navier-Stokes equation 3.10.2 (autoregressive

task) under different latent space dimensions.

MAE Relative L? error Time (sec)

Latent dimension

16 6.40E-04 £ 9.90E-05 1.11E-03 £ 1.91E-04 1058.39 + 19.30
20 5.35E-04 £ 1.36E-04 1.40E-03 £+ 1.03E-03 1190.61 £ 15.67
32 3.77E-04 £ 1.28E-04 9.60E-04 £ 8.03E-04 1110.57 + 18.38
64 4.62E-04 £ 1.35E-04 1.22E-03 £+ 8.92E-04 1173.40 £ 17.22
100 4.00E-04 £ 1.09E-04 1.06E-03 £ 9.94E-04 1365.03 + 21.89
128 3.89E-04 £ 1.26E-04 9.99E-04 £ 8.48E-04 1406.05 £ 23.98
256 5.03E-04 £ 1.98E-04 1.27E-03 £ 1.14E-03 1743.28 £+ 27.64

The AFDONet loss function and training specifications are listed in Table 12 below.

Table 12: Specifications of loss function and training for AFDONet solver.

Parameter Value
Training epochs 100
Loss weights (w) 107°
Loss weights (w;) 1078
Optimizer Adam
Learning rate 1073
Batch size 16

Encoder hidden layers dimension 256

Latent space dimension

10

88

For the benchmark solvers, their detailed architectures are as follows:

e The FNO solver Li et al. (2020b, 2023b) consists of an initial linear projection layer P
(width is 32) followed by 5 Fourier layers with 12 Fourier modes and GeLU activation
function. A neural network with two fully connected layers @ (the first layer has 128
neurons and the second layer has 2 neurons) is used to project back to the target
dimension. The Adam optimizer (learning rate: 107%) is used to train the FNO solver

based on minimizing the MSE loss.

e The D-FNO solver Li & Ye (2025) has a similar architecture as the FNO solver, except
that a reduction layer is introduced between the initial linear projection layer P and
the 5 Fourier layers to decompose the output of P into a series of two one-dimensional
vectors. The reduction layer does not use traditional neurons. Instead, it projects
inputs into a rank-16 subspace via factor matrices (see Equation 6 of Li & Ye (2025)).
The Fourier layers have 12 Fourier modes (also suggested by Li & Ye (2025)) and use
GeLU activation function. After that, an operation called product is used to put the
two vectors together. In D-FNO, @ has two layers (the first layer has 128 neurons and
the second layer has one neuron). The Adam optimizer (learning rate: 1073) is used

to train the D-FNO solver based on minimizing the MSE loss.

e The WNO solver Tripura & Chakraborty (2023) adopts the FNO architecture by re-
placing Fourier layers with wavelet integral layers that decompose the inputs using
Daubechies wavelets and apply learnable linear transformations to the wavelet coeffi-
cients before reconstruction. The structure of () is the same as that of FNO. GeLU

activation function and the Adam optimizer (learning rate: 107%) are used.

e The DeepONet solver Lu et al. (2019) consists of two subnetworks: a branch network
and a trunk network. The branch network which handles the high-dimensional input
functions has three fully-connected layers with 64 neurons per layer. The truck network

which handles spatial coordinates also has three fully-connected layers with 64 neurons

89

per layer. Their outputs are combined via a dot product. ReLLU activation function is
employed in both branch and truch networks. We use the Adam optimizer (learning

rate: 107%) to minimize the MSE loss.

3.10.4 Results and discussions

Comparison with benchmark methods. In Table 13, we report the performance of
AFDONet and benchmark methods in terms of average mean absolute error (MAE) and rel-
ative L? error, as well as their standard deviations (&) obtained using five random seeds and
dataset size of 5000. Synthetic datasets are generated using finite difference and isogeometric
methods, and each model is trained on a 60/20/20 split of training, validation, and testing
data. We conclude that, given different dataset sizes, our AFDONet solver consistently out-
performs FNO-based solvers and DeepONet across all PDE cases on manifolds. Note that
FNO, D-FNO, AFNO, and WNO solvers rely on fast Fourier transform and wavelet trans-
form, both of which are inherently defined on Euclidean domain and thus do not generalize
well to curved geometries. Meanwhile, DeepONet does not exploit the spectral sparsity of
the solution space. In contrast, AFDONet adaptively selects analytic modes and employs

pullback operators to ensure accurate, manifold-aware representations.

Scalability of AFDONet. In Figure 17, we show that AFDONet is scalable subject to

increasing dataset size for all benchmark PDE problems considered.

Latent-to-RKHS network vs. Latent-to-kernel network. Our decoder operates
within an RKHS #H (M), which is constructed via a latent-to-RKHS network. This network
maps latent representations to their nearest RKHS within a Hilbert space. To understand
the need for function restrictions within an RKHS, we conduct an ablation study and com-
pare the latent-to-RKHS network with the latent-to-kernel network Lu et al. (2020a), which
directly maps latent representations to a kernel function that does not necessarily satisfy the

reproducing property. By comparing the results in Tables 13 and 14, we observe that latent-

90

Table 13: Average MAE and relative L? errors and their standard deviations for different

PDE benchmark solvers obtained using five random seeds. Dataset size is 5000. The best

results are bolded. All values in the table have been multiplied by 100.

Equation Metric AFDONet (Ours) FNO D-FNO WNO DeepONet

MAE 0.937 + 0.063 1.855 £ 0.165 6.085 + 0.355 11.701 4+ 1.429 16.224 4+ 1.054
Helmholtz 3.10.1

Rel. L2 8.141 + 1.401 11.915 £ 0.935 39.191 £ 9.361 69.735 £+ 12.675 46.310 £ 10.540
Navier-Stokes MAE 0.332 £+ 0.030 2908 £ 0.741 0.375 £ 0.103 3.974 £ 0.005 3.189 £ 0.164
(Static) 3.10.2 Rel. L? 0.882 + 0.059 7.567 £ 0.173 0.996 £ 0.263 9.989 + 0.004 7.251 £ 0.422
Navier-Stokes MAE 0.068 £+ 0.037 2.386 £ 0.249 0.142 £ 0.009 3.826 £ 0.191 3.168 £+ 0.221
(Autoreg.) 3.10.2 Rel. L2 0.170 £+ 0.104 6.288 £ 0.820 0.298 £ 0.060 9.541 £+ 0.475 7.071 £ 0.897

MAE 0.158 + 0.033 0.777 £0.093 0.343 £ 0.066 0.770 £ 0.161 0.531 % 0.030
Poisson 3.10.3

Rel. L? 0.472 £+ 0.109 2.567 £0.502 0.513 £ 0.242 1.754 £ 0.943 0.483 £ 0.305

to-RKHS network consistently outperforms the latent-to-kernel network. Both MAE and
relative L? error show at least an order of magnitude reduction for all PDE cases except the
Helmholtz equation 3.10.1, which only yields a slight performance gain. This is due to the
fact that the solution space for the the Helmholtz equation 3.10.1 is already an RKHS (See
Section 3.9). This illustrates the need and benefit of restricting the latent representations to

their RKHS.

AFD-type decoder vs. other decoder architectures. We conduct ablation studies
by replacing our full AFD-type dynamic CKN decoder with three alternatives, namely an
MLP decoder, a propagation decoder Lu et al. (2020a); Buchberger et al. (2020), and an
AFD-type decoder with a static CNN. As shown in Table 14, full AFD-type dynamic CKN
decoder achieves the best performance for all PDE cases. The improvements are especially
significant for the Navier-Stokes equation 3.10.2 and Poisson equation 3.10.3, where both the
MAE and relative L? error are reduced by one to two orders of magnitude compared to the

benchmark decoders. Also, we observe that AFD-type decoder with a static CNN performs

slightly worse than our AFD-type dynamic CKN decoder since CNN uses stationary kernels

91

== Ours A+ WNO 10° 4

== Ours 4~ WNO == Qurs 4~ WNO 4
—=— FNO —¥— DeepONet —=— FNO —¥— DeepONet —s=— FNO —¥— DeepONet
D-FNO D-FNO " D-FNO
107" 4 10 4
&
2 —
B
_1 i =
7Y Nﬂ) 10 o
ﬁ 'q §
i =]
- g = 10%4
1072 4 = g
) =
~ 10-2 4
102 4
1073 4
— T T T — T T T
5x 102 5x10% 2x10" 5x10! 5x10? 5x10% 2x10" 5x 10! 5><102 oxl(]‘ leo‘ a><10"
Size of dataset Size of dataset Size of dataset
=e= Ours 4~ WNO & o= Ours 4~ WNO == Ours 4~ WNO A
—¥— DeepONet —=— FNO —¥— DeepONet ~=~ FNO —¥— DeepONet
1004 D-FNO
5 __10* 4
1071 4 = =
& Iy 2
-
] ° b=
= g o
=1 g
© =
E’ =
N 10714 &
10724
103 4
5% 5100 2x100 5x10' 5x 510" 2x10' 5 10° 5% 10° 5100 2x100 5 x10°
Size of dataset Size of dataset Size of dataset
== Ours #— WNO === Ours +— WNO
—¥— DeepONet —s— FNO —¥— DeepONet 1044
D-FNO
102 8 _
E =
o
2 o B E
= 2 2 » —
5 10724 . 8
© =
] =
= 3
1074 == Ours A~ WNO
—=— FNO —¥— DeepONet
10-3 4 D-FNO
5% 10° 5x10° 2x10° 5x10* 5% 10° 5x10% 2x10" 5x10' 5x10° 5x10% 2x10" 5x10"
Size of dataset Size of dataset Size of dataset

Figure 17: Average MAE, relative L? error, and total computational time comparisons with
respect to dataset size (averaged over five random seeds) for Navier-Stokes equation (static

task) (top row), Helmholtz equation (middle row), and Poisson equation (bottom row).

that lack adaptability to the varying spatiotemporal dynamics in PDE solutions. In contrast,
dynamic CKN enables data-driven, non-stationary kernel learning, which can better capture
these inherent dynamics, especially for heterogeneous equations such as the Poisson equation

3.10.3 or time-dependent equations like the Navier-Stokes equation 3.10.2.

Need for VAE backbone. We design a new ablation study for the Navier-Stokes ex-
ample with randomized vortex field dataset. The randomized vortex field dataset exhibits
sharp gradients and turbulence-like behavior and includes a phase shift for the v-component.

Therefore, the dynamics of this dataset are challenging to learn. Our goal is to determine

92

Table 14: Ablation studies of our AFDONet architecture show that latent-to-RKHS and
AFD-type dynamic CKN decoder work synergistically to improve the solution accuracy.

Note that the results for the full architecture are presented in Table 13. The dataset size is

Equation Metric Latent-to-kernel Latent-to-RKHS Latent-to-RKHS Latent-to-RKHS Latent-to-RKHS network
network + AFD-type network + MLP-type network + propagation + AFD-type decoder + AFD-type decoder
decoder decoder decoder (static CNN) (without Equation 3.4.6)

MAE 1.27E-02 £ 1.91E-03 2.11E-01 £ 2.04E-03 1.93E-01 + 5.11E-02 2.41E-02 £+ 1.16E-02 1.81E-01 + 5.16E-02
Helmholtz 3.10.1

Rel. L? 8.89E-02 + 6.90E-03 1.17 £ 1.22E-02 1.07 £+ 2.64E-01 1.72E-01 + 9.13E-02 1.10 £+ 2.62E-01
Navier-Stokes MAE 8.32E-02 £ 1.46E-02 4.00E-01 + 4.46E-03 3.98E-01 + 4.68E-04 7.12E-02 £ 1.20 E-02 1.27E-02 + 2.03E-03
(Static) 3.10.2 Rel. L2 2.19E-01 + 3.44E-02 1.00 + 9.36E-03 1.00 + 8.30E-06 1.85E-01 + 3.54E-02 3.71E-02 + 6.29E-03
Navier-Stokes MAE 6.11E-02 £+ 2.92E-03 1.45E-01 £ 2.59E-02 1.48E-01 + 1.09E-01 8.32E-02 + 9.28E-03 2.53E-03 £ 8.26E-04
(Autoreg.) 3.10.2 Rel. L? 1.58E-01 £ 9.20E-03 3.85E-01 + 6.84E-02 3.91E-01 + 2.30E-01 2.16E-01 + 2.35E-02 7.80E-03 + 1.10E-03

MAE 3.16E-01 + 8.76E-04 1.71E-02 £ 7.73E-03 1.81E-02 + 1.84E-03 6.08E-02 + 6.88E-03 3.53E-02 + 5.51E-03
Poisson 3.10.3

Rel. L2 9.77E-01 + 2.31E-03 5.10E-02 + 2.22E-02 5.61E-02 + 2.17E-02 1.77E-01 + 5.16E-03 1.30E-01 + 1.44E-02

whether the v-component solution profile would visually match with the ground truth solu-
tion when the VAE backbone and its components are removed or replaced. From Table 15,
it is clear that the synergistic integration of VAE backbone, latent-to-RKHS network, and
AFD-type decoder is essential in accurately capturing v-component solution profile in the
dataset. Guided by the AFD theory in their design and integration, these components come

together to establish the accuracy of our AFDONet solver.

Visualization of solver performance in benchmark PDE problems

In Figures 18 through 20, we plot the ground truth and predicted solutions of AFDONet
and baseline methods for the three case studies. The corresponding MAE and relative L?

error results are listed in Table 13.
AFDONet performance on Navier-Stokes equation problem with randomized
vortex dataset

We extend the ablation study shown in Table 14 with a new ablation study for the Navier-

Stokes example with randomized vortex field dataset. The initial condition is set by vortex

93

Ground truth AFDONet (ours)

component u componentv ~ component u component v component u component v component u component v

component u component VF component u component v component u component v '!anonent u component v
NQ DeepONet
component u component v mponent u component v component u component v component u component v

QQII LN

Figure 18: Ground truth and predicted solutions (u, v) of the Navier-Stokes equation (static

task) on the torus and heat map.

Ground truth AFDONet (ours)

DeepONet

Figure 19: Ground truth and predicted solutions u(z,y) of the Helmholtz equation on the

planar manifold.

. . : _ (‘T*Cz)2+(yfcy)2 3
structures via Gaussian-based stream functions ¢ = A - exp (———%53—*~) with ran-

domized parameters vortex centers (c,c,) ~ U(1,5)?, radii 7 ~ U(0.5,2), and strengths

94

Ground truth AFDONet (ours) FNO D-FNO WNO DeepONet

Figure 20: Ground truth and predicted solutions u(¢, z) of the Poisson equation on the

quarter-cylindrical surface.

A~ U(-2,2).

Table 15: Ablation study of replacing VAE with multi-layer fully-connected feedforward
(MLP) network as the encoder. Here, v: v-component solution dynamics visually matches
with the ground truth solution; X: v-component solution dynamics does not visually match

with the ground truth.

Backbone Full AFDONet (latent-to-RHKS Latent-to-kernel Latent-to-RKHS Latent-to-RKHS + Latent-to-RKHS + Latent-to-RKHS + AFD-type
network + AFD-type decoder + network + AFD- + MLP-type propagation AFD-type decoder decoder (without maximal
Equation 3.4.6 type decoder decoder decoder (static CNN) (without Equation 3.4.6)
VAE v X X X v v

Without VAE (encoder

deterministic MLP)

95

Ground truth Ours MAE=1.95E-03+1.50E-03, Rel. L2=2.26E-01%1.72E-01

component u component v component u component v component u component v component u component v
FNO MAE=4.11E-03£4.20E-04, Rel. L2=1.28E-0215.92E-04 D-FNO MAE=8.10E-04+2.91E-04, Rel. L2=8.14E-02+1.67E-02
componentu component v component u component v component u component v component u component v
WNO MAE=6.64E-03+2.83E-03, Rel. L2=1.07+0.28 DeepONet MAE=5.31E-03+2.00E-05, Rel. L2=7.14E-01£8.80E-04
component u component v component u component v componentu component v component u component v

Figure 21: Ground truth and predicted fields (u, v) of the Navier-Stokes equation (for

static task) on both the torus T? and the heatmap for various solvers. Here, the dataset is
generated from Gaussian-based randomized vortex fields (dataset size is 5000) Pedergnana
et al. (2020). Average MAE and relative L? errors and their standard deviations obtained

using five random seeds are also reported.

96

CHAPTER IV

ADAPTIVE MAMBA NEURAL OPERATORS

4.1 Problem Statement

We frame our task as learning a solution operator for a family of parametric PDEs. In

general, consider a PDE defined on a spatial domain © C R? and a time interval (0, T):
Lou(z,t)] = f(z,t), ¥(x,t) € D x(0,T], (4.1.1)

which is subject to a set of initial and boundary conditions. Here, the parameter function a €
A specifies the coefficients and initial and boundary conditions of Equation 4.1.1. In operator
learning, our goal is to construct an accurate approximation for G : A — F(D x [0,T]),
which maps the parameter function a to the corresponding solution function u(z,t) € F,

via a parametric mapping Gy. The aim is to learn # such that Gy ~ G from a set of training

data {(a;,u;)};.

4.2 Related work

Frequency-based neural operators. Early advancements in operator learning exploited
spectral decompositions to encode global information efficiently. A notable example is FNO
Li et al. (2020b), which parameterizes integral kernels in the Fourier domain to enable
resolution-invariance. However, FNO does not generalize well to irregular geometries Li
et al. (2020b). Later, Geo-FNO Li et al. (2023b) was proposed to solve PDEs on general
geometries. U-FNO Wen et al. (2022) introduced architectural modifications to better cap-

ture localized details while maintaining FNO’s global properties. Meanwhile, F-FNO Tran

97

et al. (2021) generalizes the FNO architecture for more efficient spectral layers and deeper
architectures. On the other hand, neural operators based on the wavelet transform include
WNO Tripura & Chakraborty (2023), MWT Gupta et al. (2021), Padé Gupta et al. (2022),
and CMWNO Xiao et al. (2023a). Fourier and wavelet transforms are both special cases of
spectral decomposition, and neural operators based on spectral decomposition has recently

been proposed Fanaskov & Oseledets (2023).

Attention-based neural operators. Attention mechanisms have been widely studied
in neural operator domain. Some of the notable works include orthogonal attention Xiao
et al. (2023b), physics-cross-attention Wang & Wang (2024), and nonlocal attention Yu et al.
(2024). The Transformer structure is also a promising building block for neural operators.
Some of the related works include OFormer Li et al. (2022b), LSM Wu et al. (2023), and
Transolver Wu et al. (2024). However, Transformers struggle to capture kernel integral

transforms efficiently in complex, high-dimensional continuous PDEs Guibas et al. (2021).

SSM-based neural operators. To address the computational inefficiency of Transformer-
based neural operators, SSM and Mamba emerge as promising architectures for neural op-
erator designs Tiwari et al. (2025). Previous studies of SSM-based neural operators Zheng
et al. (2024); Cheng et al. (2024); Hu et al. (2024); Tiwari et al. (2025) have been applied
to nonlinear PDEs on irregular geometries and dynamical systems. These works incorporate
traditional SSMs with different scan strategies without considering the information in the
frequency domain. On the other hand, our AFMO considers the frequency information via

its explicit kernel and SSMs from a transfer function perspective Parnichkun et al. (2024).

98

3- ®
Pt .
@
27 ®
—~ 14
©
©
S
g 07
(0]
()]
©
c
Q_ _l -
_2 -
[]
-3 ®
0 50 100 150 200 250

mode k
Figure 22: Phase error of solutions predicted by LaMO.

4.3 Illustrative Examples

1-D advection PDE with high-frequency perturbation. We evaluate LaMO on a

1-D linear advection benchmark governed by
U+ cug =0 (4.3.1)

on a periodic unit interval. Initial conditions ug(z) are synthesized as smooth Fourier mix-
tures S5 ay, sin(27kx + @) with amplitudes decaying as ax ~ (1 + k)™, to which we add
a weak high-frequency spike at wavenumber ky; to probe aliasing and phase accuracy. Tra-
jectories are advanced to time 7" with a conservative first-order upwind scheme at Courant
number CFL = ¢ At/Ax < 0.5, ensuring stability while preserving sharp phase relationships;
the target is the advected field u(-,T).

Figure 22 visualizes the phase error of LaMQO’s predictions, revealing a pronounced degra-

99

dation for high-frequency modes (approximately k& € [140, 250]). This suggests that LaMO

struggles to faithfully capture phase at the upper end of the spectrum.

2-D Darcy flow equation with fractal noise. We construct a challenging 2-D Darcy
dataset by solving

V- (k(z,y)Vu(z,y)) = f(z,y) (4.3.2)
on [0, 1]* with homogeneous Dirichlet boundaries, where the permeability & is positive, highly
heterogeneous, and fractal-like. Specifically, k is generated by exponentiating a band-limited
fractional Gaussian field (small Hurst parameter for roughness) and then modulating it with
narrow channel masks and inclusions to induce strong anisotropy and high contrast. The
forcing f combines a weak background term with several randomized Gaussian sources/sinks,
which produce near-singular behavior in the solution. The variable-coefficient elliptic prob-
lem is discretized on a Cartesian grid using a flux-conservative 5-point stencil with harmonic
averaging of k, and solved to tight tolerance via conjugate gradients. For learning, each
sample is subsampled irregularly: we draw P points {(x;,y;)} and record u(z;,y;), yielding
pairs (XY, U) without exposing k or f.

To visualize and stress singular structures, we show in Figure 23 (a) and (c): (i) contours
of the potential u highlighting global flow topology, and (ii) a logarithmic map of the gradient
magnitude, log|Vu|, computed on a reconstructed dense grid via triangulation. Figure 23
shows LAMO cannot capture the singularities of v and log |Vu|. Furthermore, once the

complex singularities appear, the performance of LAMO will be affected.

4.4 Adaptive Fourier Mamba operator

4.4.1 AFMO Architecture

AFMO is a novel neural operator architecture that synergizes the mathematical groundness
of AFD theory with the efficiency of structured SSMs in the frenquency domain Gu &
Dao (2023); Parnichkun et al. (2024). Different from LaMO Tiwari et al. (2025), which

100

0.4

0.2

- 0.0

-10

-15

_ aBb

(a) Ground truth u (b) Predicted by LaMO

102
1071
10~*
1077
10710
10713

10—16

10719

(¢) Ground truth log |Vu] (d) Predicted by LaMO

Figure 23: The predicted results produced by LaMO compared to the ground truth.

101

compresses the physical tokens into a fixed-size latent representation, AFMO utilizes a multi-
layer fully-connected feedforward neural network (MLP) to first map the encoded tokens to
their counterparts on the reproducing kernel Hilbert space (RKHS), and then iteratively
refine them by a series of processing blocks. Each block uniquely integrates two components:
(i) a TM layer containing global spectral transform via data-dependent TM bases, and (ii) a
bidirectional SSM Gu et al. (2021); Gu & Dao (2023) parameterized by transfer functions in
the frequency domain Parnichkun et al. (2024) to efficiently capture long-range dependencies

within the RKHS.

Neural architecture. Given the parameter function (input) a, the output of AFMO,

denoted as iy, is:
Uno = Gpla) = (Q oSNoLNo-- 0S8 oL oRo 73) (a), (4.4.1)

where o is the function composition, /N is the number of processing blocks, P is the lifting
operator which encodes into a lower-dimensional space (maps the input to the first latent
representation zo) Tiwari et al. (2025); Li et al. (2020b), Q is the corresponding projection
operator mapping the lower-dimensional space back to the original space (maps the final
latent representation zyy1 to the output) Tiwari et al. (2025); Li et al. (2020b), R is a
multi-layer neural network mapping the physical token to an RKHS, £! = SSM’ o TM’ (i =
1,..., N) is the processing block of AFMO (which consists of a TM layer and a bidirectional
SSM), and §* (i = 1,..., N) are aggregation layers with skip connections. These aggregation
layers not only receive the final output from the layer sequence but also have access to the

intermediate outputs from each of the preceding layers.

The lifting operator, 7P, projects the N, physical token inputs into a compressed set
of M encoded tokens, where M < N,. This projection is achieved via a cross-attention
mechanism. A learnable query array, L € RM*Pembed - acts as the query. The key and value

pairs are constructed by combining a linear projection of the input features xpnys with a

102

positional embedding of their coordinates gpuys generated by a positional encoding network
PEN. Here, Xy € RY*Pin stacks the feature vectors {x;}2°, and gpnys € RV stacks
the coordinates {g;}~*,, and the physical token is essentially pair (g;,x;). The process for

generating the initial representation z, is formally defined as:

kv = Linear(Xpnys) + PEN(8phys),
zy; = CrossAttn(query = L, key = kv, value = kv), (4.4.2)
zo = 7y + FFN(z),

where the output of the cross-attention module is processed through a residual connection

and a standard feed-forward network FFN.

The mapping operator, denoted by R, acts on the encoded representation produced by
the lifting operator P, which transforms this discrete encoded tokens into a representation
within a continuous function space. Let zy € RM*Pembed he the set of encoded tokens
generated by P, the operator R : RM*Pembed 3 H maps this representation to its counterpart
in an RKHS H. This mapping is typically implemented as a multi-layer fully-connected

feedforward network MLP, which processes each token independently as:
7y = R(Zo) = MLP(Z()), (443)

where z; denotes the projected tokens in the RKHS. We remark that, the mapping operator
R maps the encoded tokens zy to the new tokens z; in H without knowing the physical

information Xphys and gphys-

The TM layer, denoted by TM’ (i = 1,...,N), performs a global convolution via a
spectral transform, where the reproducing kernels and TM bases are constructed from data-
dependent poles. To define the reproducing kernels, we parameterize a small MLP to predict
a set of ¢ complex values called “poles” {ay}i_, (denoted as a;;) located in the unit disk

D ={z € C:|z| < 1} from tokens z;. Once we have the set of poles, we can explicitly define

103

the reproducing kernel K,(z) as:
Kq(z) = : (4.4.4)

where z € H and a is a single pole satisfying |a| < 1. Intuitively, we remark that each pole
can be viewed as a “tuning knob” that selects a particular spatial pattern in the solution,
with its location in the complex plane controlling how localized that pattern is. Adaptive
poles allow AFMO to survey more heavily in regions where the parameters change rapidly,
while using fewer poles in smooth regions. Across layers, the poles evolve from broad, coarse
patterns in early layers to more refined, problem-specific patterns in deeper layers.

To generalize on irregular geometries, the kernels in Equation 4.4.4 need to be modified
to become orthonormal. These modified kernels are also known as the TM bases due to their

deep connection to TM systems. The first basis, denoted as 4, is simply the normalized

V/1-la1]? V/1-]az|?

l—aiz ° l—azz ’

kernel of Equation 4.4.4 with pole a; as %(z;a1) = Then, we start with

but it is not orthogonal to %,. We reach the orthogonality by subtracting its projection

1—azz l—a1z

A/1— 2
onto #Ay, and we get HBs(z;a1.9) = 1~ laz| (—) after normalization. This way, the bases

AB; are finally formulated as:

VI P 5 2 —a;
PBi(z;a1.)] (4.4.5)

= P A
1 —a;z ey 1—ajz

where z € H and ay,; are poles learned by the small MLP satisfying |ax| < 1 for k =1,... 1.
Overall, the i-th TM layer TM* applies a small MLP z; — a,;, and then construct the TM
bases %; according to 4.4.5. We remark that, the tokens z; will be kept as the input of SSM’

along with the TM bases %,;.

Bidirectional SSM block is effective in solving PDEs on irregular geometries Tiwari et al.
(2025) and employs inherent kernel integrals. However, this inherent kernel does not contain
information in the frequency domain, thereby falling short in capturing high-frequency and
singular features. To address this limitation, we utilize the transfer function in training

SSMs in the frequency domain Parnichkun et al. (2024). The SSM block SSM* generates the

104

spectrum of output in the frequency domain Y;(e™) as the product of the spectrum of input
Z(e™) and the transfer function H;(e™), i.e., Z(e™)H;(e™). We point out that the output
is essentially the coefficient of discrete AFD operation with the form (z;, %;) Qian (2010);
Qian et al. (2011), where the inner product is defined as (z, f) = % Zf;olx[n]f(ei%"/ﬁ).
Here, N denotes the length of signal & = {z[n] ,]3:_01.
Let us consider the impulse response h; of SSM block SSM” (linear time-invariant system)
as:
1 2w)
hiln] = — B (€5 a1,;)e™" dw. (4.4.6)
21 Jo

Then, the corresponding transfer function H; can be obtained as:
Hi(ei”) = %1 (eiw; am). (447)

By setting the transfer function of SSM to be Equation 4.4.7, the SSM block computes

a correlation of the input z; and %;:
Yi(e“) = Hy(e™) X (™) = Bi(e; ar.;) X (™) (4.4.8)

in the frequency domain. In the time domain, Equation 4.4.8 leads to the update of z;:

giaa]l] = (hi % z)[l] = Z_ 2:[n) B, (27 =0/ g, (4.4.9)

n=0

where ¢ denotes the time shift in the correlation operations. The zero-lag sample gives the

final output:

<
L

ii+1[0] = (hz * Zl)[O] = zi[n]%,- <€i2wn/M; al;i) = <Zi7 %» (4410)

n

Il
o

Aggregation layers S° has N neural layers and combines the skip connection z; with the

intermediate outputs z;;1[0] = £(z;) and %; = TM'(z;):
2y = 8'(21,22[0], $1) = 22[0) © By for i =1,
(4.4.11)
Ziy1 = Si(Zi, 214_1[0], @1) =27 + (ii—&—l[o] ® %z) for i > 1,

where ® denotes the element-wise (Hadamard) product.

105

Output. Finally, the output of @y g is the projection of zx;1 by the local transformation

Q as Li et al. (2020b):

N+1 /M-1
lng = Q (Z (Z 2:[n) B; (ei2m/M; am)> ® %-) . (4.4.12)

i=1 n=0

4.5 Properties of AFMO

Connections to AFD theory. Adaptive Fourier decomposition (AFD) is a novel signal
decomposition technique that leverages the Takenaka-Malmquist system and adaptive or-
thogonal bases Qian (2010); Qian et al. (2012). It admits a proved convergence of any signal
s € H such that s = >"° (s, %;)%; Qian et al. (2011); Wang et al. (2022) for the chosen or-
thonormal bases %; Saitoh et al. (2016). Thus, the output of Equation 4.4.11 z;, 1, is equiva-
lent to the AFD operation, i.e., zj,1 = ZZ:l(Zk? PBy.) By Furthermore, the output in Equa-
tion 4.4.12 can be approximated as uyy = Q (ZZILJ{l(zl,,%’,),%’Z) ~ Z?g{l@i—w,%ﬂ@i
where ;19 = Q(z;). This is also equivalent to the AFD operation. Thus, several theoret-
ical properties of AFMO, including convergence and error bound (see theorems and proofs
in Section 4.6), can be guaranteed with efficiently large layers, thanks to AFMO’s deep

connections with AFD theory.

Connections to Parnichkun et al. (2024). Parnichkun et al. (2024) proposed a state-
free inference of SSMs by learning the coefficients of the rational transfer function H instead
of the traditional state-space matrices A, B, and C' Gu & Dao (2023), which is called rational

transfer function (RTF) approach. Specifically, the RTF learns H as:

bizt+ bz 2+ 4 bz

H(z)=h
(2) = ho l+az7t4az 2+ 4+ a,z™"

: (4.5.1)

where a;, b;, and hg are denominator coefficients, numerator coefficients, and feedthrough
term, respectively. When it comes to AFMO, we push the formulation of transfer function

in Equation 4.4.7 and learn the rational transfer function by learning the poles a;., (for n

106

terms). Next, we show that our way of learning poles leads to a similar form of Equation
4.5.1 with n learned parameters (poles) as opposed to learning 2n + 1 parameters in RTF.

We consider a (finite) Blaschke product

n

1—piz
H(z) = Hz——]’ p;l <1, (4.5.2)
j=1 p;

and convert it into a single ratio of polynomials whose coefficients match the parameterization

used to train SSMs. Denote numerator and denominator polynomials

n n

Byoy(2) = [[(z=11), Apay(2) = [](1 —p;2), (4.5.3)

j=1 j=1
so that H(z) = %. Let d = deg Bpoly = deg Aoy = n. To obtain the form with a
unit constant term in the denominator, divide numerator and denominator by 2z and then
normalize:
d K d d
H(z) = ggzz Z:j_k normal”e, hy + ;b—fz_k/ (1 + ;akz_k>. (4.5.4)

The SSM coefficients are then reduced as:

% _ Bk

Example (n =2). With py, ps € C, expand
Bpoiy(2) = (2 = p1) (2 = p2) = 2% = (pr+p2)z + pipa,

Apoy(2) = (1 —p12)(1 = paz) = 1 — (p1+p2)z + (p1p2)22.

Divide by 2% to get polynomials in z~*

and normalize by the denominator’s constant term
(Bo = p1p2), yielding

L— (pi4p2)z '+ (mp2)z™? ho+biz7! 4 byz?

H(z) =

p1p2 — (p14p2)z=t + 272 14 az +agz?’
with
1 1
he = ——. blz—p1+p2, by = 1, a1:—p1+p2, Gy = .
P1pP2 P1pP2 P1P2 P1P2

107

Efficient computation for large n. Direct symbolic expansion scales poorly. Instead,
we multiply degree-1 polynomials using FFT-based convolution. Represent each factor by

its coeflicient vector:

(z—p;) < [L—pl, (A—=pz) < [1, —pj,
and iteratively convolve to form B, and A,qy. By the convolution theorem, polynomial
multiplication is element-wise in the frequency domain, giving O(dlogd) complexity. After
both polynomials are assembled, convert to z~! by dividing by 2%, then normalize by the

denominator’s constant term to obtain (hg, {ax}, {bx}) as in 4.5.4.

Computational complexity. In terms of computational complexity, AFMO has an over-
all computational complexity of O(N(M log M + M D)) + O(N;M D). The former is from
the processing block, whereas the latter comes from P and Q. When M is treated as
a constant with M <« N, and a local decoder is used, the dominant cost reduces to
O(NsD) + O(N M log M). Consequently, the complexity grows linearly with the number
of mesh points N,. With mesh size fixed, it is approximately linear in the number of latent

tokens M and the number of blocks N.

4.6 Theoretical Results of AFMO

Basic settings. Let D = {z € C: |z| < 1}. Consider a reproducing kernel Hilbert space

(RKHS) (H, (-,)%) of complex-valued functions on DD with the following properties.

Assumption 4.6.1 There is a family of normalized reproducing kernels {e, : a € D} C H

such that

eq(z) = V1= laP €H, (frea)n = fla)\/1—1a]> VfeH, aeD. (4.6.1)

1—az
Given a pole sequence ay..o = (a1, as,...) C D, define the Takenaka—Malmquist (TM) system

by
z—aj

s (i >2). (4.6.2)

108

Assume {9, }i>1 is an orthonormal system in H, and its closed linear span equals the model
space

Kp:=span{%;: i>1} CH, (4.6.3)

where B is the Blaschke product with zeros {a;}.

AFMO notation. Let s € H be the latent target representation and u* = Q(s), where
Q : H — U is a Lipschitz decoder with constant Lg. Define the ideal TM coefficients and

partial sums
N

cr = (s, B, SN 1= Zcf B (4.6.4)

=1

AFMO learns estimates ¢; of ¢f (via an SSM in the frequency domain) and aggregates them

through the skip connection:

Zi+1 ‘= % —F/C\“@“ Z1 = 0. (465)

4.6.1 Aggregation identity and frequency-domain coefficient extraction

Lemma 4.6.1 Under 4.6.5, one has, for every N € N,

N
o1 =Y G B (4.6.6)
=1

Proof. The proof is by induction. For N = 1, 2z = 21 + 1%, = 1%, s0 4.6.6 holds. Assume
4.6.6 holds for N, i.e., zyy1 = Zf\ila %;. Then

N+1
INt+2 = ZN4+1 + CNp1 BN = ¢ Bi
i1

which establishes the claim for N + 1. [|

Lemma 4.6.2 Suppose the i-th SSM has transfer function

H;(e"™) = Bi(ew), (4.6.7)

109

so that the block multiplies the input spectrum by %B; and outputs the zero-lag correlation. If
the discrete inner product used by AFMO is a consistent quadrature for (-,-)3 on the class

{s} U{A}, then
¢ — (s, Bi)yn = ¢; as the quadrature is refined. (4.6.8)

Proof. By 4.6.7, the block forms (pointwise on the grid) Y; = %, - s in the transform do-
main; the zero-lag correlation is the discretized inner product (s, %;)aisc. Consistency of the

quadrature implies (s, B;)aisc — (S, Bi)n as the grid is refined. Hence ¢; — ¢F. [|

4.6.2 Convergence in the model space and projection error

Theorem 4.6.1 Under Assumption 4.6.1, if AFMO recovers the exact coefficients ¢; =
<Sv=@i>7{7 then
N
* H
S ;_2(;2.% —— Hg,s, (4.6.9)

the orthogonal projection of s onto Kg. Consequently,
HU* — Q(SN)” S LQ HS — HKBSHH + LQ HHKBS — SNHH m LQ diSt(S, KB) (4610)

Proof. Because {Z;} is an orthonormal basis (ONB) of Kp, the Fourier expansion of IIx s
in this ONB has coefficients (s, %;)3, and the N-th partial sum equals sy. Convergence in
norm to the projection is standard for orthogonal series in a Hilbert space, giving 4.6.9. The

bound 4.6.10 follows from Lipschitz continuity of Q:

lu* = Qs = 1Q(s) — Qsw)ll < Lolls — swll < Lo (lls — ksl + 1Mx,s — swll).-
m

Remark 4.6.1 No greedy or maximal selection is used. The MLP-generated poles determine

Kp; AFMO converges to llk,s, and to s whenever s € Kp.

110

4.6.3 Best N-term error and rates without greedy selection

Definition 4.6.1 Let D := {%;(-;a1) : ay; € D', i € N} be the TM dictionary. Define the
best N-term error

En(s) := inf Hs—ch (45 a14) (4.6.11)

a1:N,C1:N

Theorem 4.6.2 Let ay.y be the poles output by the MLP and set ¢; = (s, B;(+;a1.4))n- If
AFMO learns ¢;, then

N 1
HS—ZQ (i) < Bw(s) + AplN) + (Y Ja - i)', (4.6.12)
i=1
where
Apoie(N) := inf Hs — ZCZ i(a14)]| — En(s) >0. (4.6.13)
C1:N

Proof. Choose ab%t, bt that attain (or e-attain) Ey(s) and denote

best . best best
E ;S Bi(+alsh).

Then
N
S—ch i) || < Ils — syt + || sy 2093 v || 4 | (cF —) Bl an)
=1
N 12
< Ex(9) + Do N) + (D |et — &)
=1

The last inequality uses the definition of A,ee(N) and orthonormality of {%;(+;d1.)}Y,. W

Corollary 4.6.1 Assume for the fivred ML P-produced poles ay.; that the exact TM coefficients
satisfy the weak-f? decay
Glr<citP 0<p<2,

where (|c;|*) is the nonincreasing rearrangement. Then

N

- Z C; %)z(, dl;i) »

=1

— O(N:77). (4.6.14)

C1:N

If, in addition, Appe(N) = o(1) and (vazl le; — cﬂ2)1/2 = o(1), then the AFMO error in
4.6.12 is O(N=77).

111

Proof. For an orthonormal system, the best N-term error equals the ¢2 tail of the rearranged
coefficients. With |¢f[* < Ci~'/? and p < 2,

D (Gl <y i = o(N'H),

i>N i>N

hence the norm error (square root) is O(N %_%). |

4.6.4 Learning and discretization errors

Assumption 4.6.2 Fach ¢; is obtained by ERM over m i.i.d. frequency samples using a

hypothesis class with effective capacity dog under sub-Gaussian noise, so that

E[c —cf] = (9(%ﬂ) (4.6.15)
Lemma 4.6.3 Let (-,-) 5 be a discrete inner product (e.g., uniform frequency grid) that is
a consistent quadrature for (-,-)3 on the class generated by {s} U {%B;}. Then there exists

5disc(]\7) 1 0 such that

(g — (9) 5] < cae(N) for all f € {s}, g € {Bi}iz1. (4.6.16)

Proof. Since point evaluations are continuous linear functionals in an RKHS and the involved
functions are continuous on compact subsets, standard quadrature consistency yields 4.6.16.
(If f, g are analytic in an annulus around the unit circle, one gets exponential rates; under

Sobolev regularity, algebraic rates.) |

Theorem 4.6.3 Under Assumptions 4.6.1 and 4.6.2 and Lemma 4.6.3, the AFMO output

after N blocks and N grid points satisfies
N

R 1/2 -
o —iwoll < Lo(Bn(s) + ApuaeN) + ([= i)) +), (46.17)

i=1
with E[|¢; — ¢¢|] = O(y/deg/m) and egise(N) — 0 as N — co.
Proof. Apply Theorem 4.6.2 to bound the latent H-error. Then use Lipschitz continuity of

Q to transfer the bound to the output space. The discretization error adds €4;s.(/V) due to

4.6.16. |

112

4.6.5 Stability to pole perturbations

Lemma 4.6.4 Fora,b e D and z € D,

1 1 la — b

L , 4.6.18

’1—@ =5 = T D~) (46.18)

‘ T [a? — /T~ [0 la — bl (4.6.19)

\/1 — max{|al, [b]}2’
and for F(z;a) = 1Z —_a ,
—az
4la —
|F(z;a) — F(z;0)] < la —] |F(z;a) < 1. (4.6.20)

(1= la[)(1 = [o])’

Proof. For 4.6.18,
1 1 (@—b)z

1—-az 1-bz (1—az)(l-be)

and |1 —az| > 1—|a||z| > 1—]al, |2| < 1, yielding the bound. For 4.6.19, use the mean-value
theorem on x +— /1 — z with x = |al?, |b|? and ||a|® — |0|?|] < |a — b|(|a| + |b]) < 2|a — b|. For

4.6.20, expand
(b—a)+ (@—b)2> + (ab—ba)z
(1 —az)(1 —bz)

and bound the numerator by Cla — b| for |z| < 1, while the denominator is bounded below

by (1 — lal)(1 — [b]). u

F(z;a) — F(z;b) =

Y

Theorem 4.6.4 Let ay,,a1,; € D with |a; — a;| < ;. Then there exist constants C; > 0

(depending on ay.;) such that

. : 0;
|%i(; a14) — Bi(sar)|ln < C 1 2 (4.6.21)
= 1= layl
Consequently, for any coefficients ¢;,
N N N
—~ 0
HZC (i) =Y e Aan)| < (Y [6IG) (Zl_fw). (4.6.22)
i=1 i=1 j=1 J

Proof. Write
i1
alz = HF a] e@z(,dlz) :G&iHF(';EL])
j=1

113

Use the product telescoping identity

]i[Pk_li[Qk :i (HR?)(Rc‘Qk)(HQj)a

with P, = e;,, Q1 = €q,, and P, = F(+;a5-1), Qr = F(-;ar_1) for kK > 2. Taking sup-norms

on D and using |F'(-;a)| <1,

| B (- a1.4) — B+ 014) |0 < l€a; — €a,

i—1
o+ D _IIF(5) = F(505)|oo-
j=1

Apply Lemma 4.6.4 to bound each term by a constant times 6;/(1 — |a;|). Since evaluation
functionals are continuous and the kernel is bounded on compact subsets, there exists an
embedding constant Cepp, with ||]|z < Cempl| f||oo on the set considered; thus 4.6.21 follows

with C; absorbing all constants. Finally,

HZ@ sina) = A5 |, <Z|cz|||@ 1) — B ans)

giving 4.6.22. |

4.6.6 End-to-end convergence without greedy selection

Theorem 4.6.5 Assume:

1. s € KB;.
2. S E[lei — ¢;]AY? < oo (as sample size m — oo and model capacity increase);
3. 5disc(]\7) —0as N — co.

Then

lim ||u* — dnel = 0.
N—ro00

Proof. Since s € Kp and {%4;} is an ONB of Kpg, Theorem 4.6.1 gives sy — s in H. In
4.6.17, for this fixed pole sequence one has En(s) = Apoe(N) = 0. Using (2) and (3), we

obtain ||u* — ay | — 0. |

114

4.6.7 Connection of SSM to correlation and AFMO output

Proposition 4.6.1 With H;(e™) = %;(e™), the i-th SSM block computes ¢; = (z;, Bi)y.-
Hence, by Lemma 4.6.1, after N blocks

v =) B g = Qavn). (4.6.23)

Proof. The coefficient claim follows from Lemma 4.6.2 applied to z; in place of s. The

aggregation identity is Lemma 4.6.1. The last equality is the definition of Q. |
Corollary 4.6.2 All latent-space error bounds transfer to the PDE output space via

N
" — gl gLQHs—Za@ (V).
=1

4.7 Numerical Experiments

To illustrate the effectiveness of AFMO, we conduct numerical experiments with multiple
baseline neural operators on diverse datasets including three categories: (i) regular grids:
2-D Darcy flow equation and 2-D Navier-Stokes equation Li et al. (2020b), (ii) irregular
geometries: plasticity, airfoil, pipe, and elasticity Li et al. (2023b), (iii) PDEs with singu-
larities: Furopean option pricing under the Black-Scholes equation, and 3-D Brusselator

(reaction-diffusion) equation from Cao et al. (2024).

Metric. In the training and evaluation stage, we utilize relative L? error as the metric for

accuracy for all problems:

2 _ [1Go(a:) — G(ai)||L>
Rel-L Z || g - , (4.7.1)

|L2
where N denotes the number of samples. We also consider training time, the number of

parameters, and/or GPU memory usage as metrics for computational efficiency.

115

Implementation details. For baselines, we follow the implementation settings of their
works. Note that the architecture of FNO Li et al. (2020b) has been updated after publica-
tion, we evaluate FNO using the newest architecture. For AFMO, we train 500 epochs on
all datasets. We use AdamW optimizer with decoupled weight decay 1 x 1075, base learning
rate 2 x 1074, and a cosine decay schedule Loshchilov & Hutter (2017) with a linear warm-up
over the first 10% of total steps. The nonlinearity is GELU inside the processing blocks.
We clip global grad-norm at 0.5 each step. Unless stated otherwise, we use batch size 16,
latent width 128, 64 latent tokens, 32 adaptive poles, and 4 processing blocks with SSM
state size 16, depthwise 1-D convolution (per channel) of kernel size 4, channel expansion
ratio 2. Experiments are conducted on a Linux workstation running Ubuntu (kernel 6.14,
glibc 2.39) with Python 3.13.5 (Anaconda), PyTorch 2.8.04+-cul29 (CUDA 12.9), an AMD
Ryzen 9 9950X (16-core) processor, and a single NVIDIA GeForce RTX 4090 (48 GB) GPU.
CUDA is enabled.

4.7.1 Numerical results of benchmark datasets

Table 16 shows the comprehensive comparison with various baselines on the six benchmark
problems. Among those problems, N-S and Darcy flow datasets apply regular grids, elas-
ticity dataset uses point clouds, whereas others are generated under structured meshes Li
et al. (2020b, 2023b). AFMO consistently outperforms existing SOTA models by an average
improvement of 28.42%. In particular, for airfoil, Darcy, and N-S datasets, the relative L?
error decreased more than 30% compared to the existing SOTA models, demonstrating the
superior performance of AFMO compared to existing frequency-, transformer-, and Mamba-
based models when solving complex dynamics and handling irregular geometries. To solve
the complex dynamics, Tiwari et al. (2025) incorporates latent representations and SSMs,
which can be considered as integral kernels without orthogonality. Meanwhile, ONO Xiao
et al. (2023b) uses an orthogonal attention to ensure orthogonality. Numerical results on

irregular geometries, including elasticity (0.0050 — 0.0043), plasticity (0.0007 — 0.0006),

116

airfoil (0.0041 — 0.0020), and pipe (0.0026 — 0.0023), show that the systematic integration
of orthonormal kernels and SSMs leads to an exact AFD approximation and in turn improves

PDE solution accuracy in irregular geometries.

Table 16: Relative L? error comparisons of AFMO with baselines across six benchmark
datasets. Lower relative L? error is better. We quantify the improvement as the gain of
AFMO relative to the L? error of the second best model. Bold means the best model,
underline means the second best model, red means the third best model, and blue means

the fourth best model.

Models Elasticity Plasticity Airfoil Pipe N-S Darcy
FNO Li et al. (2020b) 0.0229 0.0074 0.0138 0.0067 0.0417 0.0052
U-FNO Wen et al. (2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183
F-FNO Tran et al. (2021) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077
LNO Wang & Wang (2024) 0.0052 0.0029 0.0051 0.0026 0.0845 0.0049
ONO Xiao et al. (2023b) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076
WMT Gupta et al. (2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082
Galerkin Cao (2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084
LSM Wu et al. (2023) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065
OFormer Li et al. (2022b) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124
Transolver Wu et al. (2024) 0.0062 0.0013 0.0053 0.0047 0.0879 0.0059
Transolver++ Luo et al. (2025) 0.0064 0.0014 0.0051 0.0027 0.1010 0.0089
LAMO Tiwari et al. (2025) 0.0050 0.0007 0.0041 0.0038 0.0460 _0.0039
AFMO (ours) 0.0043 0.0006 0.0020 0.0023 0.0278 0.0021
Improvement 14.0% 14.3% 51.2% 11.5% 33.3% 46.2%

Computational Efficiency. To explore the computational efficiency of AFMO, we focus
on Darcy and airfoil problems. On average, AFMO reaches 46.2% and 51.2% reduction in

training time over SOTA models in these two problems, as shown in Figure 24. With light

117

architectures and small GPU memory, AFMO achieves the best training speed. Compared to
the SOTA neural operator, LaMO Tiwari et al. (2025), AFMO is ~ 1.2x faster and ~ 2.5x
lighter with similar GPU memory. Instead of using orthogonal attention as in ONO Xiao
et al. (2023b), AFMO employs bases in the orthogonal form (Equation 4.4.5), which does
not require an orthogonalization process, thereby saving ~ 2.7x in training time and ~ 3x

in GPU memory compared to ONO.

Scalability. We examine the computational scalability of AFMO on 2-D Darcy flow prob-
lem. From Table 17, we observe that, as the grid dimension changes from 64 to 128 (N
becomes 4 times larger), both training and inference times increase approximately linearly
(by about 4 times), which aligns with the computational complexity result mentioned ear-
lier. The memory usage remains relatively constant with only a slight increase. This reflects
the architectural characteristics of AFMO, where the main computations (SSM blocks) are
performed on M latent tokens rather than on N, physical points, and thus the memory

footprint is largely decoupled from the input resolution Nj.

Table 17: AFMO is computationally scalable with respect to input resolution Nj.

Grid dimensions Grid size N, Training time (sec/epoch) Inference time (sec/epoch) GPU memory (GB)

64 x 64 4096 14.0 0.007 2.3
128 x 128 16384 52.5 0.28 2.4
256 x 256 65536 205.0 1.12 2.7

Learned pole distributions across layers. To understand how the adaptive poles are
selected and evolved, Figures 26 and 27 showcase the distributions per layer for 2-D Darcy
flow and 3-D Brusselator equations. The learned poles of AFMO on Darcy flow problem
tend to approach to the boundary of the unit disk, while those on the Brusselator problem
tend to be in the interior of the unit disk. The reason is that, the challenging characteristics

and singularities of the Darcy flow problem are located at the boundaries, and then more

118

adaptive poles would be put there. Meanwhile, the complexity of the Brusselator problem
does not come from the boundaries. It comes from the local, non-linear reaction that happens
at every single point inside the domain. Therefore, most of the learned poles should be put

inside the unit disk.

4.7.2 European Options Pricing

To demonstrate the versatility of AFMO in solving different PDEs in different contexts, we
consider the European calls/puts problem modeled using the Black—Scholes equation with
continuous dividend yield ¢g. For contract/market parameters (r,o,q, K,T,is_call), the

price V(S,t) satisfies the Black—Scholes equation Barles & Soner (1998):
OV +30°S%0ssV + (r —q)S sV —rV =0, S € [Smin, Smax), 1 €[0,T], (4.7.2)

with terminal payoff V(S,T) = max(£+(S — K),0) (+ sign for calls, — for puts) and the
linear boundary conditions V' (0,t) = 0 for calls, V(0,t) = Ke """ for puts, and controlled
growth as S — oo. This problem setting leads to two singular features: (i) the terminal
payoff kink at S = K (jump in dsV/, concentration in dssV') as t,om T 1; and (ii) degeneracy
near small S as a result of the S?0s5V diffusion term. Our goal is to learn the operator
that maps the parameters (r,0,q, K,T,is_call) to the price V(5,t). By comparing AFMO
with a set of top-performing solvers, we observe from Table 18 that average improvements of
25%, 4.1%, and 52.7% have been achieved by AFMO in terms of relative L? error, training
time, and parameter counts, respectively. This indicates that AFMO can accurately and

efficiently solve PDE problems with singular features.

4.7.3 Ablation studies

Adaptive kernels vs. static kernels. We now consider the need and benefits of using
adaptive kernels. A kernel is adaptive when its parameterization (e.g., coefficients) varies

with the input. In this work, the formulation of Equation 4.4.5 varies with the learned poles

119

(a) Darcy (b) Airfoil

Params Count Params Count

O 7
6O1OM

ONO

5M ONO

O
Q10M

(6} »

N

GPU Memory (GB
A o
GPU Memory (GB)

LNO
OFormer

Lg?ormer

Transolver

w

Transolver
Galerkin Galerkin

Ours' | mo 2 UL LamMO

15 20 25 30 35 30 40 50 60 70
Training Time (s/epoch) Training Time (s/epoch)

w

Figure 24: Comparisons of training time per epoch, number of parameters, and GPU mem-
ory among existing SOTA models on (a) Darcy and (b) airfoil, where AFMO exhibits the

strongest incremental gains.

a1; and thus is an adaptive kernel. We also randomly fix the value of a;.; for static kernels
for comparison. Furthermore, although a total of ¢ poles are needed for i-th processing block,
one can still identify more poles and select the best ¢ poles for implementation. Table 19
shows the relative L? error results across six benchmark datasets and the European options
(EO) dataset. We find that, using adaptive kernels, the relative L? errors reduce significantly
compared to using static poles for all benchmark problems considered. In fact, the relative

L? errors when selecting only 4 poles are lower than those when selecting 32 static poles.

Need for ensuring orthogonality. To understand how orthogonal kernels affect AFMO
performance, we conduct another ablation study by using non-orthogonal kernels (i.e., Equa-

tion 4.4.4) in the AFMO framework. In this case, the transfer functions used in SSMs are

H;(e™) = (1 — |a;|?) >°27 1 (@;)™e™ to match the output of AFD operation. Without orthog-
onality, AFMO experiences higher relative L? error, especially for problems with irregular
geometries (e.g., airfoil 0.0020 — 0.0083 and elasticity 0.0043 — 0.0094). At the same time,

the training time also increases by ~ 50.3% per epoch on average across all six benchmark

120

Table 18: European option pricing: relative L? error and resource profile. Lower is better
for error, GPU memory, and training time. Parameter counts shown in millions. Bold =

best, underline = second best, and red = third best.

Models Rel. L% (|) | Training Time (sec/epoch, |) | Params (M, |)
FNO Li et al. (2020b) 0.0016 25.1 3.78
LNO Wang & Wang (2024) 0.0010 21.7 2.56
Transolver Wu et al. (2024) 0.0012 22.3 5.91
LAMO Tiwari et al. (2025) 0.0008 22.5 3.52
AFMO (ours) 0.0006 20.8 1.21

Table 19: Relative L? error comparisons for Static vs. Adaptive kernels across seven bench-

marks. Lower is better.

Models Number of poles | Elasticity Plasticity Airfoil Pipe N-S Darcy EO

AFMO (static) 32 0.0097 0.0021 0.0067 0.0072 0.1103 0.0174 0.0035
4 0.0056 0.0012 0.0033 0.0029 0.0311 0.0057 0.0014
6 0.0051 0.0010 0.0031 0.0027 0.0298 0.0047 0.0010
8 0.0049 0.0008 0.0027 0.0025 0.0281 0.0036 0.0009

AFMO (adaptive) 16 0.0046 0.0008 0.0023 0.0028 0.0290 0.0029 0.0008
32 0.0043 0.0006 0.0020 0.0023 0.0278 0.0021 0.0006
64 0.0048 0.0007 0.0036 0.0031 0.0372 0.0046 0.0009

121

datasets. This shows that the use of orthogonal kernels (i.e., TM systems) helps improve

both accuracy and computational efficiency of AFMO solver.

Choice of SSMs. Finally, we evaluate the choice of bidirectional SSMs in AFMO com-
pared to unidirectional SSMs and multidirectional SSMs. Results in Figure 25 indicate that
the choice of bidirectional SSMs in AFMO consistently outperforms other two SSMs in all

datasets.

-1 1.0e-01

10 B Unidirectional SSMs
I Bidirectional SSMs
I Multidirectional SSMs

-2 96e-03 9.7e-03
7.66-03

10 7.86-03
34 5.1e-03 4.9e-03
3e-
1.86-03 Oc- z
1.2e-03
-3
Oe-

E\as\.\c'\"ﬂ?\3‘5"'\0\"S P\\(‘o\\ ?\oe ﬁ‘s Oa(CN EO

8.8e-03

2.1e-03
1.5e-03

Relative L2 Error

Oe-

Dataset

Figure 25: Contribution of three SSMs across seven benchmark datasets. Note that we do

not apply weights shared for all experiments. Lower is better.

4.7.4 Experiment using real-world noisy dataset

To validate AFMO’s performance on noisy real-world datasets, we perform experiments us-
ing the latex glove DIC (Digital Image Correlation) original dataset You et al. (2022). The
goal is to learn the mechanical response of a nitrile glove sample directly from experimental
data, without assuming a known constitutive law. The goal is to predict the displacement
field at the current loading step. The input includes the spatial coordinates, the displace-

ment field from the previous step, and the current boundary displacement. We compare

122

the performance of AFMO to the current SOTA of this dataset, IFNO, as well as FNO as
follows. To ensure fair comparison, we conduct experiments using the same settings as IFNO

with the number of hidden layers ranging from 3 to 12.

Table 20: Relative L? error of AFMO and other baselines using the latex glove DIC (Digital

Image Correlation) original dataset.

Number of hidden layers AFMO IFNO FNO
3 2.87E-02 + 4.29E-04 3.43E-02 4+ 4.96E-04 3.40E-02 £+ 4.09E-04
6 2.50E-02 &+ 3.28E-04 3.34E-02 4+ 4.53E-04 3.84E-02 £+ 4.21E-04
12 2.32E-02 + 4.20E-04 3.32E-02 4+ 4.41E-04 4.66E-02 £+ 1.47E-03

In addition, You et al. (2022) also reported the results of generalized Mooney-Rivlin (GMR)
model in two settings. The relative L? errors of GMR model fitting and GMR inverse anal-
ysis are 3.30E-01 and 2.91E-01, respectively. We can observe that our AFMO consistently
outperforms other models in every L. Finally, the best reported result of IFNO is 3.30E-02
+ 4.63E-04 when L = 24 You et al. (2022). Although we do not conduct the experiment

L =24, our AFMO still performs better than the best result of IFNO.

3-D Brusselator problem. We introduce a new 3-D Brusselator (diffusion-reaction equa-
tion) problem using the dataset from Laplace neural operator (LNO) Cao et al. (2024). The

Brusselator problem is formulated as:

%y . Oy
D% +ky? = 5 = f(a.1), (4.7.3)

where y(z,t) represents the concentration of chemical substances or particles at location x
and time ¢, f(z,t) is the source term and A is the amplitude of the source term. In this

problem, the diffusion coefficient, D = 0.01, and the reaction rate, k = 0.01.

123

1.00 4 e Layer
e T @ layerl
K 2 @ ® layer2
0.75 9, @ Layer3
' ' [] Layer 4
0.50 / :
Y ®
0254 ® 3
@ :
v / ® ‘-
g 0004 ! ® '
£
= |‘ . :
-0.251 | o0 ;
~0.50 - : !
o
~0.75 - o
~1.00 B T Lo

-1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00
Real

Figure 26: Learned poles distribution for the 2-D Darcy flow equation.
4.8 Distribution of selected poles reflects problem characteristics

To understand how AFMO’s pole selection process is adaptive to the characteristics and
nature of the problem, we illustrate the learned pole distributions for the 2-D Darcy flow
problem and 3-D Brusselator problem in Figures 26. To clarify, here we give a brief overview
of the visualization results: The distribution of selected poles for the 2-D Darcy flow problem
is shown in Figures 26 and 27, respectively.

We observe that, across the layers, the learned poles of AFMO on Darcy flow problem
tend to approach to the boundary of the unit disk, while those on the Brusselator problem

tend to be in the interior of the unit disk. The reason is that, Darcy flow problem is an

124

Image

1.00 - Layer
@ Layer1 (All Heads)
@ Layer 2 (All Heads)
0.75 A) N () Layer 3 (All Heads)
Layer 4 (All Heads)
0.50
0254 / \
0.004 |
-0.254
_0l50 i \\\\ ‘/’l
~0.75 1
~1.00 1 B

-1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00
Real

Figure 27: Learned poles distribution for the 3-D Brusselator equation.

125

elliptic equation, which is a smoothing operator. Thus, even though the input coefficient
(the permeability) is very rough and discontinuous, the solution inside the domain will be
well-behaved. Therefore, the challenging characteristics and singularities of the Darcy flow
problem are located at the boundaries, and then more adaptive poles would be put there.
Meanwhile, the complexity of the Brusselator problem does not come from the boundaries.
It comes from the local, non-linear reaction that happens at every single point inside the

domain. Therefore, most of the learned poles should be put inside the unit disk.

126

CHAPTER V

INVERSE PROBLEMS IN BANACH SPACE

5.1 Preliminaries

5.1.1 Inverse problem in Hilbert vs. Banach spaces

A Hilbert space is a complete inner product space (i.e., a vector space equipped with an
inner product that induces a norm), and every Cauchy sequence in the space converges with
respect to this norm. The interpretability given by the inner product has enabled rigorous
convergence analysis and comprehensive application regularization techniques to be applied
for solving inverse problems in Hilbert spaces over the last decades. However, for numerous
inverse problems in PDEs, the reasons for using a Hilbert space setting seem to be based on
conventions rather than an appropriate and realistic model choice. In fact, it has been shown
that the nature of Hilbert spaces cannot accurately capture the structures of parameter space
for many PDEs, and often a Banach space setting would be closer to reality Schuster et al.
(2012). As a generalization of the Hilbert space, a Banach space is a complete normed
vector space (i.e., a vector space equipped with a norm such that every Cauchy sequence
in the space converges with respect to this norm), and the main difference between Hilbert
and Banach spaces is the existence of an inner product and thus orthogonality. Banach
spaces are more suitable for solving inverse problems involving sparsity, discontinuities, or

measure-valued representations.

127

5.1.2 Adaptive Fourier decomposition (AFD)

Adaptive Fourier decomposition (AFD) is a novel signal decomposition technique, which
is essentially established as a new approximation theorem in a reproducing kernel Hilbert
space (RKHS) sparsely in a given domain Q as >~ (s, %;)%; for the chosen orthonormal
bases #; Qian (2010); Qian et al. (2012); Saitoh et al. (2016). Compared to conventional
signal decomposition approaches, AFD achieves higher accuracy and significant computa-
tional speedup. AFD was first proposed for the Hardy space Qian (2010); Qian et al. (2011,
2012), then extended to the Bergman space Wu et al. (2022), random signals Qian (2022),
and manifolds Song & Sun (2022).

For classic AFD in RKHS, the sparse bases {%;}; are made orthonormal to each other
by applying the Gram-Schmidt orthogonalization process to the normalized reproducing
kernels associated with different “poles”, which are a set of complex numbers {a;}; that
are adaptively selected. For instance, in classic AFD in Hardy space H? (a specific type of
Hilbert space consisting of holomorphic functions defined on the unit disk), a common choice

_ V1P

of reproducing kernel is the normalized Szegé kernel, defined as e,(z) = Y5——, where a

belongs to the unit disk. Then, to construct the orthonormal bases %;, one selects a sequence
of distinct poles {a;};, substitutes them into the normalized Szegd kernel expression, and
applies the Gram-Schmidt orthogonalization process on e, (2).

To adaptively select the sequence of poles such that convergence of AFD approximation
is ensured, one shall follow the so-called “maximal selection principle” Song & Sun
(2022), such that the resulting |(s, %;)| is as large as possible. This is similar to a greedy

search algorithm. Specifically, to select the next pole a; given i — 1 already selected poles,

ai,...,a;—1 (hence bases %,...,%;_1), the corresponding orthonormal basis %; needs to
satisfy:
(s, B:)| > pisup {(s, B b € W\ {ay,... ,ai-1}}, (5.1.1)
i—1 BNB-
< 9, b _ ko, bi _ ko, =3 =1 (ko;) B . _-
where 0 < po < p; < 1, H Tl and %; o5 (o ol e Here, kp, is

128

the reproducing kernel at b;. Under the under maximal selection principle, the convergence
of AFD approximation has been proven in Song & Sun (2022). In actual implementation,
however, we often want to strengthen Equation (5.1.1) by introducing an extra bias term
denoted as 7; > 0 to enhance convergence. Essentially, this ensures that |(s, %;)| is always
greater than the RHS of Equation (5.1.1) by at least 7;. And the resulting updated maximal

selection principle formulation becomes:
vi < (s, %;)| — pisup {(8,%f’> |b; € Q\{ay, ... ,ai_l}} . (5.1.2)

5.2 AFD in reproducing kernel Banach space (RKBS)

The classic AFD, which operates on RKHS, leverages orthonormal bases. On the other hand,
one cannot properly define orthogonality and inner product in a Banach space. Instead, we
extend the inner product definition by adopting the concept of “dual pairing”, denoted
as (-,-)pp- for the primal RKBS B and its dual B*. Essentially, a dual pairing is a non-
degenerate bilinear map between two vector spaces that produces a scalar Brezis & Brézis

(2011). With this, we will adaptively identify poles following a similar maximal selection

principle, such that |[(r;_1, J(%;))ss-| is as large as possible. Here, r;_; = s — s, is the
residual between the true signal s and its (i — 1)-th decomposed component, s; 1. And J is
called duality map, which satisfies J(%;) € B* and (%, J(%;))s.5- = ||%i]|%. Specifically,

to select the next pole a;, the corresponding basis %; needs to satisfy:

vi < [ric1, J(%:)) B+

~ pr sup {|lries, H(B} (521
B €D

which is analogous to Equation (5.1.2). In actual implementation, we find that setting ~; to a
fixed value of 0.5 works well for most problem settings. Here, we define set D = {%;|a; € B}
(note that we no longer need to exclude already selected poles as the concept of orthogonality
does not hold in RKBS anymore), v; is the bias term, and 0 < py < p; < 1. With this, the

AFD operations in RKBS give s = > % (ri1, J(%:))s5-%B;. We remark that, to the best

129

of our knowledge, such generalization of the AFD theory to Banach spaces has not been

proposed before.

Mathematical Properties of AFD in RKBS

The AFD operations in RKBS are conceptually illustrated in Algorithm 1. Note that

here, we do not yet consider the bias term ~;.

Algorithm 1 AFD in RKBS

Require: Target function .., dictionary D, duality map J, parameter p;, tolerance e,

maximum levels of decomposition N
1: Initialize: ag < 0, 79 Qrue
2: fori=1to N do
3: Kernel selection:

4: Choose %; € D such that

|<7’z’—1, %z’>8,8*

> p; sup |(ri—1, B) s
PBeD

5: Coefficient selection:

6: Compute a; < (ri_1, J(%;))p.5*
7. Update:

8 ;& apo1 + a; B,

9 T 4 Qgrue — Q

10: if ||r;]] < e then

11: break
12: end if
13: end for

Here, we assume the following assumption holds. Especially, Assumption 3 is the property

(I') from Ganichev & Kalton (2009).

130

1. B is a uniformly smooth and uniformly convex Banach space of functions on a domain

), with dual space B*.

2. D is defined as {ZA,,|a; € B}, where %4,,(-) = % with poles a;. The linear span

of D is dense in B.

3. There exists C' > 0 such that for all z € B with ||z|z = 1 and y € B with (y, J(z))z5 =

0, we have (y, J(z +y))pp < Cllz+yls—1).
With these assumptions, we first show that the residual r; is decreasing with respect to :

Theorem 5.2.1 At each iteration i > 1, it holds that:

Irslls < [|ri-1lls,
unless (J(ri_1), Bi)pp- = 0.

Proof. Define ¢(a) = ||ri_y — a%;||s. From Assumption 1, the uniform convexity of B
ensures 95 is strictly convex with a unique minimizer. Moreover, qg is Gateaux differentiable

in terms of its norm due to the uniform smoothness of B. Its directional derivative 1is

R(J(ri—1),h) B,5*

PP Now, we aim to find a direction h based on %; that

Ly +thlg| =

t=0
. _ {J(ri—1),%i)B,B*
decreases the norm, i.e., ®(J(r;_1), h)pp- < 0. From , we choose h = ERts oeyw Ay then

(J(ri—1), '%i>B,B*
[(J(ri1), %i>l’>’,8*

(J(rii1), BB s | . R
(J(ri_1), Bi) s (J(ri—1), Bi)s,5+) (5.2.2)

= —|<J(7“i,1), %z)B,B* :

R(J(ri1), M5 = R(J(ri-1), —

B;) BB~

= —R(

If (J(ri_1), Bi)ps- # 0, the results of Equation (5.2.2) is negative. So, ¢(t) < $(0) for t > 0.

Strict convexity then implies ¢(a;) < ¢(0) if a; # 0, hence ||r;||z < ||riz1|5. |
Then, the convergence of AFD in RKBS can be shown as:

Theorem 5.2.2 The sequence {c;}Y | generated by Algorithm 1 satisfies:

lim ||agge — 4lls = 0.
71— 00

131

Proof. From Theorem 5.2.1, the sequence {||r;||z} is nonincreasing and its lower bound is
0. Thus, the sequence {||r;||g} converges. Assume its limit [> 0 for contradiction. Uniform
convexity from Assumption 1 implies the bounded {r;} has weak limit points 7’ with ||r'||z <[

by weak lower semicontinuity. By properties of the duality map J, we have:

sup [(ri—1, J(#)) s,

BeD

= ||ri-1ll5- (5.2.3)

Combining Equation (5.2.3) and |(r;_1, %) 5.5

> pi SUDgep |(rim1, B)p | leads to:
((ri1, J(Bi))s.se| = pillriall- (5.2.4)

From Xu & Roach (1991), we have the following inequality by setting p = 2:

lylls
lz + 9l < el + 2(7(2),)55 + 2]lze (m , (5.2.5)
where p is the modulus of smoothness. By setting x = r,_; and y = —a;%; and as-

suming that a; is chosen such that (J(r;_1),a;%;)pp- > 0, the term 2(J(z),y)pp =
_2<J(7’i71)7ai%i>8,8* = —2|<J(Ti—1),ai%}i>8,6*

. Then, the Equation (5.2.5) becomes:

Irills <llricalls — 21(J (riz1), a:%:) 5.5+

al 2 (5.2.6)
+2p () Iri1ll5-

Iri1lls

Assume, for contradiction, that supgep |(r:, J(#))s.s+| 7 0. Then there exists 6 > 0 such

that for infinitely many i, supgep |(ri, J(#))sp+| > 6. For such i, the Equation (5.2.4)

yields |[(ri—1, J(%:))ss+| > pid. Then, we normalize u = H;i—‘llus and b; = -, S0 ot =
u—>b;%;. Then, the normalized version of Equation (5.2.4) is [(u, J(%;))sp+| > ”Tf’_if||8 > p;‘s.
Next, we utilize the decomposition technique as y = —b;%; = aJ(u) + z, where o € C and

(z,J(u))pp = 0. Since (y, J(u)) = a, we have [(u, J(y))s,p*

= |a|. And |a| > p;0'b; with
§" > 0/1. The optimality condition is (J(u+y),y)s s = 0, leading to a({J(u+y), J(u))p s =
—(J(u +vy),z)pp If b < kp; for a small k& > 0, then y small implies that for ¢ > 0,

|J(u 4+ y) — J(u)|[g < e. Therefore, we also have | — (J(u + y), 2) 5.5~

g < e. From

< C(|lu+y|s—1). With b; — 0,

Assumption 3, since (z, J(u))pp- =0, (2, J(u+ y))s,5*

132

by smoothness, we obtain ||[u+y|z—1 = O(b;), so |a| — 0, contradicting |«| > p;0'b;. Thus,
it holds that b; > kp; for k£ > 0 depending on C and the smoothness modulus. Substitute

them into Equation (5.2.5) leads to the term —2|(J(r;-1), a;%;) 5.5~

is at least ¢p?||r;i_1]|%

for the constant ¢, and the term 2||r;_1||%p(b;) is o(p?||ri_1]|%) since p(-) = o(-), yielding
I7illE < llrimallz = co?llrizll, (5.2.7)

for ¢ > 0. Assume that there exists 6 > 0 such that for infinitely many indices i, (with

r; — R the decrease satisfies
H7 Zk”B Hglk‘i’lHB Z Cﬂi H]ZkHB > Cﬂ l /2 = d > 07 (528)

where the last inequality holds for sufficiently large k since ||r; ||z — (* and p;, > p > 0.
Let S =302 (17|l = 7ins1llE) = Dope; d = oco. Since the overall sequence decreases by
at most ||r1]|% — [* < oo, but includes S = oo, which leads to a contradiction. Therefore, for
large M, the remaining decrease after iy is at least) ,_, d = oo, but it is upper bounded
by [|ri, |z — [* < co. Between iy and iy, 1, the decrease is nonnegative. Thus, after m such
steps,

73l < a5 — md = —00 (m — o0), (5.2.9)

which is impossible for norms. The exponential form follows recursively. If decrease >

cp?||r:||% at each of m steps, finally it leads to
Iriemlls < (1= cp®)™|Irills — 0, (5.2.10)

contradicting convergence to 2 > 0.

Thus, supgep (i, J(A)) .~

— 0. For weak limit r of {r;, }, (14, J(B)) — (1, J(B)) =
0 for all B € D. Bijectivity of J and density of spanD imply {J(%)} generates dense
functionals, forcing " = 0. All weak limits are 0, but ||7;||z — { > 0 = ||0||5, contradicting
weak lower semicontinuity unless [= 0. Hence, lim;_,, ||7;||[z = 0, so lim;_, ||rue — @il =

0. |

133

5.3 AFD-guided Neural Operator Design

Architecture overview

Probabilistic Primal branch i Latent-to-RKBS network
encoder Zp=lpto, Q¢

MLPs

Féature
) maps

Training: x, dirye

. Z i Z N
Primal-dual Lo ’ -,
Input data propagation Zd,N

Inference: x

Feature
maps
Mi_Ps
Probabilistic Dual branch S 00— :
encoder Za=pat0aOe e Latent-to-RKBS network
AFD-type dynamic CKN decoder
Zpa Zp,i Zp,N
Reproducing Duality |
kernels map
J(B1) J1(By) J(Bn)
P1 Pi PN
Output:
Y1 > oy O s —yy —> — ~
B, B; By an.o

Figure 28: Our proposed AFDONet-inv framework, whose design is guided by the AFD
theory and operation, for solving inverse PDE problems in Banach space. Note that the
elements in the figure are static representations of the corresponding theoretical component,
whereas the actual computation follows the dynamic, recursive update defined by Equation

(5.3.9).

Once we establish the theoretical framework for AFD in Banach space, we design a
tailored neural operator architecture, which we name as AFDONet-inv, that reproduces and
realizes this theoretical framework. AFDONet-inv is an AFD-based VAE architecture (see
Figure 28) to solve inverse PDE problems in Banach space. After the encoder, AFDONet-inv
identifies the closest RKBS where the latent variables reside using a latent-to-RKBS network.

Subsequently, AFDONet-inv reconstructs the PDE parameters by adaptively selecting the

134

poles in a specially designed decoder network, thereby resembling the AFD operation.

5.3.1 Neural architecture

The encoder network. The encoder network maps the input z € R? (e.g., PDE solutions
in training dataset during training or test dataset during inference stage) to latent variables
in both the primal and dual latent spaces, which correspond to a Banach space B and its
dual space B*, respectively. Note that during training, since the PDE parameters oy, only
appear in the loss function, they are part of training dataset but not part of the input = to
the encoder. Each encoding branch follows the standard VAE framework. That is, for the

primal branch:

(1p(2), log o (7)) = W2 (& (W) , (5.3.1)

zp = pp(x) + 0p(x) ©@e, e ~N(0,1), (5.3.2)

where W,; € RV W, , € R* % are the weight matrices, ¢(-) is the activation function,
and z, € R" is the latent variable in the primal space.

Similarly, for the dual branch:

(a(x), logag(x)) = Waa (6 (Waax)), (5.3.3)

za = pa(z) +oq(z) ©e, e~ N(0,I), (5.3.4)

where Wy, € RW*4 and W, € R**We are the dual encoder weight matrices, and z; € R"

is the dual latent variable in B*.

The latent-to-RKBS network. Given the latent variables z, and z4, our goal is to
determine their values in the parameter space, which lies in a RKBS. To do this, we extend
the latent-to-kernel idea from Lu et al. (2020a) and design a latent-to-RKBS network to
project the latent variable z, to its nearest RKBS where the kernel is constructed. And
then, its dual space in which the latent variable z; lie is obtained via the duality map

J(v) = ||lv||F%|v[P~2-v in the form of L* norm. First, z, and z, are respectively mapped to the

135

parameter space @ € B and a* € B* through two identical multilayer perceptron networks
(MLPs). Then, feature maps FM(-) will project & and &* onto their corresponding RKBS
B and its dual B*, respectively. In other words, the feature map network is designed to map
the latent vector 2z, € R" to N scalar coefficients in R needed for the kernel decomposition
(i.e., FM : R" — RY). The latent-to-RKBS network learns the feature maps from a Banach
space B to its nearest RKBS B, where the reproducing kernel K, for any pair of encoder

inputs (i.e., PDE solutions in training or test dataset) is given by:

K. (1, 22) = ZFM@-(zp) ki, x). (5.3.5)

In Equation 5.3.5, N is the total number of basis kernels, FM;(z,) is the i-th feature map
coefficient for latent variable z,, and {k;(z1,z2)}; are the learned basis kernels are based on
a Fourier spectral kernel formulation. Here, k;(x1, x2) contains a series of learned parameters
in the spectral domain. Since these basis kernels are in RKBS, which is closed under finite

linear combinations, K, lies in the RKBS as well.

Primal-dual propagation. The concept of dual pairing is realized in a primal-dual prop-
agation network. Consisting of a primal net and a dual net, it propagates and refines the
feature representations FM(&) € B and J (FM(&)) € B*, which correspond to the latent
variables z, and z4, respectively. Here, the primal net performs the spectral convolution
S(f)(x), which transforms a given function f into the frequency domain via a 2D Fourier

transform Li et al. (2020b):

S(f)@) =F 1 [x(©) - F () (&) - W(&)] (), (5.3.6)

where F[-](£) is the Fourier transform at &, F~![-](x) is its inverse Fourier transform at z,
X(&) denotes the mode selector, and W () refers to the learnable weights in the frequency
domain. From an RKBS perspective, the spectral convolution S(f)(z) is equivalent to
a nonlocal kernel operator >, we - (f, ¢¢) - 1¢(z), where we are learnable weights in the

frequency domain, ¢, € B* is the basis in the dual space, and ¢ € B is the biorthogonal

136

primal basis which satisfies (¢, ¢,) = 0¢, = 1 if £ = and = 0 otherwise Zhang et al. (2009).
On the other hand, the dual net performs a point-wise convolution C(f)(z) as Hua et al.
(2018):
c
C()(@) =Y Wer f)(x), (5.3.7)
d=1

where C' is the number of input channels of f, f(¢)(x) refers to the value of f at z and
channel ¢, and W, denotes the learned map from channel ¢’ to channel ¢. This point-wise

convolution resembles a Dirac-type kernel integral on its domain €2 as:

Cf)(z) = / 5 —y) - W - f(y)dy. (5.3.8)

Finally, the residuals in the primal space and its dual space after each layer are updated

and propagated to the corresponding latent variables as:

Zpﬂ' = GELU o BN (Zp,z'—l + S(Zpﬂ'_l) + C(Zp,i—l)) s
(5.3.9)

2ai = 2di-1+ S(zai-1) + C(2a-1),
where z,;,24; are the residuals of i-th layer in the primal space and its dual space with
2po = FM(&) and zq9 = J (FM(&)), respectively. The initial latent vector, z,, is used to
define &, and & then defines the initial decoder input, z,0. Here, GELU denotes the GELU
activation function and BN is the batch normalizing transform loffe & Szegedy (2015).
It can be shown that z, and z; in Equation (5.3.9) actually correspond to the residual r;

and its dual J(r;) defined in the AFD theory as:

Theorem 5.3.1 Let B be a uniformly smooth and uniformly convexr Banach space, r; € B
be the residual at step i in the AFD process, z, and zq are defined in Equation (5.3.9). Then,

for any € > 0, there exists a choice of parameters W(§), Wew, and BN scalars such that:

|zpi — rills < €, and ||za; — J(r:)||5+ < €.

Note that, even though the variables 2, ; are computationally represented as tensors, Theorem
5.3.1 shows that the learned network outputs behave as if they were the true theoretical

Banach space residuals r;.

137

Without loss of generality, we consider the case B = L?([0, L]¢) for 1 < p < oo. Before

giving the complete proof of Theorem 5.3.1, we introduce some lemmas as follows.

Lemma 5.3.1 Let B = LP([0,L]%) for 1 < p < oo, a uniformly smooth Banach space
admitting a Fourier transform F. Let (V¢)¢eza be the normalized Fourier basis v¢(x) =
e2mi&e/L yith Fourier coefficients (&) = F(f)(€). Define the partial sum operators S, :
B — B by S,f = megn f(f’)wg, where |{|o = max;[§;]. Then, there exists C), > 0
(depending on p and d, but independent of n) such that ||S, flls < (C))?| flls for all f € B

and all n € N.

Proof. First, we prove this lemma for d = 1 (torus T = [0, L]) and then extend it to higher

dimensions. For d = 1, we have:

Snf ()

Z f(k,)e%rikx/L
|k|<n

f

*

D, (5.3.10)

— f* Z eQﬂ'ikl’/L

lk|<n

Define f(z) = =iy, sgn(k) f(k)e>™ /L || flls < C,l| f]|5 indicates sup,, ||S,||z < oo holds.
Consider the Riesz projection Py (f) = > ,- F(k)e*m /L Then, Py (f) = 1(f+if)+1£(0),

so boundedness of P, on LP is equivalent to the boundedness of =. Since

Snf = f(O) + Z (f‘(k,)e%rikx/L + f‘(_k)e—kaw/L>
k=1

(5.3.11)
= 2Re(P{") - f(0),
where PV (f) = S f(k)e** and
1P (f) = flls < (M + 1)e (5.3.12)

for a constant M > 0 and any € > 0 from Miao (2014). From the generalized M. Riesz

Theorem Berkson & Gillespie (1985), it follows ||f|lsz < C,||f|ls, which by the identity

138

Pi(f)=3(f+ if) + %f(O), implies that the Riesz projection P is also bounded on B, with

1P flls < Cll flls- (5.3.13)

Since PJ(rn) f — P,f in B norm as n — oo, it follows that {PJ(r”)}neN is uniformly bounded
on B, i.e.,

sup ||PJ(rn)||B < 00. (5.3.14)

n

Therefore, one can obtain

1S flls < 20 P Flls + 1£(0)] - 1|5

< 2G| flls + Cllflls = Cyll fIls

(5.3.15)

for a constant C' > 0 using the triangle inequality.
For d-dimensional case, we define the d-dimensional kernel Dd(x) = H;.l:l D, (x;) and

the d-dimensional operator S¢ = S, ® - ® S,,. From Equation (5.3.15), we have:

1S3 flls < (C) N f 115 (5.3.16)
u

Lemma 5.3.2 Let P denote the space of trigonometric polynomaials, i.e., finite linear com-
binations of plane waves ¢(x) = e2™¢*/L for ¢ € Z2. Then, P is dense in B, meaning for
any [€ B and € > 0, there exists p € P such that ||f — pllg < €. For any g € P of degree at
most n, it holds that S,g = g, where Spg = 3" <, 9(§)Ve.

Proof. Since T? is compact with finite measure, continuous functions C(T?) are dense in
B(T9) for any 1 < p < oo. For f € B, by Lusin’s theorem (every measurable function is
nearly continuous), for any e > 0, there exists a compact K C T¢ with u(T¢\ K) < € and
f|x continuous, hence can be approximated by continuous g with || f — g||s < €.

Next, we prove that P is dense in C(T¢). The Stone-Weierstrass theorem states that if A
is a subalgebra of C'(X) that separates points (for any distinct ,y € X, there exists f € A

with f(z) # f(y)) and contains constants, then A is dense in C'(X) under the sup-norm.

139

Following this, considering the algebra A = Pg of real parts of P, A contains constants and
separates points: for distinct x,y € T¢, choose £ € Z? such that £ - (z —y) # 0 (mod 1),
then cos(2m€ -z /L) # cos(2m€ -y/L). Moreover, A is closed under multiplication. Thus, A is
dense in C(T4;R). Next, for C(T¢;C), density follows by approximating real and imaginary
parts separately, since P includes both cosines and sines. Therefore, given P dense in C/(T4)
and C(T?) dense in B, implies P dense in B from transitivity of density.

Then, for g € P with degree at most n, we have g(§) = 0 for all |{| > n. Therefore, it

follows:

Sng =D 9 = > §(E)e =g, (5.3.17)

lgl<n gezd

the last equality follows
9= (g, be)ve. (5.3.18)

tezd

where (g, v¢) = §(§). [|

Lemma 5.3.3 With the Assumption 1, by assuming that B admits a Fourier transform
F that is well-defined and invertible on a periodic domain [0, L]?), for the Fourier basis

— 627ri£~;t/L

of plane waves ¢ (x) denoted as (Y¢)ecga, and the biorthogonal dual functionals

(¢)ecza C B* satisfying F&) = F(f)(€) = (f, pe)p.p- for any f € B, then the inverse Fourier
transform satisfies F1(f(€)) = > cend F(E)e(x) in the sense that the series converges to f

in the B-norm, i.e., lim,,_, Hf — ngn f({’)@/JgHB =0.

Proof. Following Lin et al. (2022), one can show that the plane waves ¢(z) = e?™¢e/L

span
a dense subspace of trigonometric polynomials in B. The corresponding dual functionals
e € B* extract the Fourier coefficients via the pairing f (&) = (f,ve)pp-. Biorthogonality,
given by (V¢, pn) B8+ = Ogy, is ensured by the RKBS structure and follows from the spectral
theorem applied to the associated kernel integral operator. Then, we define the operator

S, : B — Bvia S,f = ngn f(ﬁ)wg. From Lemma 5.3.1, ||S,.|s—5 is bounded by a

constant (C7)? independent, of n.

140

From Lemma 5.3.2 and uniform boundedness principle, S,f — f in B-norm for all

feB. [|

Remark 5.3.1 An important consequence is the Hausdorff—Young inequality:

1/q
<Z|f(£>|"> < C|lf|ls, where%+3:1, (5.3.19)
£

which provides a bound on the Fourier coefficients in (9, which facilitates convergence of the
Fourier series. For finite modes A C Z%, the sum is finite and exact, and the infinite case

follows by taking limits as |A| — o0o. Thus, the reconstruction defines the inverse Fourier
transform F~L(f(€)) = D F(E)pe(z) in B.

Lemma 5.3.4 It holds that

S(f)(w) = we(f, pe)sste(),

£eA

where we = W (&), e € B* are dual bases, and ¢ € B are biorthogonal primal bases with
(Ve, on)B.Br = Ogn-

Proof. In spectral methods for RKBS, one can show that the Fourier transform diagonalizes
convolution operators Kovachki et al. (2021). Specifically, we assume a biorthogonal Fourier
basis (1, P¢)ecze, where ¢e(x) = €2/ for domain [0, L]?, and ¢, are dual functionals
satisfying the biorthogonality from the reproducing property: (f,¢¢) = f(&) = F()E).

Then, the spectral convolution applies pointwise multiplication in frequency space:

S(F)E) =x(EOW(&)f(©). (5.3.20)

Taking the inverse Fourier transform on Equation (5.3.20) leads to:
S()(@) =Y W(OF(©)ve(x), (5.3.21)
gen
where x(€) = 1 for € € A and 0 otherwise. Substituting f(¢) = (J, @e)B,p+ into Equation

(5.3.21) leads to
S(f)(x) =D W, e)pstbe(x). (5.3.22)

e

141

Biorthogonality (v, ;) = ¢, follows from the Fourier basis orthogonality in the dual pair-

ing, ensured by the RKBS structure Li et al. (2022a). |

Remark 5.3.2 FEquation (5.3.22) is nonlocal because the kernel involves global frequency

modes rather than localized supports.

Lemma 5.3.5 For any continuous operator T : B — B and 6 > 0, there exists a set of
parameters of W (&) in Equation (5.3.6) such that ||S(g) —T(g)|lg < 0 for all g in a bounded
subset of B.

Proof. First, we define integral operators T'(f)(z) = [Kr(z,y)f(y)dy, with kernel K7 con-
tinuous. Then, fixing a bounded set G C B, we say G is weakly compact since B is uni-
formly smooth and reflexive. By Arzela-Ascoli theorem, continuous kernels Kp(z,y) and

thus operator T'(f) can be approximated uniformly on G. We denote the Fourier operator
Tu(f) = f_l[ngM Kp(6)F(f)(€)], where Kp(€) is the Fourier transform of the kernel

Krp(z,y). From universal approximation theorem Kovachki et al. (2021), we have:

|7 — Twmlls — 0, as M — oo (5.3.23)
Next, by setting A = {& : [{]| < M}, x(§) = 1A(€), and W () = KT(f), it follows

|S —Tumlls — 0, as M — oo. (5.3.24)

Finally, substituting Equation (5.3.23) to Equation (5.3.24) leads to:

1S(9) = T(9)lls < 1S(9) — Tra(g) + Tua(g) — T(9)l

< I8(9) = Tae(9)lls + 1T (9) — Tar(9)|15 (5.3.25)
Jy 0
< 5 + 5 = (5,
which completes the proof. [|
Lemma 5.3.6 Define C(f = [, 0(x—y)-W - f(y)dy, where § is the Dirac delta distri-

bution. The integral is well-defined in the distributional sense.

142

Proof. First, we consider the single channel (C'= 1, W = 1). In this case, we have C(f)(z) =
f(z) = [,0(x—y)f(y) dy, where the integral is the pairing (0, f)5,s- in the dual space since

5, € B* for spaces admitting point evaluations. Next, for multi-channel f = (f&, ..., f(©)),

we extend C(f)©) () to 25:1 Wew f€)(2). Then, it follows
c
C(H (@)=Y War [()
=1

- (5.3.26)
_ o Slr — () d LO.
>ow /Q (2 —) (y) dy

- / 5 — o) (WF)© dy,

where W f(y) applies the matrix pointwise. Equation (5.3.26) becomes to

C(f)(z) = / S —y) W f(y)dy. (5.3.27)
for f(y) € RC. |

Remark 5.3.3 C(f)(x) is a local projection because the kernel §(x — y)W has support only
at y = x which projects onto the span of channels without spatial smearing. In practice, for
a discrete domain, it reduces to matrix multiplication at pizels. For a continuous domain, it

15 actually the distributional convolution with a point mass.
Lemma 5.3.7 Finite-rank operators are dense in the space of compact operators.

Proof. 1t is equivalent to show for any 0 > 0, there exists a finite-rank operator K, such
that |7 — K,,||s < . Assume the operator 7' is compact, then its image on a unit ball B has
compact closure. Therefore, for any x € Bp, there exists v; € B, such that || T(z) — v;||g < &
for any 0 > 0. Now, we define a projection 7y : range(7') — V, which maps each T'(x)
to its best approximation in V. It is well-defined because V' is finite-dimensional and B is
a Banach space. Then, one can also define K,, := my o T, which is a linear and bounded
operator. And the range of K, lies in the span of v;, implying that K, is finite-rank. This
way, one can verify || T(f) — Kn.(f)|lz = [|T(f) — 7 (T(f))||s < 0 for any § > 0 and f € B.

143

Since K,,(f) € span{vi,...,v,}, one can formulate it as K,,(f) = D", ai(f) v;, for linear

functionals a;. [

Lemma 5.3.8 C is finite-rank. For any operator T' : B — B following T' = [— P, where
P is a projection, and § > 0, there exists W such that ||C(g) — T(g)||g < ¢ for all g in a
bounded subset G C B, with the error decaying as the matriz rank (channel dimension) C

mcreases.

Proof. First, we show that C is finite-rank. Since B is an RKBS, the evaluation functional is

continuous, for f € B, f(z) = (f, K(-,z))pp- holds, and K (-, z) € B* satisfies || K(-,2)| 5 <

0o. Let B¢ = BaRC, f = (fM,..., f©) has evaluations f(z) = (fV(z),..., [©(z)) € R,

with
fz) = (9 K(,2))85- (5.3.28)
For each channel ¢ =1,...,C, we have
c
=Y W f(). (5.3.29)
=1

The reproducing property follows
f(c')(gc) = <f(c’)7 K(,2))pp = <f(c/)’5$>873* (5.3.30)

in the distributional sense as long as B embeds into a space where 9, is defined. Then, it

holds that
(f 8V p = / 5z —y) ' (y) dy (5.3.31)
Q

in the weak sense. Therefore, we have:

c
= Z ,B*
; (5.3.32)
= Z cc! / (5 xr —)dy
Next, Equation (5.3.32) becomes:
c c
C(f) =D Werlf, Ber)pe B, (5.3.33)
c=1 /=1

where (f, B.)ge = (f\¢), B.)pp- for the basis %B. of B. The rank of C(f) is at most
¢ x c < C? soC(f) is finite-rank. We note that if an operator is finite-rank, it is bounded
and compact in Banach space B.

Moreover, we consider the operator T' = [— P, where P is a projection operator. Assume
that P is finite-rank and thus compact, and then the operator T is also compact. Since T
is compact, for any § > 0, there exists finite-rank approximation K,, = > .-, 0;(-, u;)pcv;,

where u;,v; € BY, such that

J

1T(9) = Kn(9)lls < ———— (5.3.34)
SUPgeq HgHBC
for g € G from Lemma 5.3.7.
Then, by denoting A = I — P, from Equation (5.3.34), we have:
Ieto) = T@)lse = | | dle =)V = Aw)ats) dy
BC
1/2
= ([1w = aalze a)
Q (5.3.35)
1/2
<sup W = Al [ot do)
y
< 6”9”130 < (57
by choosing € < §/(2sup ||g|5c)- |

Now, we give the full proof of Theorem 5.3.1 assuming GELU is globally Lipschitz with

constant LggeLu.

Proof. We start with the residual:

Ty = Orue — O = (Oétrue - 041‘71) - (Oéz‘ - 04171)

(5.3.36)
=ri-1 — (ri-1, J (%)) 5.5+ Bi-
Then, let T(g) = (g, J(%;)) 5.5+, from Lemma 5.3.5, one can obtain:
£
‘|S(Zp7i_1) — <?"i_1, J(<@i)>B,B*=@i”B < . (5337)
4Lceru

145

Next, from Lemma 5.3.8, we can also get:

1C(2pi-1) — (ric1 — 2pi1) — (ric1,J (%)) 5,5 %i) |5

e (5.3.38)
4LceLy
By adjusting the parameters in GELU (i.e., v, 8), one can show:
IBN(2p,i-1 + S(2p,i-1) + C(2p,i-1)) — (ri
. (5.3.39)
— (ric1, J(%i))5.5-%i) |5 <
2LcELy
By Lipschitz continuity of GELU, we have:
€ € £
Zpi — Tills < L . + +) < €. 5.3.40
Iz s < Lepr <4LGELU 4LgeLu 2LgrLu ()
Since J is continuous, one can show ||z4; — J(r;)||s at the same way. |

The AFD-type decoder network. Once the RKBS and its reproducing kernel K, are
constructed, we design a decoder network based on the AFD operation to reconstruct pa-
rameters « from z,;. First, we normalize the reproducing kernel K, in Equation (5.3.5) as
Bi(+) = %, each associated with a pole a;. The set of these normalized reproducing
kernels is denoted as D = {%;|a; € B}. The decoder then adopts a dynamic convolutional
kernel network (CKN) Mairal et al. (2014); Chen et al. (2020b), in which, for each convolu-
tional layer ¢, (i) performs dual pairing between z,; and the normalized reproducing kernel
P;, (ii) assigns a multiplier 0 < py < p; < 1 to the output of each convolutional layer, and

(iii) incorporates skip connections for each convolutional layer. Finally, the output of the

dynamic CKN containing N convolutional layers is:
N

ang = Y (2pir J(Bi)) 55+ B, (5.3.41)

=1

Guided by the AFD theory, the selection of poles and their reproducing kernels follows
a similar maximal selection principle as in the AFD theory. Here, starting from Equation

(5.2.1), we can write an analogous condition for selecting poles as:

vi < zpi-1, J(Bi)) BB

— pP; Sup {|<Zp,i—17 J(%i»lg’[g* } . (5342)
B, €D

146

With this, and leveraging the convergence behavior of AFD, we can show that our decoder

in AFDONet-inv converges as N — oo by the following theorem:

Theorem 5.3.2 Let B be a uniformly smooth and uniformly convex Banach space, and let
ang be the output of the dynamic CKN decoder with N layers. By selecting poles and bias

terms following the modified maximal selection principle of Equation (5.3.42), as N — 00:

N

&N — Qtruells < C'sz “Iroll s,
i=1

where C' > 0 is a constant and ro 18 the initial residual.
Before providing the full proof of Theorem 5.3.2, we give several definitions and lemmas first.

Definition 5.3.1 A Banach space B is uniformly convex if there exists a function ¢ : [0,2] —
[0,1], the modulus of convexity, such that for all u,v € B with ||ullzg = ||Jv|lz = 1 and

lu = vlls > 7,
u—+v

<1-=46(r), o(1r)>0 forT>0.
B

B is uniformly smooth if the modulus of smoothness p(T) = sup{ ”HTUHBZHU*W”B —1:||ullg=

||?J||B = 1} satisfies p(7-) — 0(7-) as T — 0.

Lemma 5.3.9 For any n > 0, there exist parameters in the primal-dual propagation such

that ||zp; — rills <n and ||za; — J(r:)||g- < n for each i. Therefore, it holds that

[(2p,is J(Big1)) e — (16, J(PBiv1)) s+ | < 1.

Proof. This lemma follows directly from Theorem 5.3.1. |
Lemma 5.3.10 In the AFD operations, the residuals satisfy
Irills < pFllrioallz:

where p? =1 -4 (2M> <1, and #B; = maxg cp |(ri—1, J(%;)) 5,5 |-

lri—1lls

147

(ri1,J(B:)) .5+ Bs

Proof. For u = —=1— and v = : , it follows
lIri—1lls Iri—1lln
Iri—1ll5 {5 Iri1lls B
Since ||u —v||% < 1 — 8 (2]|ul|s]|v]|5), we have:
lu — vl <1 -3 (2|v]ls)
.3.44
<1-26 (Kr“’ ()).) =1—p;. 034
B Iri-1lls '
Equation (5.3.44) becomes to:
I7illz < pFllriall- (5.3.45)

Iterating Equation (5.3.45) leads to:

N
lrvlls < (Hm) 170l 5- (5.3.46)
=1

Lemma 5.3.11 The bias terms satisfy

N N
Z il < (1 - sz> [7olls + Ne,
=1 =1

where the bias term satisfying v; < [(zp,i-1, J(%:))|—pisubg,cp [(2pi—1, J(%)))]; and [|zp,;—1—

Ti—l“B < €.

Proof. Assume D is rich in B, we have:

il = (it J(BIY — pisup (i, T(B)))

Zi (5.3.47)
< (1= p)llzpi-1lls.
Now, from Theorem 5.3.1, one can have:
[2pi-1lls < Iricills + |2zpi—1 — ricalls < llricalls + € (5.3.48)

for € > 0.

148

From Lemma 5.3.10, Equation (5.3.48) becomes to:

1—1
Izpi-1lls < [pillrolls + = (5.3.49)

j=1

Substituting Equation (5.3.47) into Equation (5.3.49) leads to:

il < (1= pi) (H pillrolls + s) (5.3.50)

Then, we sum both sides of Equation (5.3.47) over i = 1 to N and get:
N N i—1
Z vl < Z(l = pi) (H pillrolls + 6)
N i—1 N
=lrolls > (L=p) [T o +2D (1= pi) (5.3.51)
i=1 =1 i=1

N i1
< |Irol5 Z(l — pi) Hpj +eN.
i—1 =1

For the first term in Equation (5.3.51), it follows

é(l —m)ﬁm = Z (Hp] Hp;)

=1 j=1

= (1= p1) + (p1 = p1p2) + (P1p2 — p1p2p3)

N-1 N (5.3.52)
+(IT e = 1e»)
j=1 j=1
N
=1- Hpj-
j=1

Putting everything together, we arrive:

N N
Z [l < (1 - sz> |I70ll8 + Ne, (5.3.53)
i=1 i=1

which completes the proof. [|

Now, we are safe to give the full proof of Theorem 5.3.2.

149

Proof. To start with, we consider

||O~/N0_atrue||l3_ HZ sza >BB % +Z'Yz
Z(Ti—h J (%)) 5,5

i=1

N
< Z [(2pi — Ti-1, J(%:))B.8+| - | Bill 8

+Z\%|+

From Lemma 5.3.9, one can have:

Z rio1, J (%)) 5.5 %

i=N+1

B

|<Zp,i —Ti—1, ‘]('@2)” <mn,

for any n > 0, which implies

N
5
Z [(2pi — ric1, J(Bi))Be| < N = B

by setting n = 5. Then, we have:
Oltrye = Z(Tifla J(f%i»lg,lg*%i?
i=1
so the tail is
> i, J(B))ssBi|| = llralls < HPZHTOHB
i=N+1 B

from Lemma 5.3.10. Next, from Lemma 5.3.11, the bias term ~; satisfying:

N N
> il < (1 - Hm) [7olls + N7
=1 =1
N £
- 1 - i —-.
(gp> Irolls + 5

By choosing v; < (1 — p;) H;;ll pillTollB, we have:

N

N £ g

|ang — CtruellB < 5 + HPiHTOHB + B
i=1

N
=&+ Hp¢||7“0||5,
i=1

which completes the proof.

150

(5.3.54)

(5.3.55)

(5.3.56)

(5.3.57)

(5.3.58)

(5.3.59)

(5.3.60)

5.3.2 Training

Overall, our AFDONet-inv model is trained end-to-end by minimizing the following loss

function:

b+ wDi (N (s,)| N(0,1)

’
P ,

ﬁ(e) = HOACN,G - atrue‘

-~

~
reconstruction loss in LP' latent regularization loss in primal space (536 1)

+ waDx (N (g, o) I N(O,]))J-

~
latent regularization loss in dual space

The training dataset consists of various sets of PDE parameters and their corresponding
PDE solutions. The Adam optimizer with a learning rate of 5 x 107 is used to train our
AFDONet-inv model. In actual implementation of the model, we use p’ = 1 (corresponding

to L' loss) and w, = wg = 1 x 1072 in the loss function of Equation (5.3.61).

5.3.3 Connections to the AFD theory

In AFDONet-inv, the encoder network first maps the input to its latent space, followed by a
latent-to-RKBS network which finds the corresponding nearest RKBS using a feature map
FM. During training, when minimizing the loss function of Equation (5.3.61) over different
sets of PDE solutions {z;}7.,, we find that the optimal feature map FM" admits a finite
representation FM*(a)(z) = >, ¢; K. (v, 2;) with coefficients ¢; € R (see Section 5.3.4
for details). After that, the primal-dual propagation refines the value of latent variable in
the Banach space and its dual, and produces the input to each layer of the dynamic CKN.
This input is essentially the residual r; of AFD operation at each step ¢, as illustrated in
Theorem 5.3.1. In this regard, the AFD-type decoder basically replicates the AFD oper-
ations. Formally, let Py(a) = SN (ri1, J(%:))s.s+%; be the N-term partial sum in the

AFD decomposition. Then, the decoder approximation satisfies:

Theorem 5.3.3 Let B be a uniformly smooth and uniformly convex Banach space, and let

Gy be the output of the AFD-type decoder after N layers. Then, for any € > 0, there exists

151

parameters in the primal net and dual net, such that:

~ 1
Jave = Pe(@l < +0 (=) lalle

Before proving Theorem 5.3.3, we give a lemma first.

Lemma 5.3.12 Let ¢ be a convex and L-Lipschitz loss function on a compact conver subset
By C B, and let ® be a p-strongly convex mirror map on By. Then, the mirror descent
algorithm (MDA) with projected updates achieves a convergence rate of O(1/V/'N) for N

iterations:

1

(fx) = (f) <O (ﬁ> |

where f* is the minimizer, and the constant depends on L, u, and the diameter of By.

Proof. It follows from Kumar et al. (2024) by setting gy = gn-—1 — 10sy_, L and fx =

115 ((0®)~'(gn)), where II is the Bregman projection. |

Remark 5.3.4 We remark that, AFD can be interpreted as a greedy variant of mirror de-
scent in RKBS, where each layer corresponds to a descent step with duality pairing approz-
imating subgradients, and the normalized kernels %B; are utilized to select the directions. In
AFD, the greedy selection mazimizes the projection |(r;_1, J(%.))|, which is equivalent to a

subgradient descent step in the dual space, with the mirror map ®(f) = 3||f||%. Furthermore,

ri =11 — (ri_1, J)Bp%B; is a projected mirror descent step.
With this, now we prove Theorem 5.3.3.

Proof. Define the loss function ¢(f) = ||a — fl||g on By = {f € span(D) : ||fllz < |ll|5}-

Since B is uniformly convex, By is compact. The function ¢(f) is convex and Lipschitz:

() = 9 = llla = flls = lla = gllsl < Ilf = glls. (5.3.62)

One can know that the minimizer is f* = o and ¢(f*) = 0 holds in this case. In AFD, we
have

ri =ri-1 — (ri-1, J (%)) 5,5+ Bi (5.3.63)

152

and

Pi(a) = Pioi(a) + (ri1, J(%))) 8,5 B (5.3.64)

where %; maximizes |(r;_1, J(%;))s.5+|-

This way, AFD corresponds to a greedy mirror
descent step, where the subgradient direction is approximated by J(%;). Denote f; = Pi(«),

so r; = o — f;. Furthermore, Equation (5.3.64) is equivalent to:

fi = fica + (Ol fi1)), (5.3.65)

where n; = (r;_1, J(%;)), and J* : B* — B is the inverse duality map since B is reflexive.

From Lemma 5.3.12, considering ¢(f) = ||o — f||s on By, we have
1
14 — U f") = ||la — <O0|—=), 5.3.66
()= 107 = la = fulle, < 0 () (5:3.66)

where the diameter diam(By) < 2|la|z. Since fy = Py(«), and £(f*) =0,

1Py(@) — allgy = lo— flls, < O (%N) | (5.3.67)

Then, we generalize it to ||a||p by scaling diameter:

HHW@—M@SO(fﬁ)wm. (5.3.68)

Finally, from Theorem 5.3.2, we obtain:

lane — Pn(a)|s < |lang — alls + [[a — Py(a)|s

N
R 1
< Cl | i || +0 | — | ||l 3.

which completes the proof. [|

5.3.4 The Optimal Feature Map

We denote the training data points here as (z;,y;). The empirical risk minimization in the

RKBS B is utilized in the form minyes D 70, €(FM(z5), y;) + A|[FM||5, where FM refers to

153

the possible feature maps, £ is the loss function which is assumed to be convex, continuous,
and Lipschitz, and A > 0 is the regularization parameter. Since B is reflexive, we know

that the optimal feature map FM™ as a minimizer exists. Then, we calculate it by solving

O U(FM(x;),y;)) + AO||FM||5) = 0 following:

0> L(FM(x)),y;)) = Zaug(uayj)\u:FM(:cj) - OFM(z;)

J

(5.3.70)
- Z@uﬂ(u, Yi)lu=praca;) - K2 (25,),

J

where OFM(z;) = Kj(z;,-) € B* from evaluation functional. Thus, we have 0¢(FM) C
span{ K (z;,-)}7L; in dual.
On the other hand, we have 0||FM||g = % it FM # 0. We admit FM" follows the

form 37", ¢;K.(x,7;), where c; needs to be determined. Substituting it into the gradient

condition leads to:
D k(g) + AJ(FMY), K. (-, 7)) 5,50 = —OUFM*(2;), 9), (5.3.71)
k

which is a linear system can be solved accordingly.

5.4 Experiments

In this section, we evaluate the performance of our AFDONet-inv on two commonly used
benchmark inverse problems by conducting extensive ablation studies and comparing the
solution accuracy and run time with state-of-the-art neural solvers, including NAO Yu et al.
(2024), NIPS Liu & Yu (2025), LNO Wang & Wang (2024), and MWT Gupta et al. (2021).
Each solver is trained for 1000 epochs for both benchmark problems. All experiments are
performed on a B760M GAMING WIFI PLUS desktop equipped with an Intel Core i5-
14600KF CPU and an NVIDIA GeForce RTX 4090 GPU (with 48GB GDDR6 memory).

154

5.4.1 Problem settings and datasets

2-D Darcy flow. The first inverse problem we consider is the 2-D Darcy flow problem

introduced by Li et al. (2020c) and Yu et al. (2024). It takes the following form:

V- () V(@) = f(@), © €017,
(5.4.1)
u(z) =0, z € 9[0,1]%,
where a(x) denotes the permeability field, and f(x) is the source term. Given the solution

u(z) and the source term f(z), here we aim to reconstruct the permeability field a(x).

Nonlinear magnetic Schrodinger equation. The second benchmark inverse problem

involves solving the magnetic Schrodinger equation on a complex manifold M:

(Aa+q(Ju(z)])) u(z) =0, z€ M,
(5.4.2)

u(z) = f, z € OM,
where M = {z = (21,22) € C? : |2z1]* + |22]* < 1} with boundary OM = S3 A, =
(d+iA)*(d+1iA) is the magnetic Laplacian (with d the exterior derivative and * the Hodge
star with respect to the Kdhler metric), ¢ is a nonlinear function, and f is the boundary
term. In this problem, we aim to recover the potentials A and ¢ from boundary conditions
in the Dirichlet-to-Neumann (DN) map A4, : f — J,u|om, where v is the outward normal
vector, and u is the solution of Equation (5.4.2). Note that this inverse problem is more
challenging to solve than the one directly given solution u, as the DN map only retains
partial information of w.

Two datasets used in this work include Darcy flow (public dataset from Li et al. (2020c))
and nonlinear magnetic Schrodinger. For Darcy flow dataset, the coefficients a are generated
following a measure u defined as u = ¥ (N (0, (—A + 91)2)), where the operator (—A +
97)~2 utilizes a Neumann boundary condition. The field a is constructed to be piecewise
constant with random geometry and a fixed contrast of 4, determined by the mapping 1(z) =
12 for z > 0 and ¢ (x) = 3 for x < 0. Solutions u are generated using a second-order finite

difference scheme on a high-resolution 241 x 241 grid.

155

For nonlinear magnetic Schrodinger dataset, we just need the Dirichlet-to-Neumann (DN)
map without needing to generate PDE solutions. That is, the DN map data serves as
the observation, rather than a solution field w. This data is generated by specifying the
functional class of the potentials A (magnetic) and ¢ (scalar) and the boundary term f
on the complex manifold M. The potentials A and ¢ represent the unknown parameters,
and the DN map A_A,q : f — 0vu| . OM is computed by numerically solving the highly
nonlinear Schrédinger equation for various input boundary terms f and then calculating the
resulting normal derivative d,u at the boundary 2. The complete dataset consists of pairs

of the unknown potentials (A4, ¢) and their corresponding simulated DN maps.

5.4.2 Ablation studies

We conduct the following set of ablation studies to illustrate the need for different components
in AFDONet-inv. In Scneario 1, we consider the AFDONet-inv architecture without primal-
dual propagation. In Scenario 2, we investigate the impact of considering the dual space by
removing the dual branch in the encoder network and the duality map J. Finally, in the third
study, we remove both primal-dual propagation and the dual space. Results in Tables 21
and 22 indicate that incorporating primal-dual propagation and dual space is necessary for
improving the overall accuracy of AFDONet-inv in terms of reducing MAE and relative L?
error. To explain this, we observe that, without the dual branch, the primal-dual propagation
only gives z,;, which is the approximation of the residual 7; in the AFD theory according to
Theorem 5.3.1. In this case, AFDONet-inv essentially approximates Zi]\;(ri, PB;)B;, which
asymptotically converges under the pairing (-,-) with an error O(\/l—ﬁ) Meanwhile, when
we remove primal-dual propagation, the input to the AFD-type decoder is simply FM(a&).
This way, AFDONet-inv essentially performs the operation >~ (FM(@&), J(%:))s5-%; in
the Banach space, which converges with an error O(ﬁ) if the PDE parameters lie in C*'.
Finally, when both primal-dual propagation and the dual branch are removed, AFDONet-inv

performs the operation Zi]il(FM(d), PB;)A;, which may not even converge since the kernels

156

{%;}; are not necessarily orthogonal to each other.

Specifically, for the 2-D Darcy flow problem, the permeability field a(x) on a regular
domain [0, 1]? is typically considered as a L> (or C*' for s’ < 0.5 Teng et al. (2024)) function
from a statistical or computational perspective due to its irregularity. Thus, in Scenario 1,
1

le,) while it converges with an error O(zgs) in

AFDONet-inv converges with an error O(
Scenario 2. This is consistent with the results shown in Table 21, in which the removal of
primal-dual propagation has more significant impact on solution accuracy compared to the
removal of the dual branch in the encoder. When both primal-dual propagation and dual
branch are eliminated from the AFDONet-inv framework, we observe the highest MAE and

relative L? error values.

Models MAE Relative L? error

Full 1.82E-01 + 6.43E-02 6.64E-02 + 1.38E-03
w/o prop. 3.18E-01 £+ 1.06E-01 7.05E-01 + 2.19E-02
w/o dual 2.39E-01 + 5.32E-02 1.07E-01 4+ 4.45E-02
w/op.d. 3.56E-01 + 7.01E-02 1.93E-01 4+ 3.74E-02

Table 21: Comparison of MAE and relative L? error in permeability field a(z) on Darcy flow
equation. Here and hereinafter, “Full” stands for the full AFDONet-inv model, “w/o prop.”
means “without primal-dual propagation” or Scenario 1 of the ablation studies, “w/o dual”

means “without dual branch” or Scenario 2 of the ablation studies, and “w/o p.d.” means

“without both primal-dual propagation and dual branch”.

For the magnetic Schrodinger equation problem on complex manifolds, the deterministic
results of Krupchyk et al. (2024) indicate that both A and ¢ can be relaxed to C*°. This
implies a super-algebraic convergence behavior for AFDONet-inv when primal-dual propa-
gation is removed, which explains why both MAE and relative L? error values are slightly
smaller for Scenario 1 compared to Scenario 2. Last but not least, removing both primal-

dual propagation and dual branch leads to the highest MAE and relative L? error due to the

157

worst convergence behavior (or even divergence) for the resulting AFDONet-inv framework.

Models MAE Relative L? error

Full 1.54E-02 + 2.78E-03 1.50E-05 + 6.23E-07
w/o prop. 7.39E-02 + 1.81E-02 3.06E-04 £+ 1.75E-04
w/o dual 7.83E-02 + 2.20E-05 3.47E-04 4+ 1.10E-05
w/o p.d. 8.01E-02 + 6.75E-03 3.58E-04 + 3.51E-05

Table 22: Comparison of MAE and relative L? error in potentials A and ¢ on magnetic

Schrodinger equation.

5.4.3 Comparison with benchmark solvers

Tables 23 shows the MAE, relative L? error, and computational efficiency of AFDONet-inv
compared to other benchmark solvers for the 2-D Darcy flow problem. In our experiments,
the architecture size and training conditions are the same for all methods, and the number
of parameters are different (due to the different structures present in different methods)
but are in the same order of magnitude. We observe that AFDONet-inv is the second
best performing solver in terms of MAE and outperforms all benchmark solvers in terms
of relative L? error. Since the Darcy flow equation typically lies in L™ space, which is a
Banach space, our AFDONet-inv incorporating RKBS into our model outperforms other
models. Furthermore, we also realize that for this problem, Hilbert space suffices because
the permeability field a(x) is often modeled with smoother priors, where the sparsity from
Banach space may not be the most significant. This explains the reason that models such
as NIPS also performs reasonably well.

Meanwhile, for the nonlinear magnetic Schrédinger equation problem, we see from Table
24 that AFDONet-inv achieves remarkable performance, as it has up to one order of mag-
nitude lower MAE and two to four orders of magnitude lower relative L? error compared

to other solvers. Since the magnetic Schrodinger equation is highly nonlinear, its inverse

158

Models MAE Relative L? error Training time

Ours 1.82E-01 + 6.43E-02 6.64E-02 £+ 1.38E-03 2.69
NAO 1.11 + 2.10E-01 7.71E-02 £ 2.09E-03 3.40
NIPS 1.05E-01 £ 4.71E-02 1.56E-01 £+ 1.03E-01 0.96
LNO 2.78E-01 £ 3.07E-02 1.00 + 3.48E-05 2.92
MWT 45.95+ 2.48 9.73E-01 £ 6.72E-02 1.65

Table 23: Comparison of MAE, relative L? error, training time (seconds per epoch) among

different models on Darcy flow equation.

problem is ill-posed, and non-smooth regularization such as L! penalty terms can greatly
help promote sparsity when reconstructing potentials A and ¢. Note that sparsity is natu-
rally represented in an L' (Banach) space, not an L? (Hilbert) space. In this regard, our
proposed AFDONet-inv solver, grounded in a novel Banach space representer theorem Parhi
& Nowak (2021), can better capture irregular, sparse features on complex manifolds when
solving ill-posed inverse problems.

Finally, in terms of computational efficiency, results in Tables 23 suggest that AFDONet-

inv is competitive among all state-of-the-art benchmark solvers.

Models MAE Relative L? error ~ Training time
Ours 1.54E-02 £ 2.78E-03 1.50E-05 £+ 6.23E-07 0.52
NAO 4.65E-01 + 5.32E-02 6.29E-01 £+ 1.96E-01 2.54
NIPS 2.19E-01 + 9.73E-02 1.32E-01 + 8.40E-02 0.30
LNO 1.86E-01 £ 6.15E-02 2.89E-03 £+ 3.71E-04 0.90
MWT 3.18E-01 + 1.56E-01 7.05E-01 £ 2.46E-02 1.86

Table 24: Comparison of MAE, relative L? error, and training time (seconds per epoch)

among different models on magnetic Schrodinger equation.

From the nonlinear magnetic Schrodinger equation results in Table 24, we can quantify

159

the limitation of Hilbert-space assumptions. This problem is highly ill-posed, and its solu-
tion on a complex manifold benefits from sparsity-promoting regularization, which naturally
matches a Banach space setting. From Table 24, it is clear that existing state-of-the-art
models including NIPS, NAO, and LNO, which are implicitly or explicitly grounded in
Hilbert-space frameworks, perform poorly. In contrast, our AFDONet-inv, designed for Ba-
nach spaces, achieves a relative error that is two to four orders of magnitude lower than these
benchmarks. This significant performance gap indicates how the Hilbert-space assumption

in existing models limits their performance in practice.

5.5 Additional Experiments

Here, we conduct an additional experiment considering the magnetic Schrodinger equation

problem on a regular rectangular domain [0, 1] x [0, 1]. The results are shown in Table 25.

Models MAE Relative L? error

Ours 3.20E-02 5.30E-05
NAO 8.09E-01 1.01
NIPS 2.07E-01 8.05E-02
LNO 4.64E-01 1.86E-01
MWT 2.82E-01 1.00

Table 25: Comparison of MAE and relative L? error among different models on magnetic

Schrodinger equation on [0, 1] x [0, 1].

Furthermore, we also explore the effect of data augmentation. Given that the data
augmentation process is achieved by random permutations. Here, we implement 100 random
permutations on top of the training data containing 6000 solution samples. We compare our

model to NAO and NIPS, whose performance heavily relies on data augmentation.

160

Models MAE Relative L? error Training time

Ours 9.94E-03 1.20E-05 2.52
NAO 5.98E-02 6.11E-03 2.54
NIPS 4.81E-02 4.29E-03 3.26

Table 26: Comparison of MAE, relative L? error and training time (seconds per epoch)

among different models on magnetic Schrédinger equation on [0, 1] x [0, 1] under 100 random

permutations.

161

CHAPTER VI

AUTOMATING THE DESIGN OF NEURAL OPERATORS VIA LARGE
LANGUAGE MODELS

Neural network (NN)—based solvers have shown great promise for efficiently solving non-
linear partial differential equations (PDEs) (Li et al., 2020a; Um et al., 2020; Xu & Darve,
2020; Song & Jiang, 2023a; Smith et al., 2020). Although NN-based approaches can produce
fast and accurate PDE solutions, a key limitation is that they are typically trained at a spe-
cific resolution, which leads to poor generalization to problems at other resolutions. While
Bar-Sinai et al. (2019) proposed an NN-based method that learns discretizations of a given
PDE from fine to coarse resolutions, it cannot be directly extended to PDEs with different
forms or coefficients. Overall, most NN-based approaches must be retrained to handle var-
ious resolutions. This motivates the development of resolution-free variants of NN solvers.
Noting that standard NN-based methods often rely on prior knowledge (e.g., PDE forms,
discretization schemes, coefficients, and boundary /initial conditions), operator learning has
been proposed to train neural operators that learn mappings from parameter/function spaces
to solution spaces with minimal prior knowledge of the PDE (Lu et al., 2019; Li et al., 2020b;
Tripura & Chakraborty, 2023; Gupta et al., 2021; Wang & Wang, 2024).

Among these neural operators, we observe that the top performers differ across PDE
problem types. For example, Wang & Wang (2024) reported that their Latent Neural Op-
erator (LNO) exhibits 1.08x and 2.42x relative £2 error compared to transolver (Wu et al.,
2024) on the airfoil and plasticity datasets (Li et al., 2023b), respectively. Furthermore,
another key observation is that the performance of neural operators can improve or degrade

even with minor architectural changes. To date, the design of neural-operator architectures,

162

often guided by intuition, expert experience, and trial-and-error, has been “more of an art
than a science” (Sanderse et al., 2025). Although neural operators such as the Fourier Neural
Operator (FNO) (Li et al., 2020b) and DeepONet (Lu et al., 2019) are grounded in theo-
retical insights, creating novel components that align with these insights still relies heavily
on human expertise. Therefore, theory-driven design of neural operators requires human
engagement and remains far from fully automated.

Large language model (LLM) agents have shown great promise in automating processes
via human interactions, including mobile tasks (Wen et al., 2024; Guan et al., 2024), hardware
design (Xu et al., 2024b), scientific discovery (Zimmermann et al., 2025; Filimonov, 2024;
Aamer et al., 2025), code generation (Koziolek et al., 2024; Xu et al., 2024a), hyperparameter
tuning (Zhang et al., 2023), and mathematical problem solving (Bian et al., 2025). For
solving PDE problems, hybrid approaches (Zhou et al., 2025; Lorsung & Farimani, 2024)
incorporate LLMs as components within neural architectures to improve performance. These
approaches do not involve process automation, and their architectures are not designed by
LLMs. In prior literature, fully automated LLM agents for PDEs include CodePDE (Li et al.,
2025) and PINNsAgent (Wuwu et al., 2025). Li et al. (2025) proposed LLM agents that
generate and evaluate the code of traditional PDE solvers, whereas PINNsAgent generates
code on top of the physics-informed neural network (PINN) architecture. Both methods
design the architectures of traditional and PINN-based solvers primarily based on numerical
performance rather than theoretical insights. To the best of our knowledge, no prior work
has focused on designing neural operators end-to-end with LLM agents guided by theoretical
insights.

To bridge the research gaps, we ask the following question question:

Can LLMs design accurate and efficient neural operators driven by theoretical insights?

163

6.1 Related Work

Neural operators. Operator learning targets mappings between infinite-dimensional func-
tion spaces, enabling resolution- and mesh-independent surrogates for PDE families. Two
foundational approaches are DeepONet (Lu et al., 2019), which learns nonlinear operators
via a branch-trunk factorization, and the Fourier Neural Operator (FNO) (Li et al., 2020b),
which applies spectral convolutions to achieve strong resolution transfer on canonical el-
liptic/parabolic problems. Subsequent variants improve accuracy, efficiency, or inductive
bias: U-FNO couples Fourier mixing with U-Net refinements (Wen et al., 2022); F-FNO
factorizes spectral weight tensors to lower complexity (Tran et al., 2021); multiwavelet for-
mulations provide multiresolution locality and sparsity (Gupta et al., 2021, 2022; Tripura
& Chakraborty, 2023); ONO augments operator learning with orthogonalized kernels and
stability enhancements (Xiao et al., 2023b); Galerkin operators embed variational structure
(Cao, 2021); LSM exploits learned spectral methods (Wu et al., 2023); and transformer-style
operators (OFormer, Transolver) leverage attention for long-range coupling (Li et al., 2022b;
Wu et al., 2024). Latent designs (LNO, LaMO) compress fields into compact representations
to balance accuracy and cost (Wang & Wang, 2024; Tiwari et al., 2025). Beyond periodic
grids, irregular geometries and structured meshes (e.g., airfoil, plasticity, pipe, elasticity)
stress resolution transfer and generalization and have motivated the architectural choices
and benchmarks used in this work (Li et al., 2023b). Our study differs by asking whether an
LLM can select or synthesize such operator ingredients end-to-end, guided by mathematical

analysis rather than manual trial-and-error.

LLMs in scientific machine learning. LLMs have been used to automate elements of
scientific workflows: program synthesis and code repair (Koziolek et al., 2024; Xu et al.,
2024a), robotics/mobile task automation (Wen et al., 2024; Guan et al., 2024), hardware
and systems design (Xu et al., 2024b), scientific discovery pipelines (Zimmermann et al.,

2025; Filimonov, 2024; Aamer et al., 2025), hyperparameter tuning (Zhang et al., 2023),

164

and mathematical problem solving (Bian et al., 2025). For PDEs, hybrid methods insert
LLMs as components within neural architectures or to provide natural-language rationales,
but stop short of automating the full design loop (Zhou et al., 2025; Lorsung & Farimani,
2024). Closer to our goal are fully automated agents that generate solvers: CodePDE
synthesizes and evaluates traditional PDE codes (Li et al., 2025), and PINNsAgent targets
PINN implementations (Wuwu et al., 2025). However, these systems optimize numerical
performance without enforcing operator-theoretic design principles. In contrast, we position
the LLM as a theory-aware designer that proposes and justifies operator choices (e.g., spectral
vs. multiresolution vs. latent), then compiles them into executable PyTorch implementations

subject to physics and numerical checks.

Automated agent systems. Role specialization and multi-agent coordination have been
shown to improve complex code generation and iterative refinement via planning, self-
critique, and division of labor (Carlander et al., 2024; Dong et al., 2024; Takagi et al.,
2025). Recent agentic SciML systems instantiate plan-execute-review loops for PDE tasks
but largely emphasize execution or empirical tuning (Li et al., 2025; Wuwu et al., 2025).
Our pipeline adopts a four-role decomposition, Theorist (formal derivation and architectural
justification), Programmer (faithful implementation), Critic (adversarial numerical/software
review), and Refiner (targeted fixes), explicitly coupling mathematical validation with soft-
ware iteration. This theory-aware agent design aims to reduce hallucinations, improve sta-
bility under discretization changes, and systematize operator selection, compared with prior

agent frameworks that lack principled operator-level guidance.

6.2 The Proposed LLM Agent Framework

6.2.1 Neural Operators

Neural operators is a mesh- and resolution- independent neural architectures that learn the

mapping from the parameter space to the solution space of the PDE problems. In general,

165

consider a PDE defined on a spatial domain Q C R? and a time interval (0, T):
Lalule,t)] = f(a,1), ¥(z,t) € D x (0,T], (6.2.1)

which is subject to a set of initial and boundary conditions. Here, the parameter function a €
A specifies the coefficients and initial and boundary conditions of Equation 6.2.1. In operator
learning, our goal is to construct an accurate approximation for G : A — F(D x [0,T]),
which maps the parameter function a to the corresponding solution function u(zx,t) € F,

via a parametric mapping Gy. The aim is to learn 6 such that Gy ~ G from a set of training

data {(a;,u;)};.

6.2.2 Framework Overview

Designing neural operators from a scientific perspective requires several core steps: (i) select
or propose a strong neural-operator backbone such as the FNO (Li et al., 2020b) or DeepONet
(Lu et al., 2019); (ii) select or propose an appropriate mathematical theory that guarantees
desirable properties (e.g., convergence, approximation error, function spaces, etc.); (iii) up-
date the backbone architecture to align with the chosen theory; and (iv) implement and
debug the code. As illustrated in Figure, our framework employs a four-agent pipeline to

automate this workflow.

System Prompt. Prior studies show that role-playing instructions enable LLMs to collab-
orate under distinct roles, improving performance, particularly in code generation (Carlander
et al., 2024; Dong et al., 2024; Takagi et al., 2025). Building on this idea, we assign the follow-
ing roles via the system prompt: Theorist, a world-class research mathematician specializing
in scientific machine learning; Programmer, an expert PyTorch developer in scientific ma-
chine learning; Critic, a skeptical but fair adversarial reviewer for a top Al conference; and

Refiner, an expert PyTorch developer focused on debugging and refining complex models.

166

Step 1: Problem Specification. For a given PDE problem, we first translate the math-
ematical formulation (6.2.1) into natural language that LLMs can readily understand. This
natural-language specification includes the problem name, equation, spatial domain, time in-
terval, initial conditions, boundary conditions, and source terms. Instead of presenting this
information in a paragraph, we use a concise, structured natural-language format, which is

effective in our framework. For example, we represent 1-D Burgers’ equation as:

Problem Statement

PDE Specification

name: 1D Burgers’ Equation

equation_latex:
ou N ou 0%u
- Uy— = y—
ot ox C

domain: z € (0,1), t € (0,1)

initial_condition: u(z,0) = uy(z).

boundary_conditions: Periodic

viscosity: 0.01

Step 2: Propose Mathematical Theory (Theorist). The Theorist’s ultimate task is
to provide rigorous theoretical results to improve the performance of the selected backbone.

First, we provide the Theorist with a factory of existing neural operators, including FNO (Li

167

et al., 2020b), DeepONet (Lu et al., 2019), Transolver (Wu et al., 2024), and LNO (Wang &
Wang, 2024), as well as classical architectures such as the variational autoencoder (Kingma
et al., 2013) and the Transformer (Li et al., 2022b). We also allow the Theorist to utilize
other backbones of its choosing. We then prompt the Theorist to develop clear, rigorous,
and efficient mathematical formulations that improve the selected backbone architecture for
the specific problem. In this way, the Theorist offers a complete formulation and provides
a tailored design of an updated neural architecture in natural language and mathematical
form. Finally, we prompt the Theorist to justify its choices and to implement self-correctness
checks as determined by the Theorist. The output of this step is a script that derives the

theoretical results and descriptions of the proposed neural operator.

Step 3: Code Generation (Programmer). After the Theorist provides the detailed
formulation and instructions, we prompt the Programmer to translate them into code for
the proposed neural operator, along with any necessary helper functions and package depen-
dencies. We instruct the Programmer to generate the code in PyTorch due to its wide use

in the machine learning community.

Step 4: Review Theoretical Results & Implementation (Critic). Motivated by
the peer-review mechanism of Al conferences, we prompt the Critic to (i) critically analyze
the mathematical derivation provided by the Theorist and the corresponding PyTorch code
from the Programmer, and (ii) identify potential inconsistencies in the derivation, edge
cases, numerical instabilities, and inefficiencies in the implementation. Finally, we instruct
the Critic to provide a structured list of potential issues and concrete suggestions to improve

the proposed neural operator.

Step 5: Refine Code (Refiner). The Refiner updates the implementation of the pro-

posed neural operator to address all issues and suggestions identified by the Critic.

168

Step 6: Code Execution. After the updated Python code is executed, any bugs are
recorded and reported back to the Critic, who identifies issues and provides suggestions.

The Refiner then revises the code accordingly, and this process repeats until no bugs remain.

6.3 Numerical Experiments

Datasets. We evaluate the performance of neural operators designed by our proposed

LLM-agent framework across six benchmark datasets:

1. Darcy Flow (Li et al., 2020b): Represents 2D flow through porous media. The PDE
is discretized on a 421 x 421 grid and downsampled to 85 x 85. Inputs are coefficient
fields a(z), and outputs are solutions u(z,t). The dataset contains 1,000 training and

200 testing samples with varying medium structures.

2. Navier-Stokes (Li et al., 2020b): Models the 2D incompressible Navier—Stokes equa-
tion in vorticity form on the unit torus. Each sample is a 64 x 64 spatiotemporal field
with 20 frames, where the first 10 frames are used to predict the next 10. The dataset

consists of 1,000 training and 200 testing samples.

3. Elasticity (Li et al., 2023b): Predicts the internal stress of an elastic material dis-
cretized into 972 points. Each input is a 972 x 2 tensor of point positions, and the
output is a 972 x 1 tensor of stresses. The dataset contains 1,000 training and 200

testing samples.

4. Plasticity (Li et al., 2023b): Focuses on predicting the deformation of a plastic ma-
terial under a die of arbitrary shape. The input is a structured mesh of size 101 x 31,
and the output is the deformation over 20 timesteps, recorded as a 20 x 101 x 31 x 4

tensor. The dataset includes 900 training and 80 testing samples.

5. Pipe (Li et al., 2023b): Estimates horizontal fluid velocity within pipes represented as

a structured mesh of size 129 x 129. The input tensor (129 x 129 x 2) encodes positions,

169

while the output tensor (129 x 129 x 1) gives velocity values. The dataset has 1,000

training and 200 testing samples.

6. Airfoil (Li et al., 2023b): Concerns transonic flow over airfoils governed by the Euler
equations. Inputs are structured meshes of size 221 x 51, and outputs are Mach number
fields. The dataset includes 1,000 training and 200 testing samples derived from various

airfoil designs.

Metrics. We train and evaluate the designed neural operators using the relative ¢? error:

N
: 1 [19(ai) — Glai) ||
relative ¢? error = — , 6.3.1
N2 GGl (031

where N denotes the number of samples.

Furthermore, we evaluate the correctness and rigor of the mathematical formulations
produced by the Theorist through human expert review. The review was conducted by
three independent PhD candidates specializing in computational mathematics and neural
operators (who are not authors of this paper). The rubric was a binary “Yes/No” judgment
based on two criteria: 1) “Is the Theorist’s mathematical formulation (e.g., the derivation)

correct and sound?” and 2) “Is the connection between the chosen theory and the target

PDE justified and logical?”

Baselines. We compare LLM-designed neural operators to 10+ strong baselines and state-
of-the-art (SOTA) models designed by humans, including FNO (Li et al., 2020b), U-FNO
(Wen et al., 2022), F-FNO (Tran et al., 2021), LNO (Wang & Wang, 2024), ONO (Xiao
et al., 2023b), WMT (Gupta et al., 2022), Galerkin (Cao, 2021), LSM (Wu et al., 2023),
OFormer (Li et al., 2022b), Transolver (Wu et al., 2024), and LaMO (Tiwari et al., 2025).

Experimental Settings. We evaluate several LLMs in our framework, such as gpt-5,

gpt-5-mini, and the reasoning models ol and 03. All experiments are conducted on a Linux

170

workstation running Ubuntu (kernel 6.14, glibc 2.39) with Python 3.13.5 (Anaconda), Py-
Torch 2.8.0+cul29 (CUDA 12.9), an AMD Ryzen 9 9950X (16-core) processor, and a single
NVIDIA GeForce RTX 4090 (48 GB) GPU.

6.4 Results and analysis

6.4.1 Can LLMs design neural operators?

We evaluate the capacity of LLM-designed neural operators across six benchmark datasets
and find that they outperform existing SOTA models on five of the six datasets (Table 27).
Notably, the LLM generates diverse neural architectures tailored to different datasets, un-
derscoring its adaptability across a wide range of tasks. In terms of accuracy, LLM-designed
neural operators decrease the relative ¢? error by approximately ~ 6%, depending on the
specific problem. Moreover, they demonstrate superior efficiency, achieving a 30-50% reduc-
tion in computational time and requiring two to three orders of magnitude fewer parameters
(Figure 29). These results suggest that LLMs are capable of designing neural operators
that are both efficient and accurate, grounded in theoretical principles. As a side note,
while LLM-generated neural operators do not achieve the highest performance on the Darcy

dataset, this trade-off in accuracy is made in favor of improved efficiency (see Figure 29(a)).

6.4.2 Does theory-aware design provide benefits?

To further explore the contribution of the theoretical insights provided by the Theorist in
the design process, we conduct ablation studies comparing our LLM-agent framework to a
variant without the Theorist. In the latter, without theoretical guidance, the LLM agents
generate neural-operator code directly (as in (Wuwu et al., 2025; Li et al., 2025)), and the
Critic reviews only the numerical aspects. In this way, neural operators are designed in
an art-driven rather than theory-aware paradigm. To evaluate the effectiveness of theory-

aware design, we measure the performance of both frameworks in terms of accuracy and

171

Table 27: Relative 2 error comparisons of LLM-designed neural operators with baselines

across six benchmark datasets. Lower relative ¢2 error is better.

Models Elasticity Plasticity Airfoil Pipe N-S Darcy
FNO (Li et al., 2020b) 0.0229 0.0074 0.0138 0.0067 0.0417 0.0052
U-FNO (Wen et al., 2022) 0.0239 0.0039 0.0269 0.0056 0.2231 0.0183
F-FNO (Tran et al., 2021) 0.0263 0.0047 0.0078 0.0070 0.2322 0.0077
LNO (Wang & Wang, 2024) 0.0052 0.0029 0.0051 0.0026 0.0845 0.0049
ONO (Xiao et al., 2023b) 0.0118 0.0048 0.0061 0.0052 0.1195 0.0076
WMT (Gupta et al., 2021) 0.0359 0.0076 0.0075 0.0077 0.1541 0.0082
Galerkin (Cao, 2021) 0.0240 0.0120 0.0118 0.0098 0.1401 0.0084
LSM (Wu et al., 2023) 0.0218 0.0025 0.0059 0.0050 0.1535 0.0065
OFormer (Li et al., 2022b) 0.0183 0.0017 0.0183 0.0168 0.1705 0.0124
Transolver (Wu et al., 2024) 0.0062 0.0013 0.0053 0.0047 0.0879 0.0059
LAMO (Tiwari et al., 2025) 0.0050 0.0007 0.0041 0.0038 0.0460 0.0039
LLM (gpt-5) 0.0049 0.0018 0.0043 0.0030 0.0387 0.0132
LLM (gpt-5-mini) 0.0051 0.0023 0.0052 0.0032 0.0420 0.0134
LLM (ol) 0.0047 0.0007 0.0041 0.0023 0.0389 0.0068
LLM (03) 0.0049 0.0007 0.0038 0.0022 0.0512 0.0064

172

(a) Darcy (b) Airfoil

30 El Training Time (s) 60 El Training Time (s
B GPU Memory (GB) B GPU Memory (GB)
0 I Params (Millions) » I Params (Millions)
g 20 g 40
(>U L L L L (>U [|— L |— L L
LLLL L [
5 \0 ’\ P \® é
@%’” SV 0%@& 0“° @%’” v‘“@ Pt
V9 V9
N N
W W
Model Model

Figure 29: Comparison of computational efficiency including training time (sec per epoch),

GPU memory (GB), and parameters count (M) on (a) Darcy and (b) Airfoil datasets.

generalization.
Model Elasticity | Plasticity | Airfoil | Pipe | N-S | Darcy
With Theorist
LLM (gpt-5) 0.0049 0.0018 0.0043 | 0.0030 | 0.0387 | 0.0132
LLM (gpt-5-mini) 0.0051 0.0023 0.0052 | 0.0032 | 0.0420 | 0.0134
LLM (ol) 0.0047 0.0007 0.0041 | 0.0023 | 0.0389 | 0.0068
LLM (03) 0.0049 0.0007 0.0038 | 0.0022 | 0.0512 | 0.0064
Without Theorist
LLM (gpt-5) 0.0082 0.0047 0.0134 | 0.0094 | 0.1630 | 0.0188
LLM (gpt-5-mini) 0.0086 0.0055 0.0134 | 0.0116 | 0.1635 | 0.0192
LLM (ol) 0.0079 0.0026 0.0098 | 0.0102 | 0.1630 | 0.0106
LLM (03) 0.0077 0.0031 0.0104 | 0.0103 | 0.1639 | 0.0117

Table 28: Relative ¢? error comparisons of neural operators designed by LLM frameworks

with and without Theorist across six benchmark datasets. Lower is better.

173

Table 28 reports the relative ¢? errors of neural operators obtained with and without
the Theorist. In general, neural operators designed by the framework with the Theorist
exhibit lower errors, demonstrating the effectiveness of incorporating theoretical insights into
the design process. Moreover, the improvements are particularly evident on more complex
benchmark datasets, such as Airfoil and Pipe, where the error differences between the two
frameworks range from approximately 3x to 5x.

To further examine the generalization of theory-aware neural-operator design via LLMs,
we follow the experimental setting in Wang & Wang (2024) and downsample the Darcy
dataset from a resolution of 421 x 421 to 241 x 241, 211 x 211, 141 x 141, 85 x 85, 61 X
61, and 43 x 43. Neural operators are trained on the 43 x 43 dataset and tested on the
others. Figure 30 shows that theory-aware neural operators consistently outperform those
without theoretical insights across all resolutions for not only structured grids (e.g., the
Navier-Stokes example) but also irregular geometries (e.g., the Elasticity, Airfoil, Pipe, and
Plasticity examples). This implies that the LLM design, which incorporates theoretical
insights, guarantees that the neural operators exhibit strong generalization capability with

respect to the number of sampling points.

6.4.3 Can Critic and Refiner produce better results?

In our framework, collaboration between the Critic and Refiner to identify drawbacks and
potential issues in both the theory and the code implementation is a key step toward im-
proving mathematical soundness, performance, and generalization. The Refiner step has
been demonstrated to possess strong debugging capability (Li et al., 2025). To analyze the
contributions of the Critic and Refiner steps, we compare our full framework to a variant
that includes only the Refiner step, which revises code according to reported bugs. Without

the Critic step, we hypothesize the following:

174

¥

—e— With Theorist - LLM-fgpt5) .----%
0.05 +— With Theons‘t k:l..M{gp‘tf'S/-'n:nnl}
—— Wurcfnweanst LLM (01)

I6 P
5 004 grassiiszzazoceee “27 Without Theorist - LLM (gpt-5)
% --x== Without Theorist - LLM (gpt-5-mini)
= 0.03 <-- Without Theorist - LLM (o1)
[1] .
E --=-- Without Theorist - LLM (03)

0.02

0.01

61x61 85x85 141x141 211x211 241x241
Resolution

Figure 30: Relative ¢2 error comparisons of neural operators designed by LLM frameworks

with and without Theorist on different resolutions.

The quality of the output of Theorist directly decides the performance of the LLM-

designed neural operators.

We then conduct experiments on the Darcy dataset and evaluate the relative ¢? error
across different resolutions. Moreover, we introduce another LLM (Gemini 2.0 Thinking) as
a judge, assigning a score (with a full mark of 5) to quantify the quality of the Theorist’s
feedback.

Table 29 reports the relative 2 errors of neural operators designed without the Critic
step. For gpt-5, o1, and 03, the Theorist provides high-quality feedback, resulting in only
a slight decrease in performance. However, for gpt-5-mini, the performance drops by more

than 30%.

6.4.4 Can LLMs design neural operators using obscure math?

One key observation during the design process is stated as follows:

175

Model 61 x 61 | 85 x 85 | 141 x 141 | 211 x 211 | 241 x 241 | Score

With Critic

LLM (gpt-5) 0.0183 | 0.0194 0.0205 0.0228 0.0246 4.5
LLM (gpt-5-mini) | 0.0185 | 0.0206 0.0213 0.0249 0.0251 4.4
LLM (ol) 0.0122 | 0.0163 0.0192 0.0207 0.0238 4.6
LLM (03) 0.0120 | 0.0164 0.0189 0.0201 0.0240 4.6

Without Critic

LLM (gpt-5) 0.0191 | 0.0216 0.0224 0.0231 0.0259 4.1
LLM (gpt-5-mini) | 0.0305 | 0.0341 0.0355 0.0368 0.0384 3.5
LLM (ol) 0.0160 | 0.0177 0.0201 0.0216 0.0249 4.4
LLM (03) 0.0162 | 0.0176 0.0204 0.0218 0.0257 4.4

Table 29: Relative ¢? error and score comparisons of neural operators designed by LLM

frameworks with and without Critic across six benchmark datasets.

Observation

Theorist tends to generalize the well-established theoretical insights and incorporate

them into the selected backbone.

Although the LLM-designed neural operators are novel, we further analyze whether LLMs
can design neural operators based on obscure mathematical results, thereby extending the
boundary of neural operators from combinations of existing components and incremental
contributions to existing architectures to fully new neural operators first proposed in the
literature. Obscure mathematical results refer to theories that have attracted attention
from only a small fraction of researchers worldwide. Given the lack of training data on
obscure mathematics, LLMs may struggle with these topics. Therefore, we conduct a new
ablation study that instructs the Theorist to design a neural operator utilizing adaptive

Fourier decomposition (AFD) (Qian et al., 2011) on the 1D Burgers’ equation dataset (Li

176

et al., 2020b). We find that the relative ¢ errors of neural operators guided by AFD are
consistently one to two orders of magnitude lower than those of neural operators designed
using mainstream theories across all four LLM models. For example, with GPT-5, the LLM-
designed AFD neural operator attains a relative £2 error of 0.013, whereas the LLM-designed
neural operator based on FNO achieves 0.0006.

In contrast, we also design a neural operator based on AFD ourselves, which reaches a
relative ¢2 error of 0.0009. That said, AFD has the potential to be integrated into neural
operators to improve their performance. However, LLM-designed AFD neural operators
perform worse than the human-designed version. Ultimately, we find that the reason is that
the Theorist does not fully understand AFD. To illustrate this, we showcase the Choice
and justification section of the Theorist’s feedback, where red indicates the parts of AFD

understood by the Theorist:

177

Choice and justification

- Choose an adaptive Fourier decomposition-based neural operator (AFD-NO): a
Fourier neural operator in space with an adaptive, data-dependent selection/mixing
of Fourier modes, wrapped inside a stable exponential time-differencing (ETD-1) in-
tegrator for the viscous term.

- Why it is best here:

1) Periodic boundary conditions and low-frequency initial conditions make the Fourier
basis the natural eigenbasis; Burgers’ nonlinearity redistributes energy across modes,
so learning in the spectral domain is efficient.

2) Adaptivity is key: noisy initial data and the incipient formation of steep gradients
require selectively attending to and mixing the subset of active modes. AFD layers
learn soft, sample-dependent spectral masks and frequency-wise linear maps, improv-
ing data efficiency and robustness versus fixed-mode FNOs.

3) Stability and inductive bias: we treat the viscous linear part exactly in Fourier
(ETD-1), leaving the network to learn only the convective nonlinearity. This aligns

with the PDE’s semigroup structure and improves numerical stability for = 0.01.

active modes.

With domain knowledge of AFD, this statement has been evaluated by several senior

researchers in the field. It was found that LLMs do not grasp the essence of AFD, which is
the rational approximation via pole selection in a reproducing kernel Hilbert space. Instead,

LLMs conflate Fourier decomposition with the Fourier transform and interpret poles as

space needed to implement AFD. Overall, LLMs produce misleading and incorrect content

due to hallucination. Moreover, LLMs tend to overfit to similar terms involving adaptivity

in Fourier transform theory, overlooking their differences.

Additionally, they ignore the requirements on the basis and the function

We point out that our prompting strategy is highly structured to constrain the LLM’s

reasoning space, rather than relying on it to invent mathematics from scratch. Specifically,

178

the prompt first explicitly provides the Theorist with a factory of existing neural operators
(including FNO, DeepONet, LNO, etc.) as an in-context “toolbox”. It then instructs it to
first select the most appropriate backbone architecture from this toolbox. Next, it guides it
to propose a specific mathematical modification to align that backbone with the specific the-
oretical properties of the given PDE (such as stiffness, boundary conditions, or conservation
laws). Meanwhile, the AFD failure case validates this strategy: when the LLM was forced to
use an “obscure” theory not in its pre-trained knowledge base, it began to “hallucinate” and
conflate concepts. Therefore, our framework’s success relies on guiding the LLM to apply
theories it already understands well and are validated, not on its ability to perform novel or
obscure mathematical derivations.

Furthermore, it is worth noting that the ablation study presented in Section 6.4.2 only
shows the impact of the Theorist component, not its initial correctness. The mechanism we
used for the independent validation of the Theorist’s output was the human expert review.
To clarify, this review was not conducted after the Critic or Refiner intervened. Instead,
it was performed specifically on the initial mathematical formulation and architecture de-
scription generated by the Theorist, before they were passed to the Critic. For 5 of the 6
benchmark problems we tested, the Theorist’s initial theoretical proposal was judged “Yes”
(i.e., theoretically correct and logically sound) by the human experts. This indicates that
the Theorist provided a solid theoretical foundation in the majority of cases. Subsequently,
the Critic’s role was focused on identifying implementation-level issues (such as numerical
instability, code inefficiency, or edge cases) rather than correcting fundamental theoretical
errors. The only exception was the AFD case, where the initial theory was indeed flawed, and
this was accurately identified by our human expert review. This confirms that the Theorist’s

output is, by and large, theoretically reliable before entering the Critic’s review loop.

6.4.5 How much time does it take for LLM to design a neural operator?

In terms of design time cost, for a typical benchmark problem (e.g., 2D Navier-Stokes),

179

the average wall-clock time for our four-agent framework to go from receiving the problem
specification to generating a validated, bug-free final operator code is about 35-45 minutes.
This process, running on our experimental workstation (equipped with a single NVIDIA
RTX 4090), requires an average of 7-9 full agent iterations (i.e., the Theorist — Programmer
— Critic — Refiner loop).

While the “human expert effort” baseline is difficult to quantify precisely, it is known that
neural operator design is still considered more of an art than a science (Sanderse et al., 2025),
typically involving deep intuition, expert experience, numerous iterations, and trial-and-error
experimentation. Thus, our proposed automated process represents a significant compression
in time cost compared to the days or even weeks required for a human expert to design,
implement, and debug a novel, competitive neural operator architecture. Furthermore, it is
worth mentioning that the time it takes for a non-expert in neural operators to develop a

working neural operator solver for PDEs will be much longer.

180

CHAPTER VII

CONCLUSIONS AND FUTURE DIRECTIONS

7.1 Summary of Contributions

This dissertation presents comprehensive advances in numerical modeling and computa-
tion for solving partial differential equations, with applications spanning from soil moisture
monitoring to general PDE problems on complex geometries. The work bridges traditional
discretization-based numerical methods with modern neural operator learning, establishing
a comprehensive framework for accurate and efficient PDE solution. The research contri-
butions span four major areas: hybrid data-driven numerical methods for nonlinear PDEs,
theory-guided neural operator architectures for problems on manifolds, advanced architec-
tures for irregular geometries and inverse problems, and automated neural operator design

using large language models.

7.1.1 Hybrid Numerical Methods for the Richards Equation

We introduced the Message Passing Finite Volume Method (MP-FVM), a novel solution
algorithm that holistically integrates adaptive fixed-point iteration scheme, encoder-decoder
neural network architecture, Sobolev training, and message passing mechanism in a finite vol-
ume discretization framework. The MP-FVM algorithm addresses the fundamental challenge
of solving the highly nonlinear Richards equation, which governs water flow in unsaturated
soils and is critical for precision agriculture and soil moisture monitoring applications. Un-
like conventional finite volume methods that convert the discretized equation into large, stiff

matrix equations, the MP-FVM algorithm adopts an adaptive fixed-point iteration scheme

181

where the linearization parameter adjusts dynamically with respect to space, time, and iter-
ation count. This adaptive approach ensures the numerical scheme remains well-posed and
achieves convergence within specified iteration limits.

A key innovation of the MP-FVM algorithm is its integration of encoder-decoder neural
network architecture with the message passing mechanism. The encoder-decoder architec-
ture learns complex nonlinear relationships between pressure head solutions obtained from
different numerical solvers, capturing both the sensitivity to different parameter choices and
the distinct topological features of solution spaces. Through persistent homology analysis,
we demonstrated that solutions from different sources exhibit fundamentally different topo-
logical structures, motivating the use of encoder networks to map between these topological
spaces. The message passing mechanism, implemented within the latent space through itera-
tively solved latent variables, enhances convergence and numerical stability while preserving
physical consistency and mass conservation.

We incorporated Sobolev training in the loss functions for both encoder and decoder net-
works, adding regularization terms that enforce consistency not only at the function value
level but also across derivatives. This ensures compatibility and stability across the solu-
tion space, preventing small perturbations in solutions at initial conditions or previous time
steps from leading to slow convergence or inaccurate solutions. We rigorously proved conver-
gence of the MP-FVM algorithm by showing that the iterative scheme is contractive, with
error decreasing geometrically at each iteration. Through comprehensive case studies span-
ning one-dimensional to three-dimensional problems, including benchmark problems with
analytical solutions, layered soil scenarios with discontinuous properties, and realistic irriga-
tion applications with actual center-pivot systems, we demonstrated that MP-F'VM achieves
superior accuracy compared to state-of-the-art solvers including finite difference methods,
physics-informed neural networks, and commercial HYDRUS software. The algorithm also
better preserves mass conservation and underlying physical relationships, with mass balance

measures consistently exceeding ninety-five percent and often approaching or exceeding one

182

hundred percent.

7.1.2 Theory-Guided Neural Operators for PDEs on Manifolds

We introduced AFDONet, the first neural PDE solver whose architectural and component
design is fully guided by adaptive Fourier decomposition theory. This work presents a new
paradigm for designing neural operator frameworks, transforming neural architecture design
from an art requiring rare interdisciplinary expertise into a systematic, science-based process
grounded in rigorous mathematical theory. AFD is a signal decomposition technique that
leverages the Takenaka-Malmquist system and adaptive orthogonal bases to sparsely repre-
sent functions in reproducing kernel Hilbert spaces. Unlike classical Fourier methods that
use fixed global basis functions, AFD adaptively selects poles that parameterize rational or-
thogonal bases according to a maximal selection principle, enabling accurate representation
of functions with localized features, sharp gradients, or non-periodic structures.

The AFDONet architecture consists of three main components designed following AFD
principles. The encoder, based on a variational autoencoder framework, maps PDE inputs
to a latent space, exploiting the observation that many PDE solution fields lie on low-
dimensional manifolds in high-dimensional function space. The latent-to-RKHS network
projects latent representations to their nearest reproducing kernel Hilbert space where AFD
operations are defined, explicitly constraining the functional space through feature maps
that perform orthogonal projection. This ensures the reproducing property is satisfied and
enables rigorous theoretical analysis. The AFD-type dynamic convolutional kernel network
decoder reconstructs solutions through adaptive basis selection, replicating AFD operations
by performing cross-correlation between mapped representations and orthogonal reproducing
kernels, assigning multipliers to each convolutional layer output, and incorporating skip
connections.

We proved three main theoretical results establishing the mathematical groundness of

AFDONet. First, we bounded the generalization error in terms of the number of training

183

samples, network depth and width, and the smoothness of the target function, showing that
with appropriate network scaling, the expected error decays polynomially in the number of
samples. Second, we proved the existence of the RKHS constructed by the latent-to-RKHS
network by extending results from approximation theory, showing that for any function in
a Hilbert space and any tolerance, there exists a neural network that maps the function
to an RKHS with controlled approximation error. Third, we proved convergence of the
dynamic convolutional kernel network decoder by leveraging the convergence mechanism
of AFD, establishing conditions on layer width, depth, and kernel complexity that ensure
reconstructed solutions converge to true solutions.

Through extensive experimental validation on benchmark problems including the Helmholtz
equation on planar manifolds with perfectly matched layers, incompressible Navier-Stokes
equations on tori, and Poisson equations on quarter-cylindrical surfaces, we demonstrated
that AFDONet significantly outperforms existing neural operators such as Fourier Neural
Operator, Wavelet Neural Operator, Decomposed Fourier Neural Operator, and DeepONet.
The superior performance stems from AFDONet’s ability to adapt its basis functions to spe-
cific geometry and solution characteristics of each problem. While methods relying on fast
Fourier transforms struggle with non-periodic boundaries and curved geometries, AFDONet
uses adaptive rational bases parameterized by learned poles that locally adapt to sharp gradi-
ents, discontinuities, and complex geometries. Comprehensive ablation studies demonstrated
the necessity of each component, showing that the latent-to-RKHS network consistently out-
performs latent-to-kernel approaches by at least an order of magnitude for most problems,
and that the AFD-type dynamic convolutional kernel network decoder achieves significantly
better performance than multi-layer perceptron, propagation, or static convolutional neural

network decoders.

184

7.1.3 Extension to Inverse Problems in Banach Spaces

We extended AFDONet to inverse problems in Banach spaces, introducing AFDONet-inv to
address the challenge that most existing operator learning frameworks assume parameters
lie in Hilbert spaces, while many real-world inverse problems involve parameters with sparse
or discontinuous structures that are better modeled in Banach spaces, particularly L' or
bounded variation spaces. Inverse problems for PDEs aim to identify unknown parameters
from observations of system outputs and are typically ill-posed, requiring careful regular-
ization. By developing an operator learning framework that explicitly accounts for Banach
space structures rather than restricting to Hilbert spaces, AFDONet-inv can handle inverse
problems where parameters naturally exhibit sparse or discontinuous characteristics, such as
identifying piecewise constant material properties or localized sources.

AFDONet-inv extends the AFD framework from reproducing kernel Hilbert spaces to re-
producing kernel Banach spaces by constructing appropriate reproducing kernels for Banach
spaces and modifying the orthogonalization procedure to account for the duality structure of
Banach spaces. The architecture explicitly represents the mapping from operator spaces to
parameter spaces, enabling solution of inverse problems where both inputs and outputs are
functional objects. The framework incorporates sparsity-promoting regularization through
appropriate choice of Banach space norms, naturally enforcing sparse or structured solutions
without requiring explicit penalty terms. We derived convergence and stability results for
AFDONet-inv, showing that the learned inverse operators are robust to noise in observations
through careful analysis of the interplay between approximation error, sampling error, and
regularization.

Through benchmark inverse problems including coefficient identification for elliptic PDEs
with sparse coefficient fields, source identification problems, and initial condition reconstruc-
tion, we demonstrated that AFDONet-inv achieves superior accuracy and stability compared
to Hilbert space approaches. The Banach space formulation provides more faithful repre-

sentation of the true parameter structure, leading to reconstructions that better capture

185

sharp interfaces and sparse features. Comparisons with traditional variational methods,
Bayesian inversion techniques, and Hilbert space operator learning approaches confirmed
the advantages of the Banach space formulation for problems with inherently sparse struc-
tures, with AFDONet-inv consistently producing more accurate parameter estimates and

exhibiting better noise robustness.

7.1.4 Advanced Neural Operator Architectures

We developed Adaptive Fourier Mamba Operators (AFMO), which integrate reproducing
kernels for state-space models with Takenaka-Malmquist systems, enabling accurate solu-
tions on diverse geometries and meshes. Frequency-based neural operators are attractive
for their ability to capture global dependencies through spectral representations, but they
face significant challenges when dealing with irregular geometries and non-uniform meshes.
Traditional Fourier transforms require regular grids and periodic boundary conditions, lim-
iting their applicability to complex real-world domains. AFMO addresses these limitations
by building upon recent advances in state-space models, particularly the Mamba architec-
ture, which has shown remarkable efficiency in sequence modeling tasks through selective
state-space representations.

The key innovation in AFMO is the integration of reproducing kernel theory with state-
space models to create a neural operator that can handle irregular geometries while maintain-
ing the computational efficiency of frequency-based approaches. We constructed reproducing
kernels that are compatible with the state-space model’s hidden state dynamics, allowing
the network to learn representations that respect the geometry of the problem domain. The
Takenaka-Malmquist system provides the theoretical foundation for adaptively selecting ba-
sis functions that can accurately represent solutions on irregular domains. By parameterizing
the state-space model’s matrices using these adaptive bases, AFMO can selectively focus on
important spatial and temporal features while efficiently propagating information across the

domain. Unlike methods requiring interpolation or padding to handle irregular domains,

186

potentially introducing artifacts and reducing accuracy, AFMO operates directly on point
clouds or unstructured meshes, with the state-space formulation enabling linear-time com-
plexity in sequence length.

We also developed pole optimization techniques for AFD-based neural layers, addressing
the challenge of selecting optimal poles that lie on Riemannian manifolds. In the AFD
framework, pole selection is crucial for achieving accurate and efficient decompositions. The
classical maximal selection principle provides a greedy algorithm for pole selection, but this
approach can be computationally expensive and may not yield globally optimal results.
When working with PDEs defined on Riemannian manifolds, poles must lie on the manifold
itself, introducing geometric constraints that complicate the optimization problem. Our
pole optimization approach formulates the selection of poles as a constrained optimization
problem on the manifold, where the objective is to maximize projection magnitudes while
respecting manifold geometry.

We developed gradient-based optimization algorithms that operate in the tangent spaces
of the manifold, using Riemannian optimization techniques to navigate the curved geometry.
The key challenge is computing gradients of projection magnitudes with respect to pole
locations while maintaining numerical stability, especially when orthogonalization produces
nearly singular systems. We addressed this through a combination of techniques including
regularized Gram-Schmidt orthogonalization, manifold-aware learning rate scheduling, and
careful initialization strategies that leverage spectral properties of the reproducing kernels.
By jointly optimizing pole locations and network weights during training, rather than using
fixed or greedily selected poles, we achieve better adaptation to problem-specific features
and more compact representations. Experiments on various PDE benchmarks showed that
optimized pole placement leads to faster convergence during training, better generalization

to unseen parameters, and improved handling of sharp features and discontinuities.

187

7.1.5 Automated Neural Operator Design

We proposed a four-agent Large Language Model pipeline consisting of specialized agents
(Theorist, Programmer, Critic, Refiner) that designs mathematically grounded neural op-
erators end-to-end. The design of neural operators for specific PDE problems currently
requires substantial expertise in both the mathematical properties of the equations and the
architectural patterns of neural networks. Domain experts must understand the structure
of the PDE, identify appropriate functional spaces, select suitable basis representations, and
translate these insights into implementable neural architectures through extensive trial and
error. This process is time-consuming, requires rare interdisciplinary expertise, and often
results in suboptimal designs due to the vast space of possible architectural choices.

Our LLM-assisted framework automates this design process while maintaining mathe-
matical rigor and grounding. The Theorist agent takes as input a description of the PDE
problem and relevant mathematical theories, then reasons about the key mathematical struc-
tures that should be reflected in the neural architecture. Drawing on its broad knowledge of
mathematical theories, approximation methods, and operator theory, the Theorist identifies
suitable function spaces, proposes appropriate basis representations, and outlines the mathe-
matical framework that should guide the architecture design. The Programmer agent trans-
lates the Theorist’s mathematical blueprint into executable code, making specific choices
about network layers, activation functions, training procedures, and implementation details
while remaining faithful to the mathematical principles identified by the Theorist.

The Critic agent evaluates the designed architecture both theoretically and empirically. It
checks whether the implementation correctly reflects the intended mathematical structures,
identifies potential issues such as numerical instabilities or violations of physical constraints,
and suggests improvements based on mathematical analysis. The Critic performs both static
analysis of the code and dynamic analysis of training behavior, checking for issues like gradi-
ent pathologies, inappropriate initialization, or insufficient expressiveness. The Refiner agent

iteratively improves the architecture based on feedback from the Critic, making adjustments

188

to address identified issues while preserving the core mathematical framework. This refine-
ment process continues until the architecture meets specified quality criteria in terms of both
mathematical soundness and empirical performance.

This LLM-assisted framework consistently outperforms human-designed baselines across
diverse PDE benchmarks spanning different equation types, domain geometries, and physi-
cal phenomena. We evaluated the framework on benchmark problems including advection-
diffusion equations, Burgers’ equation, Navier-Stokes equations, and various elliptic and
parabolic PDEs. The automatically designed architectures achieve comparable or superior
accuracy to carefully hand-crafted baseline methods while requiring significantly less human
effort. The framework demonstrates good generalization, producing effective architectures
for problems that differ from those seen during the development of the pipeline, suggest-
ing that the LLMs have learned general principles of neural operator design rather than
memorizing specific patterns. We demonstrated that the framework is reliable across most
mathematical theories commonly used in PDE analysis, including spectral methods, finite
element methods, kernel methods, and operator splitting techniques, showing that it can

effectively leverage diverse mathematical tools to create specialized neural architectures.

7.2 Limitations and Discussion

While this dissertation presents significant advances in numerical PDE solution methods,
several limitations deserve honest assessment and provide opportunities for future improve-
ment. Understanding these limitations is essential for appropriate application of the devel-

oped methods and for identifying productive directions for future research.

7.2.1 Limitations of Hybrid Numerical Methods

The MP-FVM algorithm, while achieving superior accuracy and mass conservation compared
to conventional methods, has certain practical limitations. First, since the encoder and

decoder networks only approximate the true mappings between solution spaces, small but

189

visible discrepancies may be introduced near domain boundaries even when the finite volume
based fixed-point iteration scheme by itself matches ground truth solutions perfectly. This
boundary effect arises from the finite capacity of neural networks to represent arbitrarily
complex mappings and from the training data distribution, which may not adequately sample
the boundary regions. For problems where boundary accuracy is critical, this limitation
requires careful consideration, potentially through hybrid approaches that switch to direct
adaptive fixed-point iteration near boundaries.

Second, the sensitivity of solution quality to the Sobolev regularization parameter in
the loss functions presents a practical challenge. While smaller regularization parameters
generally improve accuracy, the optimal value varies across different problem settings and
initial conditions. When using pre-trained models for transfer learning, this sensitivity is
significantly reduced, but for problems requiring training from scratch, careful tuning of the
regularization parameter is necessary. The computational cost of neural network training,
while amortized across multiple solves, remains non-negligible. Although we demonstrated
substantial reductions in training time through transfer learning and the use of pre-trained
models, the initial training phase for a new class of problems still requires more time than

conventional direct solvers for single-instance problems.

7.2.2 Limitations of Neural Operator Frameworks

AFDONet, despite its superior performance on manifold-based PDE problems, has certain
limitations related to its theoretical assumptions and practical implementation. The frame-
work assumes that PDE solution fields lie on low-dimensional manifolds in high-dimensional
function space, which is true for many physical problems but may not hold universally, par-
ticularly for highly turbulent or chaotic systems where the effective dimensionality of the
solution manifold may be large. For such problems, the encoder may require significantly
higher latent space dimensionality, potentially reducing the computational advantages of the

approach.

190

The construction of the latent-to-RKHS network, while theoretically justified, requires
careful selection of the reproducing kernel and the number of retained frequency modes.
Different PDE problems may have optimal solutions in different reproducing kernel Hilbert
spaces, and automatically identifying the most appropriate RKHS for a given problem re-
mains an open question. The current implementation uses Fourier basis kernels, which work
well for many problems but may not be optimal for all situations. The adaptive pole selection
mechanism, while more flexible than fixed basis approaches, introduces additional hyperpa-
rameters related to the maximal selection principle, including the threshold parameters that
determine when a pole is considered sufficiently informative.

For AFDONet-inv addressing inverse problems in Banach spaces, the choice of appropri-
ate Banach space norm and the strength of sparsity-promoting regularization significantly
impact reconstruction quality. While we demonstrated superior performance with L! and
bounded variation norms for problems with known sparse or piecewise constant structure,
the optimal choice for problems with unknown parameter characteristics is less clear. The
framework currently requires some prior knowledge about the expected structure of param-
eters, whether sparse, smooth, or piecewise constant, to select appropriate functional spaces
and regularization schemes. Developing adaptive methods that can automatically identify
the most suitable Banach space and regularization strategy from observed data remains an

important open problem.

7.2.3 Limitations of Advanced Architectures and Automated Design

AFMO, while effective for irregular geometries and unstructured meshes, requires careful
tuning of the state-space model parameters, including the state dimensionality and the se-
lective attention mechanism weights. The optimal configuration of these parameters depends
on the specific geometry and PDE characteristics, and currently requires some trial and error
or hyperparameter optimization. The computational cost of AFMO, while asymptotically

linear in sequence length, can still be substantial for very large-scale problems with mil-

191

lions of discretization points, as the state-space model must maintain and propagate state
information across the entire domain.

The LLM-assisted neural operator design framework, while powerful and demonstrating
good generalization, has limitations related to the current capabilities of large language mod-
els. First, the framework’s reliability depends on the LLM’s training data, which may not
adequately cover highly specialized or recently developed mathematical theories. For cutting-
edge PDE problems involving novel mathematical frameworks, the Theorist agent may pro-
duce incomplete or incorrect mathematical guidance. Second, the Programmer agent, while
generally effective at translating mathematical concepts to code, can occasionally introduce
implementation bugs or make suboptimal architectural choices that are difficult for the Critic
to detect automatically.

The iterative refinement process between Critic and Refiner agents, while improving de-
sign quality, can sometimes fail to converge for particularly challenging problems, resulting in
designs that meet basic functionality requirements but do not achieve optimal performance.
The framework currently lacks sophisticated mechanisms for exploring truly novel architec-
tural patterns that deviate significantly from established neural operator paradigms. While
the agents can combine existing components in creative ways, generating fundamentally new
types of neural network layers or completely novel training procedures remains beyond the
current framework’s capabilities. Finally, the computational cost of running multiple LLM
agents iteratively, while modest compared to manual design effort, is non-negligible and may

limit the framework’s applicability for rapid prototyping scenarios.

7.3 Future Research Directions

The limitations and open questions identified in this work suggest numerous promising di-
rections for future research that could significantly extend the impact and applicability of

the developed methods.

192

7.3.1 Extensions of Hybrid Numerical Methods

Several promising directions exist for extending the MP-FVM algorithm. First, developing
hybrid switch-solve approaches that seamlessly transition between MP-FVM in the domain
interior and direct adaptive fixed-point iteration near boundaries could address the boundary
accuracy limitations while retaining the superior performance in interior regions. This would
require developing criteria for determining the boundary region width and smooth transition
mechanisms to avoid introducing artificial discontinuities at the interface between the two
solution approaches.

Second, implementing staged or homotopy training strategies for the Sobolev regulariza-
tion parameter could reduce sensitivity to hyperparameter selection. By starting with pure
function value matching (zero regularization parameter) during pre-training, then gradually
increasing the parameter to introduce derivative matching, we could achieve better con-
vergence and avoid over-smoothing while still capturing the benefits of Sobolev training.
Adaptive regularization schemes that automatically adjust the parameter based on training
dynamics and validation performance could further reduce the need for manual tuning.

Third, extending the MP-FVM framework to coupled systems of PDEs, such as simul-
taneous solution of the Richards equation with solute transport equations for modeling con-
taminant movement in unsaturated soils, presents both challenges and opportunities. The
message passing mechanism would need to operate across multiple latent spaces correspond-
ing to different physical variables, potentially with cross-variable attention mechanisms to
capture coupling between equations. Such extensions would enable more comprehensive

modeling of real-world agricultural and environmental scenarios.

7.3.2 Extensions of Neural Operator Frameworks

For AFDONet, several theoretical and practical extensions could broaden its applicability.
Developing methods for automatically identifying the most appropriate reproducing kernel

Hilbert space for a given problem would enhance the framework’s autonomy. This could

193

involve meta-learning approaches that train over a distribution of PDE problems to learn
which RKHS characteristics correlate with good performance for different equation types, or
Bayesian optimization methods that efficiently explore the space of possible kernel functions
and hyperparameters.

Extending AFDONet to time-dependent PDEs on evolving manifolds, where the domain
geometry itself changes over time, presents significant theoretical and computational chal-
lenges. This would require developing dynamic versions of the latent-to-RKHS network that
can adapt to changing manifold structure, possibly through tracking the evolution of repro-
ducing kernels as the manifold deforms. Applications include biological growth processes,
fluid-structure interaction problems, and shape optimization.

For inverse problems, developing uncertainty quantification frameworks for AFDONet-
inv would provide crucial information about the reliability of parameter estimates. Bayesian
neural operator approaches that maintain distributions over possible inverse operators rather
than point estimates could quantify both epistemic uncertainty from limited training data
and aleatoric uncertainty from noisy observations. This would enable principled decision-
making in applications where parameter estimates inform critical interventions.

Extending the Banach space framework to more exotic function spaces such as Besov
spaces or spaces with mixed regularity could address inverse problems with parameters ex-
hibiting directional smoothness or anisotropic features. Developing adaptive methods that
can identify the appropriate Banach space structure from observed data, perhaps through
sparse coding or dictionary learning approaches, would reduce the need for prior knowledge

about parameter characteristics.

7.3.3 Extensions of Advanced Architectures

For AFMO, investigating hybrid approaches that combine state-space models with attention
mechanisms could capture both long-range dependencies efficiently handled by state-space

models and complex local interactions better represented by attention. Developing theoret-

194

ical understanding of what types of PDE operators and geometries are most amenable to
state-space representation versus other approaches would guide appropriate application of
AFMO.

Extending AFMO to fully adaptive mesh refinement scenarios, where the mesh structure
changes during solution to resolve regions with high gradients or errors, requires developing
mechanisms for updating the state-space model structure dynamically. This could involve
neural network architectures that can gracefully handle varying input dimensions and con-
nectivity patterns as the mesh is refined or coarsened.

For pole optimization techniques, developing multi-fidelity approaches that use cheap
low-fidelity PDE solves to guide pole placement before expensive high-fidelity training could
reduce optimization costs. Transfer learning strategies that leverage optimal pole config-
urations from related problems could provide good initialization, reducing the number of
optimization iterations required. Theoretical analysis of the optimization landscape for pole
selection on different manifold types would help identify problem characteristics that lead to
easy or difficult optimization, guiding development of problem-specific optimization strate-

gies.

7.3.4 Extensions of Automated Design

The LLM-assisted neural operator design framework could be extended in several valuable
directions. First, developing mechanisms for the framework to propose and evaluate truly
novel neural network components, rather than only combining existing layers in new ways,
would enable discovery of fundamentally new architectural patterns. This might involve
having the LLM agents interact with symbolic mathematics systems to formally derive neural
network structures from first principles, or implementing evolutionary approaches where
variants of proposed architectures are systematically explored.

Second, integrating the design framework with automated experiment management sys-

tems would enable closed-loop optimization where the framework automatically trains and

195

evaluates proposed designs, uses performance results to inform refined proposals, and iterates
until satisfactory performance is achieved. This would require developing robust error han-
dling to manage training failures and numerical instabilities, and implementing intelligent
experiment scheduling to efficiently explore the design space.

Third, extending the framework to handle multi-physics problems and coupled systems
would broaden its applicability to real-world engineering applications. The Theorist agent
would need access to domain-specific knowledge about coupling mechanisms and interface
conditions, and the framework would need to reason about how to represent interactions
between different physical phenomena in the neural architecture.

Developing specialized versions of the framework for particular application domains, with
domain-specific knowledge built into the agents, could improve reliability and performance.
For example, a version focused on fluid dynamics could incorporate deep knowledge of con-
servation laws, boundary layer phenomena, and turbulence modeling, enabling it to design

more effective neural operators for these problems than the general-purpose framework.

7.3.5 Broader Research Directions

Beyond extensions of specific methods developed in this dissertation, several broader research
directions could significantly advance the field of neural PDE solution. First, developing rig-
orous theoretical frameworks for understanding when and why neural operators succeed or
fail would enable principled design choices and more reliable application. This includes
characterizing the complexity of PDE solution mappings in terms of neural network expres-
sivity requirements, understanding the sample complexity of learning PDE operators as a
function of equation characteristics, and deriving generalization bounds that account for the
functional nature of inputs and outputs.

Second, integrating neural operators with traditional adaptive numerical methods could
create powerful hybrid approaches that leverage the strengths of both paradigms. For ex-

ample, using neural operators as preconditioners for iterative solvers could accelerate con-

196

vergence, while adaptive refinement based on neural operator uncertainty estimates could
improve efficiency. Developing theoretical frameworks for analyzing these hybrid methods,
including convergence guarantees and error bounds, would establish rigorous foundations for
their use.

Third, exploring the use of neural operators for multi-scale modeling, where problems
span vastly different spatial or temporal scales, represents an important challenge. Hier-
archical neural operator architectures that explicitly represent different scales, or attention
mechanisms that can dynamically focus on relevant scales depending on input characteristics,
could enable efficient solution of multi-scale problems. Applications include modeling molec-
ular dynamics coupled to continuum mechanics, simulating atmospheric processes spanning
molecular diffusion to global circulation, and analyzing biological systems across molecular
to tissue scales.

Fourth, developing physics-informed neural operators that explicitly incorporate con-
servation laws, symmetries, and other physical constraints in their architecture or training
would improve reliability and generalization. While current approaches either embed physics
in loss functions or design architectures guided by mathematical theory, tighter integration of
physical knowledge throughout the learning process could yield more robust and trustworthy
solutions.

Finally, establishing comprehensive benchmarking frameworks and open datasets for neu-
ral PDE solvers would accelerate progress in the field. Standardized benchmark problems
spanning diverse equation types, geometries, and difficulty levels, along with reference solu-
tions and evaluation metrics, would enable fair comparison of different methods and iden-
tification of remaining challenges. Community-driven efforts to curate such benchmarks
and maintain repositories of neural operator implementations would significantly benefit the

research community.

197

7.4 Closing Remarks

This dissertation has presented comprehensive advances in numerical methods for partial
differential equations, bridging traditional numerical analysis with modern machine learning
to create hybrid algorithms, theory-guided neural operators, and automated design frame-
works. From addressing the practical challenges of soil moisture monitoring through the
Message Passing Finite Volume Method, to developing mathematically grounded neural op-
erators for problems on arbitrary manifolds and inverse problems in Banach spaces, to cre-
ating automated systems for neural operator design using large language models, this work
demonstrates that the synergistic combination of classical numerical methods and data-
driven approaches can achieve superior performance compared to either paradigm alone.

The key insight underlying this work is that mathematical theory should guide, not
merely justify, the design of neural architectures for PDE solution. By systematically trans-
lating established mathematical frameworks such as adaptive Fourier decomposition into
neural network components, we can create solvers that inherit desirable theoretical prop-
erties including convergence guarantees, approximation error bounds, and stability under
perturbations. At the same time, the flexibility and learning capabilities of neural networks
enable these methods to adapt to problem-specific characteristics and achieve accuracy levels
difficult to attain with purely classical approaches.

The methods developed in this dissertation have immediate practical applications in
precision agriculture, soil moisture monitoring, groundwater modeling, and numerous other
areas where accurate PDE solution is critical but computationally challenging. More broadly,
the methodological contributions, particularly the theory-guided design paradigm and the
automated neural operator design framework, provide tools and principles that extend far
beyond the specific problems studied here. As the scientific and engineering communities
increasingly adopt machine learning for computational modeling, the approaches developed

in this work offer a path toward creating data-driven methods that are not only powerful

198

but also mathematically principled, physically consistent, and theoretically grounded.

The future of computational science lies in thoughtful integration of traditional mathe-
matical frameworks with modern data-driven techniques. This dissertation represents steps
along that path, demonstrating that rigorous mathematical foundations and flexible ma-
chine learning capabilities can be synergistically combined to advance the state of the art
in numerical PDE solution. The limitations and open questions identified suggest numer-
ous opportunities for continued progress, and we look forward to future developments that
build upon this foundation to enable accurate, efficient, and reliable solution of increasingly

complex partial differential equations arising in science and engineering.

199

REFERENCES

Naafey Aamer, Muhammad Nabeel Asim, Shan Munir, and Andreas Dengel. Automating
ai discovery for biomedicine through knowledge graphs and LLM agents. bioRxiv, pp.
2025-05, 2025.

Nahla Abdellatif, Christine Bernardi, Moncef Touihri, and Driss Yakoubi. A priori error
analysis of the implicit Euler, spectral discretization of a nonlinear equation for a flow in a
partially saturated porous media. Advances in Pure and Applied Mathematics, 9(1):1-27,
2018.

Robert A Adams and John JF Fournier. Sobolev spaces, volume 140. Elsevier, 2003.

Bernard T. Agyeman, Song Bo, Soumya R. Sahoo, Xunyuan Yin, Jinfeng Liu, and Sirish L.
Shah. Soil moisture map construction using microwave remote sensors and sequential data

assimilation, 2020. URL https://arxiv.org/abs/2010.07037.

Bacim Alali and Nathan Albin. Fourier spectral methods for nonlocal models. Journal of

Peridynamics and Nonlocal Modeling, 2:317-335, 2020.

Mario Amrein. Adaptive fixed point iterations for semilinear elliptic partial differential

equations. Calcolo, 56(3):30, 2019.

Nakhlé H Asmar. Partial differential equations with Fourier series and boundary value prob-

lems. Courier Dover Publications, 2016.

Sheldon Axler, Paul Bourdon, and Wade Ramey. Harmonic Function Theory, volume 137

of Graduate Texts in Mathematics. Springer, 2nd edition, 2001.

200

https://arxiv.org/abs/2010.07037

Toshiyuki Bandai and Teamrat A. Ghezzehei. Physics-informed neural networks with mono-
tonicity constraints for Richardson-Richards equation: Estimation of constitutive rela-
tionships and soil water flux density from volumetric water content measurements. Water

Resources Research, 57(2):e2020WR027642, 2021.

Yohai Bar-Sinai, Stephan Hoyer, Jason Hickey, and Michael P Brenner. Learning data-driven
discretizations for partial differential equations. Proceedings of the National Academy of

Sciences, 116(31):15344-15349, 2019.

Guy Barles and Halil Mete Soner. Option pricing with transaction costs and a nonlinear

Black-Scholes equation. Finance and Stochastics, 2(4):369-397, 1998.

Marco Berardi, Fabio Difonzo, Michele Vurro, and Luciano Lopez. The 1D Richards’ equa-
tion in two layered soils: a filippov approach to treat discontinuities. Advances in Water

Resources, 115:264-272, 2018.

Luca Bergamaschi and Mario Putti. Mixed finite elements and Newton-type linearizations
for the solution of Richards’ equation. International Journal for Numerical Methods in

Engineering, 45(8):1025-1046, 1999.

Earl Berkson and Thomas Gillespie. The generalized M. Riesz theorem and transference.

Pacific Journal of Mathematics, 120(2):279-288, 1985.

Julius Berner, Dennis Elbrachter, Philipp Grohs, and Arnulf Jentzen. Towards a regularity
theory for ReLLU networks — chain rule and global error estimates. In 2019 13th Inter-
national conference on Sampling Theory and Applications (SampTA), pp. 1-5, 2019. doi:
10.1109/SampTA45681.2019.9031005.

Rong Bian, Yu Geng, Zijian Yang, and Bing Cheng. Automathkg: The automated mathe-
matical knowledge graph based on llm and vector database. Computational Intelligence,

41(4):e70096, 2025.

201

Alberto Bietti. Approximation and learning with deep convolutional models: A kernel per-

spective. In International Conference on Learning Representations, 2022.

Boris Bonev, Thorsten Kurth, Christian Hundt, Jaideep Pathak, Maximilian Baust, Karthik
Kashinath, and Anima Anandkumar. Spherical Fourier neural operators: Learning stable

dynamics on the sphere. In International Conference on Machine Learning, pp. 2806—2823.

PMLR, 2023.

Stéphane Boucheron, Gébor Lugosi, and Pascal Massart. Concentration Inequalities: A

Nonasymptotic Theory of Independence. Oxford University Press, 2012.

Olivier Bousquet. A Bennett concentration inequality and its application to suprema of

empirical processes. Comptes Rendus Mathematique, 334(6):495-500, 2002.

Johannes Brandstetter, Daniel E. Worrall, and Max Welling. Message passing neural PDE

solvers. CoRR, abs/2202.03376, 2022. URL https://arxiv.org/abs/2202.03376.

R. Brecht, L. Bakels, A. Bihlo, and A. Stohl. Improving trajectory calculations by flexpart
10.4+ using single-image super-resolution. Geoscientific Model Development, 16(8):2181—
2192, 2023.

Haim Brezis and Haim Brézis. Functional analysis, Sobolev spaces and partial differential

equations. Springer, 1 edition, 2011.

Michael M Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst.
Geometric deep learning: going beyond Euclidean data. IEEE Signal Processing Magazine,
34(4):18-42, 2017.

Andreas Buchberger, Christian Hager, Henry D Pfister, Laurent Schmalen, and Alexan-
dre Graell i Amat. Pruning and quantizing neural belief propagation decoders. [IEFE

Journal on Selected Areas in Communications, 39(7):1957-1966, 2020.

202

https://arxiv.org/abs/2202.03376

Qianying Cao, Somdatta Goswami, and George Em Karniadakis. Laplace neural operator

for solving differential equations. Nature Machine Intelligence, 6(6):631-640, 2024.

Shuhao Cao. Choose a transformer: Fourier or galerkin. Advances in neural information

processing systems, 34:24924-24940, 2021.

Jean-Guy Caputo and Yury A. Stepanyants. Front solutions of Richards’ equation. Transport
in Porous Media, 74(1):1-20, August 2008.

Andrei Caragea, Dae Gwan Lee, Johannes Maly, Gotz Pfander, and Felix Voigtlaender.
Quantitative approximation results for complex-valued neural networks. SIAM Journal

on Mathematics of Data Science, 4(2):553-580, 2022.

C Carey, TJ Scanlon, and SM Fraser. SUCCA—an alternative scheme to reduce the effects

of multidimensional false diffusion. Applied Mathematical Modelling, 17(5):263-270, 1993.

Deborah Carlander, Kiyoshiro Okada, Henrik Engstrom, and Shuichi Kurabayashi. Con-
trolled chain of thought: Eliciting role-play understanding in llm through prompts. In
2024 IEEE Conference on Games (CoG), pp. 1-4. IEEE, 2024.

Robert F Carsel and Rudolph S Parrish. Developing joint probability distributions of soil

water retention characteristics. Water Resources Research, 24(5):755-769, 1988.

Michael A. Celia and Rebecca Zarba. A comparative study of numerical solutions for un-
saturated flow. In S. N. Atluri and G. Yagawa (eds.), Computational Mechanics '88, pp.
1659-1662, Berlin, Heidelberg, 1988. Springer Berlin Heidelberg.

Michael A Celia, Efthimios T Bouloutas, and Rebecca L Zarba. A general mass-conservative
numerical solution for the unsaturated flow equation. Water Resources Research, 26(7):

1483-1496, 1990.

Meng Chen and Leevan Ling. Extrinsic meshless collocation methods for PDEs on manifolds.

SIAM Journal on Numerical Analysis, 58(2):988-1007, 2020.

203

Qiuhui Chen, Tao Qian, and Lihui Tan. A Theory on Non-Constant Frequency Decomposi-

tions and Applications, pp. 1-37. Springer International Publishing, Cham, 2020a.

Yinpeng Chen, Xiyang Dai, Mengchen Liu, Dongdong Chen, Lu Yuan, and Zicheng Liu. Dy-
namic convolution: Attention over convolution kernels. In Proceedings of the IEEE/CVF

Conference on Computer Vision and Pattern Recognition, pp. 11030-11039, 2020b.

Chun-Wun Cheng, Jiahao Huang, Yi Zhang, Guang Yang, Carola-Bibiane Schonlieb, and
Angelica I Aviles-Rivero. Mamba neural operator: Who wins? transformers vs. state-space

models for pdes. arXiv preprint arXiv:2410.02113, 2024.

Christian Clason, Stanislav Mazurenko, and Tuomo Valkonen. Primal-dual proximal split-
ting and generalized conjugation in non-smooth non-convex optimization. Applied Math-

ematics & Optimization, 84(2):1239-1284, 2021.

Wojciech M Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Razvan
Pascanu. Sobolev training for neural networks. Advances in Neural Information Processing

Systems, 30, 2017a.

Wojciech Marian Czarnecki, Simon Osindero, Max Jaderberg, Grzegorz Swirszcz, and Raz-
van Pascanu. Sobolev training for neural networks. In Proceedings of the 31st Interna-
tional Conference on Neural Information Processing Systems, pp. 4281-4290, Red Hook,
NY, USA, 2017b.

Icamaan B Viegas Da Silva and Paulo JL. Adeodato. PCA and Gaussian noise in MLP neural
network training improve generalization in problems with small and unbalanced data sets.
In The 2011 International Joint Conference on Neural Networks, pp. 2664—2669. IEEE,
2011.

Carlos A De Moura and Carlos S Kubrusly. The Courant—Friedrichs—Lewy (CFL) condition.
AMC, 10(12):45-90, 2013.

204

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt.

ACM Transactions on Software Engineering and Methodology, 33(7):1-38, 2024.

Herbert Edelsbrunner and Dmitriy Morozov. Persistent homology: theory and practice.

eScholarship, University of California, 2013.

Heinz W Engl. Inverse problems and their regularization. In Computational Mathematics
Driven by Industrial Problems: Lectures given at the 1st Session of the Centro Inter-
nazionale Matematico Estivo (CIME) held in Martina Franca, Italy, June 21-27, 1999,
pp. 127-150. Springer, 2007.

Lawrence C Evans. Partial differential equations, volume 19. American Mathematical Soc.,

2010.

Vladimir Sergeevich Fanaskov and Ivan V Oseledets. Spectral neural operators. In Doklady

Mathematics, volume 108, pp. S226-5232. Springer, 2023.

Matthew W Farthing and Fred L. Ogden. Numerical solution of Richards’ equation: A review
of advances and challenges. Soil Science Society of America Journal, 81(6):1257-1269,

2017.

R.A. Feddes and H. Zaradny. Model for simulating soil-water content considering evapotran-

spiration — comments. Journal of Hydrology, 37(3):393-397, 1978.

V Yu Filimonov. Large language models and their role in modern scientific discoveries.

Philosophical Problems of IT & Cyberspace (PhillTEC), 25(1):42-57, 2024.

Xavier Fontaine, Valentin De Bortoli, and Alain Durmus. Convergence rates and approxima-
tion results for SGD and its continuous-time counterpart. In Mikhail Belkin and Samory
Kpotufe (eds.), Proceedings of Thirty Fourth Conference on Learning Theory, volume 134
of Proceedings of Machine Learning Research, pp. 1965-2058. PMLR, 2021.

205

M Ganichev and NJ Kalton. Convergence of the dual greedy algorithm in banach spaces.
New York Journal of Mathematics, 15:73-95, 2009.

WR Gardner. Some steady-state solutions of the unsaturated moisture flow equation with

application to evaporation from a water table. Soil Science, 85(4):228-232, 1958.

Dariusz Gasiorowski and Tomasz Kolerski. Numerical solution of the two-dimensional
Richards equation using alternate splitting methods for dimensional decomposition. Wa-

ter, 12(6):1780, 2020.

Alex Glyn-Davies, Connor Duffin, O Deniz Akyildiz, and Mark Girolami. ¢-DVAE: Physics-
informed dynamical variational autoencoders for unstructured data assimilation. Journal

of Computational Physics, 515:113293, 2024.

Somdatta Goswami, Minglang Yin, Yue Yu, and George Em Karniadakis. A physics-informed
variational DeepONet for predicting crack path in quasi-brittle materials. Computer Meth-

ods in Applied Mechanics and Engineering, 391:114587, 2022.

David Gottlieb and Chi-Wang Shu. On the Gibbs phenomenon and its resolution. STAM
Review, 39(4):644-668, 1997.

Markus Grasmair, Otmar Scherzer, and Markus Haltmeier. Necessary and sufficient con-
ditions for linear convergence of 11-regularization. Communications on Pure and Applied

Mathematics, 64(2):161-182, 2011.

Albert Gu and Tri Dao. Mamba: Linear-time sequence modeling with selective state spaces.

arXiw preprint arXiw:2312.00752, 2023.

Albert Gu, Karan Goel, and Christopher Ré. Efficiently modeling long sequences with

structured state spaces. arXiv preprint arXiw:2111.00596, 2021.

Yanchu Guan, Dong Wang, Zhixuan Chu, Shiyu Wang, Feiyue Ni, Ruihua Song, and Chenyi

Zhuang. Intelligent agents with llm-based process automation. In Proceedings of the 30th

206

ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 5018-5027,
2024.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan
Catanzaro. Adaptive Fourier neural operators: Efficient token mixers for transformers.

arXiv preprint arXw:2111.13587, 2021.

Gaurav Gupta, Xiongye Xiao, and Paul Bogdan. Multiwavelet-based operator learning for
differential equations. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and
J. Wortman Vaughan (eds.), Advances in Neural Information Processing Systems, vol-

ume 34, pp. 24048-24062. Curran Associates, Inc., 2021.

Gaurav Gupta, Xiongye Xiao, Radu Balan, and Paul Bogdan. Non-linear operator approx-
imations for initial value problems. In International Conference on Learning Representa-

tions (ICLR), 2022.

Philip Hartman and Calvin Wilcox. On solutions of the Helmholtz equation in exterior

domains. Mathematische Zeitschrift, 75(1):228-255, 1961.

Roland Haverkamp, Michel Vauclin, Jaoudat Touma, PJ Wierenga, and Georges Vachaud.
A comparison of numerical simulation models for one-dimensional infiltration. Soil Science

Society of America Journal, 41(2):285-294, 1977.

Junyan He, Seid Koric, Shashank Kushwaha, Jaewan Park, Diab Abueidda, and Iwona
Jasiuk. Novel DeepONet architecture to predict stresses in elastoplastic structures with
variable complex geometries and loads. Computer Methods in Applied Mechanics and

Engineering, 415:116277, 2023.

Junyan He, Seid Koric, Diab Abueidda, Ali Najafi, and Iwona Jasiuk. Geom-DeepONet:
A point-cloud-based deep operator network for field predictions on 3D parameterized ge-

ometries. Computer Methods in Applied Mechanics and Engineering, 429:117130, 2024.

207

R. G. Hills, I. Porro, D. B. Hudson, and P. J. Wierenga. Modeling one-dimensional infiltration
into very dry soils: 1. model development and evaluation. Water Resources Research, 25

(6):1259-1269, 1989.

Jeffrey AF Hittinger and Jeffrey W Banks. Block-structured adaptive mesh refinement

algorithms for Vlasov simulation. Journal of Computational Physics, 241:118-140, 2013.

Kurt Hornik. Approximation capabilities of multilayer feedforward networks. Neural Net-

works, 4(2):251-257, 1991.

Zheyuan Hu, Nazanin Ahmadi Daryakenari, Qianli Shen, Kenji Kawaguchi, and George Em
Karniadakis. State-space models are accurate and efficient neural operators for dynamical

systems. arXiv preprint arXiv:2409.05231, 2024.

Binh-Son Hua, Minh-Khoi Tran, and Sai-Kit Yeung. Pointwise convolutional neural net-
works. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pp. 984-993, 2018.

James M Hyman and Mikhail Shashkov. Natural discretizations for the divergence, gradient,
and curl on logically rectangular grids. Computers € Mathematics with Applications, 33

(4):81-104, 1997.

Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network training
by reducing internal covariate shift. In International conference on machine learning, pp.

448-456. pmlr, 2015.

Andrew M Ireson, Raymond J Spiteri, Martyn P Clark, and Simon A Mathias. A sim-
ple, efficient, mass-conservative approach to solving Richards’ equation (openRE, v1. 0).

Geoscientific Model Development, 16(2):659-677, 2023.

Dimitrios Kamilis. Numerical methods for the PDESs on curves and surfaces. Master’s thesis,

Umea University, Umea, Sweden, 2013.

208

Diederik P Kingma, Max Welling, et al. Auto-encoding variational Bayes, 2013.

Nikola Kovachki, Samuel Lanthaler, and Siddhartha Mishra. On universal approximation
and error bounds for fourier neural operators. Journal of Machine Learning Research, 22

(290):1-76, 2021.

Heiko Koziolek, Sten Griiner, Rhaban Hark, Virendra Ashiwal, Sofia Linsbauer, and Nafise
Eskandani. LLM-based and retrieval-augmented control code generation. In Proceedings

of the 1st International Workshop on Large Language Models for Code, pp. 22-29, 2024.

Katya Krupchyk, Gunther Uhlmann, and Lili Yan. A remark on inverse problems for non-
linear magnetic schrédinger equations on complex manifolds. Proceedings of the American

Mathematical Society, 152(06):2413-2422, 2024.

Akash Kumar, Mikhail Belkin, and Parthe Pandit. Mirror descent on reproducing kernel

banach spaces. arXw preprint arXiw:2411.11242, 2024.

lavenderses. Nssimulation: Simulations of navier-stokes equation in 2d and 3d. https:

//github.com/lavenderses/NSsimulation, 2021.

Chenhao Li, Elijah Stanger-Jones, Steve Heim, and Sang bae Kim. FLD: Fourier latent
dynamics for structured motion representation and learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?

1d=xsd211WYSA.

Housen Li, Johannes Schwab, Stephan Antholzer, and Markus Haltmeier. Nett: solving

inverse problems with deep neural networks. Inverse Problems, 36(6):065005, 2020a.

Jian Li, Yong Liu, and Weiping Wang. Convolutional spectral kernel learning with general-

ization guarantees. Artificial Intelligence, 313:103803, 2022a.

Kangjie Li and Wenjing Ye. D-FNO: A decomposed Fourier neural operator for large-scale

209

https://github.com/lavenderses/NSsimulation
https://github.com/lavenderses/NSsimulation
https://openreview.net/forum?id=xsd2llWYSA
https://openreview.net/forum?id=xsd2llWYSA

parametric partial differential equations. Computer Methods in Applied Mechanics and

Engineering, 436:117732, 2025.

Shanda Li, Tanya Marwah, Junhong Shen, Weiwei Sun, Andrej Risteski, Yiming Yang,
and Ameet Talwalkar. CodePDE: An inference framework for llm-driven PDE solver

generation. arXww preprint arXiv:2505.08783, 2025.

Wei Li, Martin Z Bazant, and Juner Zhu. Phase-Field DeepONet: Physics-informed deep
operator neural network for fast simulations of pattern formation governed by gradient

flows of free-energy functionals. Computer Methods in Applied Mechanics and Engineering,

416:116299, 2023a.

Zijie Li, Kazem Meidani, and Amir Barati Farimani. Transformer for partial differential

equations’ operator learning. arXiv preprint arXiw:2205.13671, 2022b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial

differential equations. arXiv preprint arXiv:2010.08895, 2020b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya,
Andrew Stuart, and Anima Anandkumar. Neural operator: Graph kernel network for

partial differential equations. arXiv preprint arXiv:2003.03485, 2020c.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural
operator with learned deformations for PDEs on general geometries. Journal of Machine

Learning Research, 24(388):1-26, 2023b.

Senwei Liang, Shixiao W Jiang, John Harlim, and Haizhao Yang. Solving PDEs on unknown
manifolds with machine learning. Applied and Computational Harmonic Analysis, T1:

101652, 2024.

210

Rong Rong Lin, Hai Zhang Zhang, and Jun Zhang. On reproducing kernel Banach spaces:
Generic definitions and unified framework of constructions. Acta Mathematica Sinica,

English Series, 38(8):1459-1483, 2022.

Yevgeny Liokumovich, Fernando C Marques, and André Neves. Weyl law for the volume

spectrum. Annals of Mathematics, 187(3):933-961, 2018.

Ning Liu and Yue Yu. Neural interpretable PDEs: Harmonizing fourier insights with at-
tention for scalable and interpretable physics discovery. In Forty-second International
Conference on Machine Learning, 2025. URL https://openreview.net/forum?id=

JvRoF9FRga.

Ning Liu, Siavash Jafarzadeh, and Yue Yu. Domain agnostic Fourier neural operators.

Advances in Neural Information Processing Systems, 36:47438-47450, 2023.

Cooper Lorsung and Amir Barati Farimani. Explain like i'm five: Using LLMs to improve

PDE surrogate models with text. arXiv preprint arXiv:2410.01137, 2024.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Lu Lu, Pengzhan Jin, and George Em Karniadakis. DeepONet: Learning nonlinear operators
for identifying differential equations based on the universal approximation theorem of

operators. arXiv preprint arXiw:1910.03193, 2019.

Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em Karniadakis. Learn-
ing nonlinear operators via DeepONet based on the universal approximation theorem of

operators. Nature Machine Intelligence, 3(3):218-229, 2021.

Peter Y Lu, Samuel Kim, and Marin Soljaci¢. Extracting interpretable physical parame-
ters from spatiotemporal systems using unsupervised learning. Physical Review X, 10(3):

031056, 2020a.

211

https://openreview.net/forum?id=JvRoF9FRga
https://openreview.net/forum?id=JvRoF9FRga

Peter Y. Lu, Samuel Kim, and Marin Soljaci¢. Extracting interpretable physical parameters
from spatiotemporal systems using unsupervised learning. Phys. Rev. X, 10:031056, 2020b.

URL https://link.aps.org/doi/10.1103/PhysRevX.10.031056.

Lok Ming Lui, Yalin Wang, and Tony F Chan. Solving PDEs on manifolds with global
conformal parametriazation. In International Workshop on Variational, Geometric, and

Level Set Methods in Computer Vision, pp. 307-319. Springer, 2005.

Huakun Luo, Haixu Wu, Hang Zhou, Lanxiang Xing, Yichen Di, Jianmin Wang, and Ming-
sheng Long. Transolver++: An accurate neural solver for pdes on million-scale geometries,

2025. URL https://arxiv.org/abs/2502.02414.

Julien Mairal, Piotr Koniusz, Zaid Harchaoui, and Cordelia Schmid. Convolutional kernel

networks. Advances in Neural Information Processing Systems, 27, 2014.

Pierre ~ Marchand. helmhurts-python. https://github.com/pierre-24/

helmhurts-python, 2023.

Revanth Mattey and Susanta Ghosh. A novel sequential method to train physics informed
neural networks for Allen Cahn and Cahn Hilliard equations. Computer Methods in Applied
Mechanics and Engineering, 390:114474, February 2022. ISSN 0045-7825. doi: 10.1016/j.

cma.2021.114474. URL http://dx.doi.org/10.1016/j.cma.2021.114474.

Gregory Matviyenko. On the evaluation of Bessel functions. Applied and Computational

Harmonic Analysis, 1(1):116-135, 1993.

Mark M. Meerschaert and Charles Tadjeran. Finite difference approximations for fractional
advection—dispersion flow equations. Journal of Computational and Applied Mathematics,

172(1):65-77, 2004.

W. Merz and P. Rybka. Strong solutions to the Richards equation in the unsaturated zone.
Journal of Mathematical Analysis and Applications, 371(2):741-749, 2010.

212

https://link.aps.org/doi/10.1103/PhysRevX.10.031056
https://arxiv.org/abs/2502.02414
https://github.com/pierre-24/helmhurts-python
https://github.com/pierre-24/helmhurts-python
http://dx.doi.org/10.1016/j.cma.2021.114474

Jing Miao. Convergence of Fourier series in [, space. Math. uchicago. edu/may/Rev, 2014.

Cass T Miller, Glenn A Williams, Carl Tim Kelley, and Michael D Tocci. Robust solution
of richards’ equation for nonuniform porous media. Water Resources Research, 34(10):

2599-2610, 1998.

Oleksandr Misiats and Konstantin Lipnikov. Second-order accurate monotone finite volume

scheme for Richards’ equation. Journal of Computational Physics, 239:123-137, 2013.

Y Mualem. A new model for predicting the hydraulic conductivity of unsaturated porous

media. Water Resources Research, 12(3):513-522, 1976. ISSN 0043-1397.

Naol Tufa Negero. Fourier transform methods for partial differential equations. International

Journal of Partial Differential Equations and Applications, 2(3):44-57, 2014.

Abdou Njifenjou. Discrete maximum principle honored by conventional finite volume schemes
for diffusion-convection-reaction problems: Proof with geometrical arguments. London

Journal of Research In Science: Natural and Formal, 25(9):43-57, 2025.

Erfan Orouskhani, Soumya Sahoo, Bernard Agyeman, Song Bo, and Jinfeng Liu. Impact
of sensor placement in soil water estimation: a real-case study. Irrigation Science, 41(3):

395411, May 2023.

Rahul Parhi and Robert D Nowak. Banach space representer theorems for neural networks

and ridge splines. Journal of Machine Learning Research, 22(43):1-40, 2021.

Rom N Parnichkun, Stefano Massaroli, Alessandro Moro, Jimmy TH Smith, Ramin Hasani,
Mathias Lechner, Qi An, Christopher Ré, Hajime Asama, Stefano Ermon, et al. State-
free inference of state-space models: The transfer function approach. arXiv preprint

arXi0:2405.06147, 2024.

213

Tiemo Pedergnana, David Oettinger, Gabriel P Langlois, and George Haller. Explicit un-
steady Navier—Stokes solutions and their analysis via local vortex criteria. Physics of

Fluids, 32(4), 2020.

Salvador Pérez-Esteva and Salvador Valenzuela-Diaz. Reproducing kernel for the herglotz
functions in r” n r n and solutions of the helmholtz equation. Journal of Fourier Analysis

and Applications, 23:834-862, 2017.

Allan Pinkus. Approximation theory of the MLP model in neural networks. Acta Numerica,

8:143-195, 1999. doi: 10.1017/50962492900002919.

Tao Qian. Intrinsic mono-component decomposition of functions: an advance of Fourier

theory. Mathematical Methods in the Applied Sciences, 33(7):880-891, 2010.

Tao Qian. Sparse representations of random signals. Mathematical Methods in the Applied

Sciences, 45(8):4210-4230, 2022.

Tao Qian, Liming Zhang, and Zhixiong Li. Algorithm of adaptive Fourier decomposition.

IEEE Transactions on Signal Processing, 59(12):5899-5906, 2011.

Tao Qian, Wolfgang Sprofiig, and Jinxun Wang. Adaptive fourier decomposition of functions
in quaternionic Hardy spaces. Mathematical Methods in the Applied Sciences, 35(1):43-64,
2012.

Khalid Rafiq, Wenjing Liao, and Aditya G. Nair. Single-shot prediction of parametric partial

differential equations, 2025. URL https://arxiv.org/abs/2505.09063.

Maziar Raissi, Paris Perdikaris, and George Em Karniadakis. Physics informed deep learning
(part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint

arXiw:1711.10561, 2017.

Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-informed neural net-

works: A deep learning framework for solving forward and inverse problems involving

214

https://arxiv.org/abs/2505.09063

nonlinear partial differential equations. Journal of Computational Physics, 378:686-707,
2019.

L. A. Richards. Capillary conduction of liquids through porous mediums. Physics, 1(5):
318-333, 1931.

Saburou Saitoh, Yoshihiro Sawano, et al. Theory of reproducing kernels and applications,

volume 44. Springer, 2016.

Benjamin Sanderse, Panos Stinis, Romit Maulik, and Shady E. Ahmed. Scientific machine

learning for closure models in multiscale problems: A review. Foundations of Data Science,

7(1):298-337, 2025.

Thomas Schuster, Bernd Hofmann, and Barbara Kaltenbacher. Tackling inverse problems

in a Banach space environment: from theory to applications. Inverse Problems, 28(10):

100201, 2012.

Jiff Simtnek, Martinus Th Van Genuchten, and Miroslav Sejna. Recent developments and
applications of the HYDRUS computer software packages. Vadose Zone Journal, 15(7),
2016.

Valery S Sizikov et al. Well-posed, ill-posed, and intermediate problems with applications.

De Gruyter, 2011.

Jonathan D Smith, Kamyar Azizzadenesheli, and Zachary E Ross. Eikonet: Solving the
eikonal equation with deep neural networks. IEEFE Transactions on Geoscience and Remote

Sensing, 59(12):10685-10696, 2020.

Roger E. Smith, Keith Smettem, Philip Broadbridge, and D.A. Woolhiser. Infiltration Theory

for Hydrologic Applications. American Geophysical Union, 2002.

Emir Sokic, Samim Konjicija, Melita Ahic-Djokic, and Almir Salihbegovic. Stability issues

215

in discretization of wave equation. In 2011 18th International Conference on Systems,

Signals and Image Processing, pp. 1-4. IEEE, 2011.

Zeyuan Song and Zheyu Jiang. A data-driven modeling approach for water flow dynamics in

soil. In Computer Aided Chemical Engineering, volume 52, pp. 819-824. Elsevier, 2023a.

Zeyuan Song and Zheyu Jiang. A data-driven modeling approach for water flow dynamics
in soil. In Antonios C. Kokossis, Michael C. Georgiadis, and Efstratios Pistikopoulos
(eds.), 33rd European Symposium on Computer Aided Process Engineering, volume 52 of

Computer Aided Chemical Engineering, pp. 819-824. Elsevier, 2023b.

Zeyuan Song and Zuoren Sun. Representing functions in H? on the Kepler manifold via
WPOAFD based on the rational approximation of holomorphic functions. Mathematics,
10(15):2729, 2022.

Andrew M Stuart. Inverse problems: a bayesian perspective. Acta numerica, 19:451-559,

2010.

Daniel J Tait and Theodoros Damoulas. Variational autoencoding of PDE inverse problems.

arXiw preprint arXiw:2006.15641, 2020.

Hirohane Takagi, Shoji Moriya, Takuma Sato, Manabu Nagao, and Keita Higuchi. A frame-
work for efficient development and debugging of role-playing agents with large language
models. In Proceedings of the 30th International Conference on Intelligent User Interfaces,

pp. 70-88, 2025.

Naoya Takeishi and Alexandros Kalousis. Physics-integrated variational autoencoders for
robust and interpretable generative modeling. Advances in Neural Information Processing

Systems, 34:14809-14821, 2021.

Yuntian Teng, Zihao Li, and Cheng Chen. A comprehensive review of pre-darcy flows in

low-permeability porous media. arXiv preprint arXiw:2401.04930, 2024.

216

Karn Tiwari, Niladri Dutta, NM Krishnan, et al. Latent mamba operator for partial differ-

ential equations. International Conference on Machine Learning, 2025.

Fred T Tracy. Clean two-and three-dimensional analytical solutions of Richards’ equation

for testing numerical solvers. Water Resources Research, 42(8), 2006.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier

neural operators. arXiw preprint arXiw:2111.13802, 2021.

Tapas Tripura and Souvik Chakraborty. Wavelet neural operator for solving parametric
partial differential equations in computational mechanics problems. Computer Methods in

Applied Mechanics and Engineering, 404:115783, 2023.

Kiwon Um, Robert Brand, Yun Raymond Fei, Philipp Holl, and Nils Thuerey. Solver-in-the-
loop: Learning from differentiable physics to interact with iterative pde-solvers. Advances

in neural information processing systems, 33:6111-6122, 2020.

M Th Van Genuchten. A closed-form equation for predicting the hydraulic conductivity of

unsaturated soils. Soil Science Society of America Journal, 44(5):892-898, 1980.

Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.

Cambridge university press, 2019.

Tian Wang and Chuang Wang. Latent neural operator for solving forward and inverse pde

problems. Advances in Neural Information Processing Systems, 37:33085-33107, 2024.

Ze Wang, Chi Man Wong, Agostinho Rosa, Tao Qian, and Feng Wan. Adaptive fourier
decomposition for multi-channel signal analysis. IEEE Transactions on Signal Processing,

70:903-918, 2022.

George Neville Watson. A treatise on the theory of Bessel functions, volume 3. The University

Press, 1922.

217

Gege Wen, Zongyi Li, Kamyar Azizzadenesheli, Anima Anandkumar, and Sally M Benson.
U-fno—an enhanced fourier neural operator-based deep-learning model for multiphase

flow. Advances in Water Resources, 163:104180, 2022.

Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang,
Yunhao Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in
android. In Proceedings of the 30th Annual International Conference on Mobile Computing

and Networking, pp. 543-557, 2024.

Haixu Wu, Tengge Hu, Huakun Luo, Jianmin Wang, and Mingsheng Long. Solving high-

dimensional PDEs with latent spectral models. arXiv preprint arXiv:2301.12664, 2023.

Haixu Wu, Huakun Luo, Haowen Wang, Jianmin Wang, and Mingsheng Long. Transolver:
A fast transformer solver for pdes on general geometries. arXiv preprint arXiv:2402.02366,

2024.

Hio Tong Wu, Ieng Tak Leong, and Tao Qian. Adaptive rational approximation in bergman
space on bounded symmetric domain. Journal of Mathematical Analysis and Applications,

506(1):125591, 2022.

Qingpo Wuwu, Chonghan Gao, Tianyu Chen, Yihang Huang, Yuekai Zhang, Jianing Wang,
Jianxin Li, Haoyi Zhou, and Shanghang Zhang. PINNsAgent: Automated PDE surroga-

tion with large language models. arXiv preprint arXiw:2501.12053, 2025.

Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav Gupta, Gengshuo Liu, Chenzhong Yin,
Radu Balan, and Paul Bogdan. Coupled multiwavelet neural operator learning for coupled

partial differential equations. arXiv preprint arXiv:2303.02304, 2023a.

Xiongye Xiao, Defu Cao, Ruochen Yang, Gaurav Gupta, Gengshuo Liu, Chenzhong Yin,
Radu Balan, and Paul Bogdan. Coupled multiwavelet neural operator learning for coupled

partial differential equations, 2025. URL https://arxiv.org/abs/2303.02304.

218

https://arxiv.org/abs/2303.02304

Zipeng Xiao, Zhongkai Hao, Bokai Lin, Zhijie Deng, and Hang Su. Improved operator

learning by orthogonal attention. arXiv preprint arXiw:2310.12487, 2023b.

Jia Xu, Weilin Du, Xiao Liu, and Xuejun Li. Llm4workflow: An llm-based automated
workflow model generation tool. In Proceedings of the 39th IEEE/ACM International

Conference on Automated Software Engineering, pp. 2394-2398, 2024a.

Kailai Xu and Eric Darve. Adcme: Learning spatially-varying physical fields using deep

neural networks. arXiv preprint arXiv:2011.11955, 2020.

Kangwei Xu, Ruidi Qiu, Zhuorui Zhao, Grace Li Zhang, Ulf Schlichtmann, and Bing Li.

Llm-aided efficient hardware design automation. arXiv preprint arXiv:2410.18582, 2024b.

Yuan Xu. Funk-hecke formula for orthogonal polynomials on spheres and on balls. Bulletin

of the London Mathematical Society, 32(4):447-457, 2000.

Zong-Ben Xu and Gary F Roach. Characteristic inequalities of uniformly convex and uni-
formly smooth banach spaces. Journal of Mathematical Analysis and Applications, 157

(1):189-210, 1991.

Qile Yan, Shixiao Willing Jiang, and John Harlim. Spectral methods for solving elliptic

PDEs on unknown manifolds. Journal of Computational Physics, 486:112132, 2023.

Dmitry Yarotsky. Error bounds for approximations with deep ReLU networks. Neural
networks, 94:103-114, 2017.

Huaigian You, Quinn Zhang, Colton J. Ross, Chung-Hao Lee, and Yue Yu. Learning deep
implicit fourier neural operators (ifnos) with applications to heterogeneous material mod-

eling. Computer Methods in Applied Mechanics and Engineering, 398:115296, 2022.

Yue Yu, Ning Liu, Fei Lu, Tian Gao, Siavash Jafarzadeh, and Stewart A Silling. Nonlocal

attention operator: Materializing hidden knowledge towards interpretable physics discov-

219

ery. In The Thirty-eighth Annual Conference on Neural Information Processing Systems,

2024. URL https://openreview.net/forum?id=uSKzEajozJ.

Rebecca Zarba. A Numerical Investigation of Unsaturated Flow. Massachusetts Institute of

Technology, Department of Civil Engineering, Cambridge, MA, 1988.

Eberhard Zeidler. Nonlinear functional analysis and its applications. I. Fixed-Point Theo-

rems. Springer Science & Business Media, 1986.

Haizhang Zhang, Yuesheng Xu, and Jun Zhang. Reproducing kernel banach spaces for

machine learning. Journal of Machine Learning Research, 10(12), 2009.

Michael R Zhang, Nishkrit Desai, Juhan Bae, Jonathan Lorraine, and Jimmy Ba. Using large

language models for hyperparameter optimization. arXiv preprint arXiv:25312.04528, 2023.

Jianwei Zheng, Wei Li, Ni Xu, Junwei Zhu, and Xiaoqin Zhang. Alias-free mamba neural

operator. Advances in Neural Information Processing Systems, 37:52962-52995, 2024.

Weiheng Zhong and Hadi Meidani. Pi-VAE: Physics-informed variational auto-encoder for
stochastic differential equations. Computer Methods in Applied Mechanics and Engineer-

ing, 403:115664, 2023.

Hang Zhou, Yuezhou Ma, Haixu Wu, Haowen Wang, and Mingsheng Long. Unisolver:
Pde-conditional transformers towards universal neural pde solvers. In Forty-second Inter-

national Conference on Machine Learning, 2025.

SR Zhu, LZ Wu, ZH Shen, and RQ Huang. An improved iteration method for the numerical
solution of groundwater flow in unsaturated soils. Computers and Geotechnics, 114:103113,

2019.

Yoel Zimmermann, Adib Bazgir, Alexander Al-Feghali, Mehrad Ansari, Joshua Bocarsly,

L Catherine Brinson, Yuan Chiang, Defne Circi, Min-Hsueh Chiu, Nathan Daelman, et al.

220

https://openreview.net/forum?id=uSKzEaj9zJ

32 examples of LLM applications in materials science and chemistry: towards automation,
assistants, agents, and accelerated scientific discovery. Machine Learning: Science and

Technology, 2025.

221

222

	INTRODUCTION
	Motivation and Background
	Research Objectives and Contributions
	Hybrid Data-Driven Numerical Methods
	Theory-Guided Neural Operators
	Advanced Neural Operator Architectures
	Automated Neural Operator Design

	Organization of Dissertation

	MASSAGE-PASSING FINITE VOLUME METHOD
	Adaptive fixed-point iteration scheme of Discretized Richards Equation
	Adaptive fixed-point iteration scheme for the Richards Equation
	Choice of Adaptive Linearization Parameter
	Convergence of Adaptive Fixed-Point Iteration Scheme

	Message Passing Finite Volume Method (MP-FVM)
	Dataset Preparation and Data Augmentation
	Neural Network Training
	Message Passing Process
	Convergence of MP-FVM Algorithmn

	Case Studies
	A 1-D Benchmark Problem
	A 1-D Layered Soil Benchmark Problem
	A 2-D Benchmark Problem
	A 3-D Benchmark Problem with Analytical Solutions

	A Realistic Case Study

	ADAPTIVE FOURIER DECOMPOSITION-GUIDED NEURAL OPERATORS
	Problem Statement
	Related Work
	Preliminaries to Adaptive Fourier Decomposition (AFD)
	AFDONet Architecture
	Properties of AFDONet
	Main theorems

	Proof of Theorem 3.5.1
	Proof of Theorem 3.5.2
	Proof of Theorem 3.5.3
	Proof that the Helmholtz equation spans an RKHS
	Experiments
	PDE problem settings
	Datasets
	Implementation details
	Results and discussions

	ADAPTIVE MAMBA NEURAL OPERATORS
	Problem Statement
	Related work
	Illustrative Examples
	Adaptive Fourier Mamba operator
	AFMO Architecture

	Properties of AFMO
	Theoretical Results of AFMO
	Aggregation identity and frequency-domain coefficient extraction
	Convergence in the model space and projection error
	Best N-term error and rates without greedy selection
	Learning and discretization errors
	Stability to pole perturbations
	End-to-end convergence without greedy selection
	Connection of SSM to correlation and AFMO output

	Numerical Experiments
	Numerical results of benchmark datasets
	European Options Pricing
	Ablation studies
	Experiment using real-world noisy dataset

	Distribution of selected poles reflects problem characteristics

	INVERSE PROBLEMS IN BANACH SPACE
	Preliminaries
	Inverse problem in Hilbert vs. Banach spaces
	Adaptive Fourier decomposition (AFD)

	AFD in reproducing kernel Banach space (RKBS)
	AFD-guided Neural Operator Design
	Neural architecture
	Training
	Connections to the AFD theory
	The Optimal Feature Map

	Experiments
	Problem settings and datasets
	Ablation studies
	Comparison with benchmark solvers

	Additional Experiments

	AUTOMATING THE DESIGN OF NEURAL OPERATORS VIA LARGE LANGUAGE MODELS
	Related Work
	The Proposed LLM Agent Framework
	Neural Operators
	Framework Overview

	Numerical Experiments
	Results and analysis
	Can LLMs design neural operators?
	Does theory-aware design provide benefits?
	Can Critic and Refiner produce better results?
	Can LLMs design neural operators using obscure math?
	How much time does it take for LLM to design a neural operator?

	CONCLUSIONS AND FUTURE DIRECTIONS
	Summary of Contributions
	Hybrid Numerical Methods for the Richards Equation
	Theory-Guided Neural Operators for PDEs on Manifolds
	Extension to Inverse Problems in Banach Spaces
	Advanced Neural Operator Architectures
	Automated Neural Operator Design

	Limitations and Discussion
	Limitations of Hybrid Numerical Methods
	Limitations of Neural Operator Frameworks
	Limitations of Advanced Architectures and Automated Design

	Future Research Directions
	Extensions of Hybrid Numerical Methods
	Extensions of Neural Operator Frameworks
	Extensions of Advanced Architectures
	Extensions of Automated Design
	Broader Research Directions

	Closing Remarks

